Skip to main content

Coronary Virtual Intravascular Endoscopy

  • Chapter
  • First Online:
Coronary Graft Failure
  • 1031 Accesses

Abstract

Virtual endoscopy is a 3-dimensional (3D) visualization tool that provides unique intraluminal information of hollow organs and anatomical structures by utilising volumetric dataset. Coronary virtual intravascular endoscopy (VIE) represents a specific application of virtual endoscopy in the diagnostic evaluation of coronary anatomy, coronary artery disease including plaque assessment, coronary stents, and coronary artery bypass grafting. This chapter presents information about coronary VIE generation, intraluminal appearances of normal coronary artery, coronary plaques with regard to different types of plaques, coronary stents in terms of normal patent stents and in-stent restenosis, and coronary artery bypass grafting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shin CI, Kim SH, Lee ES, et al. Ultra-low peak voltage CT colonography: effect of iterative reconstruction algorithms on performance of radiologists who use anthropomorphic colonic phantoms. Radiology. 2014;273:759–71.

    Article  PubMed  Google Scholar 

  2. Pooler BD, Kim DH, Lam VP, Burnside ES, Pickhardt PJ. CT colonography reporting and data system (C-DARS): benchmark values from a clinical screening program. AJR Am J Roentgenol. 2014;202:1232–7.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gandon Y. Screening for colorectal cancer: the role of CT colonography. Diagn Interv Imaging. 2014;95:467–74.

    Article  CAS  PubMed  Google Scholar 

  4. Lucidarme O, Cadi M, Berger G, et al. Cost-effectiveness modeling of colorectal cancer: computed tomography colonography vs colonoscopy or fecal occult blood tests. Eur J Radiol. 2012;81:1413–9.

    Article  PubMed  Google Scholar 

  5. De Wever W, Bogaert J, Verschakelen JA. Virtual bronchoscopy: accuracy and usefulness-an overview. Semin Ultrasound CT MR. 2005;26:364–73.

    Article  PubMed  Google Scholar 

  6. Sodhi KS, Aiyappan SK, Saxena AK, Singh M, Rao K, Khandelwal N. Utility of multidetector CT and virtual bronchoscopy in tracheobronchial obstruction in children. Acta Paediatr. 2010;99:1011–5.

    Article  PubMed  Google Scholar 

  7. Amin MF, Abd El Hamid AM. The diagnostic accuracy of multidetector computed tomography with multiplanar reformatted imaging and virtual cystoscopy in the early detection and evaluation of bladder carcinoma: comparison with conventional cystoscopy. Abdom Imaging. 2013;38:184–92.

    Article  PubMed  Google Scholar 

  8. Gulsen F, Dikici S, Mihmanli I, et al. Detection of bladder cancer recurrence with real-time three-dimensional ultrasonography-based virtual cystoscopy. J Int Med Res. 2011;39:2264–72.

    Article  CAS  PubMed  Google Scholar 

  9. Li M, Zuo XL, Li YQ. Virtual gastroscopy for the evaluation of stomach malignancy. Endoscopy. 2014;46 Suppl 1:E320–1.

    PubMed  Google Scholar 

  10. Kim JW, Shin SS, Heo SH, et al. Diagnostic performance of 64-section CT using CT gastroscopy in preoperative T staging of gastric cancer according to 7th edition of AJCC cancer staging manual. Eur Radiol. 2012;22:654–62.

    Article  PubMed  Google Scholar 

  11. Belina S, Culk V, Klapan I, Vranjes Z, Lukinovic J. Our experience with virtual endoscopy of paranasal sinuses. Coll Antropol. 2008;32:887–92.

    PubMed  Google Scholar 

  12. Di Rienzo L, Coen Tirelli G, Turchio P, Garaci F, Guazzaroni M. Comparison of virtual and conventional endoscopy of nose and paranasal sinuses. Ann Otol Rhinol Laryngol. 2003;112:139–42.

    Article  PubMed  Google Scholar 

  13. Sgalambro F, Sanfilippo F, Santonocito C, Caltavuturo C, Grillo C. Virtual laryngoscopy and combined laryngoscopic-bronchoscopic approach for safe management of obstructive upper airways lesions. Br J Anaesth. 2014;113:304–6.

    Article  CAS  PubMed  Google Scholar 

  14. Guo ZJ, Chen YF, Zhang YH, et al. CT virtual endoscopy of the ampulla of Vater: preliminary report. Abdom Imaging. 2011;36:514–9.

    Article  PubMed  Google Scholar 

  15. Lyu SR, Lin YK, Huang ST, Yau HT. Experience-based virtual training system for knee arthroscopic inspection. Biomed Eng Online. 2013;12:63.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ishibashi F, Aziz K, Abela GS, Waxman S. Update on coronary angioscopy: review of a 20-year experience on potential applications for detection of vulnerable plaque. J Interv Cardiol. 2006;19:17–25.

    Article  PubMed  Google Scholar 

  17. Ueda Y, Hirayama A, Kodama K. Plaque characterization and atherosclerosis evaluation by coronary angioscopy. Herz. 2003;28:501–4.

    Article  PubMed  Google Scholar 

  18. Thieme T, Wernecke KD, Meyer R, et al. Angioscopic evaluation of atherosclerotic plaques: validation by histomorphologic analysis and association with stable and unstable coronary syndromes. J Am Coll Cardiol. 1996;28:1–6.

    Article  CAS  PubMed  Google Scholar 

  19. Mizuno K, Miyamoto A, Satomura K, et al. Angioscopic coronary macromorphology in patients with acute coronary disorders. Lancet. 1991;337:809–12.

    Article  CAS  PubMed  Google Scholar 

  20. Sun Z, Winder J, Kelly B, Ellis P, Hirst D. CT virtual intravascular endoscopy of abdominal aortic aneurysms treated with suprarenal endovascular stent grafting. Abdom Imaging. 2003;28:580–7.

    Article  CAS  PubMed  Google Scholar 

  21. Sun Z, Winder RJ, Kelly BE, Ellis PK, Kennedy PT, Hirst DG. Diagnostic value of CT virtual intravascular endoscopy in aortic stent grafting. J Endovasc Ther. 2004;11:13–5.

    PubMed  Google Scholar 

  22. Sun Z, Allen Y, Nadkarni S, Wright R, Hartley D, Lawrence-Brown M. CT virtual intravascular endoscopy in the visualization of fenestrated endovascular grafts. J Endovasc Ther. 2008;15:42–51.

    Article  PubMed  Google Scholar 

  23. Sun Z, Zheng H. Effect of suprarenal stent struts on the renal artery with ostial calcification observed on CT virtual intravascular endoscopy. Eur J Vasc Endovasc Surg. 2004;28:534–42.

    Article  CAS  PubMed  Google Scholar 

  24. Sun Z, Dimpudus FJ, Nugroho J, Adipranoto JD. CT virtual intravascular endoscopy assessment of coronary artery plaques: a preliminary study. Eur J Radiol. 2010;75:e112–9.

    Article  PubMed  Google Scholar 

  25. Sun Z. Coronary CT angiography in coronary artery disease: correlation between virtual intravascular endoscopic appearances and left bifurcation angulation and coronary plaques. Biomed Res Int. 2013;2013:732059.

    PubMed  PubMed Central  Google Scholar 

  26. Serruys PW, de Jaegere P, Keimeneij G, et al. Benestent Study Group: a comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. N Engl J Med. 1994;331:489–95.

    Article  CAS  PubMed  Google Scholar 

  27. Fischman DL, Leon MB, Baim DS, et al. Stent Restenosis Study Investigators: a randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. N Engl J Med. 1994;331:496–501.

    Article  CAS  PubMed  Google Scholar 

  28. Holmes Jr DR, Leon MB, Moses JW, et al. Analysis of 1-year clinical outcomes in the SIRIUS trial: a randomized trial of a sirolimus-eluting stent versus a standard stent in patients at high risk for coronary restenosis. Circulation. 2004;109:634–40.

    Article  PubMed  Google Scholar 

  29. Morice MC, Colombo A, Meire B, et al. Sirolimus- vs paclitaxel-eluting stents in de novo coronary artery lesions: the REALITY trial: a randomized controlled trial. JAMA. 2006;295:895–904.

    Article  CAS  PubMed  Google Scholar 

  30. Oncel D, Oncel G, Karaca M. Coronary stent patency and in-stent restenosis: determination with 64-section multidetector CT coronary angiography-initial experience. Radiology. 2007;242:403–9.

    Article  PubMed  Google Scholar 

  31. Carbone I, Francone M, Algeri E, et al. Non-invasive evaluation of coronary artery stent evaluation with retrospectively ECG-gated 64-slice CT angiography. Eur Radiol. 2008;18:234–43.

    Article  PubMed  Google Scholar 

  32. Nakamura K, Funabashi N, Uehara M, et al. Impairment factors for evaluating the patency of drug-eluting stents and bare metal stents in coronary arteries by 64-slice computed tomography versus conventional coronary angiography. Int J Cardiol. 2008;130:349–55.

    Article  PubMed  Google Scholar 

  33. Sun Z, Almutairi AM. Diagnostic accuracy of 64 multislice CT angiography in the assessment of coronary in-stent restenosis: a meta-analysis. Eur J Radiol. 2010;73:266–73.

    Article  PubMed  Google Scholar 

  34. Almutairi A, Sun Z, Ng C, Al-Safran ZA, Al-Mulla AA, Al-Jamaan AI. Optimal scanning protocols of 64-slice CT angiography in coronary artery stents: an in vitro phantom study. Eur J Radiol. 2010;74:156–60.

    Article  PubMed  Google Scholar 

  35. Sun Z, Lawrence-Brown MM. CT virtual endoscopy and 3D stereoscopic visualization in the evaluation of coronary stenting. Biomed Imaging Interv J. 2009;5:e22.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hamon M, Lepage O, Malagutti P, et al. Diagnostic performance of 16- and 64-section spiral CT for coronary artery bypass graft assessment: meta-analysis. Radiology. 2008;247:679–86.

    Article  PubMed  Google Scholar 

  37. Meyer TS, Martinoff S, Hadamitzky M, et al. Improved non-invasive assessment of coronary artery bypass grafts with 64-slice computed tomographic angiography in an unselected patient population. J Am Coll Cardiol. 2007;49:946–50.

    Article  PubMed  Google Scholar 

  38. Von Kiedrowski H, Wiemer M, Franzke K, Preuss R, et al. Non-invasive coronary angiography: the clinical value of multi-slice computed tomography in the assessment of patients with prior coronary bypass surgery: evaluating grafts and native vessels. Int J Cardiovasc Imaging. 2009;25:161–70.

    Article  Google Scholar 

  39. Weustink AC, Nieman K, Pugliese F, et al. Diagnostic accuracy of computed tomography in patients after bypass grafting: comparison with invasive coronary angiography. JACC Cardiovasc Imaging. 2009;8:816–24.

    Article  Google Scholar 

  40. Taylor AJ, Cerqueira M, Hodgson JM, et al. ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. J Am Coll Cardiol. 2010;56:1864–94.

    Article  PubMed  Google Scholar 

  41. Lee JH, Chun EJJ, Choi SI, et al. Prospective versus retrospective ECG-gated 64-detector coronary CT angiography for evaluation of coronary artery bypass graft patency: comparison of image quality, radiation dose and diagnostic accuracy. Int J Cardiovasc Imaging. 2011;27:657–67.

    Article  PubMed  Google Scholar 

  42. Goetti R, Leschka S, Baumuller S, et al. Low dose high-pitch spiral acquisition 128-slice dual-source computed tomography for the evaluation of coronary artery bypass graft patency. Invest Radiol. 2010;45:324–30.

    PubMed  Google Scholar 

  43. Gramer BM, Martinez PD, Chin AS, et al. 256-slice CT angiographic evaluation of coronary artery bypass grafts: effect of heart rate, heart rate variability and z-axis location on image quality. PLoS One. 2014;9(3):e91861.

    Article  PubMed  PubMed Central  Google Scholar 

  44. de Graff FR, van Velzen JE, Witkowska AJ. Diagnostic performance of 320-slice multidetector computed tomography coronary angiography in patients after coronary artery bypass grafting. Eur Radiol. 2011;21:2285–96.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonghua Sun PhD, MB .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sun, Z. (2016). Coronary Virtual Intravascular Endoscopy. In: Ţintoiu, I., Underwood, M., Cook, S., Kitabata, H., Abbas, A. (eds) Coronary Graft Failure. Springer, Cham. https://doi.org/10.1007/978-3-319-26515-5_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26515-5_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26513-1

  • Online ISBN: 978-3-319-26515-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics