Skip to main content
Log in

Non-invasive coronary angiography: the clinical value of multi-slice computed tomography in the assessment of patients with prior coronary bypass surgery

Evaluating grafts and native vessels

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Background Contrast enhanced multi-slice computed tomography (MSCT) is the leading modality in non-invasive coronary angiography (CTA) today. We investigated MSCT based assessment of coronary artery bypass grafts (CABG) by analyzing assets and drawbacks of CTA in order to define demands on latest technology. Methods In a clinical setting 39 CABG patients (69.2 ± 1.4 years; male n = 36) underwent CTA (collimation 16 × 0.75 mm, contrast medium 100 ml; 320 mAs, 120 KV). Ninety-seven CABG (61 venous, 36 arterial grafts) were evaluated. A subgroup of 18 patients underwent additional invasive coronary angiography (CA). Results CTA for CABG assessment resulted in an overall sensitivity (sens.) of 100%, specificity (spec.) of 92.4% and positive and negative predictive values (PPV, NPV) of 60% and 100%, respectively. CABG anastomoses showed slightly inferior diagnostic accuracy than other CABG segments. Limitations in imaging quality caused 21% unevaluable segments of the CABG anastomoses. Evaluation of native vessel segments proximal and distal to the anastomoses resulted in a sens, spec, PPV and NPV of 57.5, 94.6, 92 and 67.3%, respectively. With 28.5% unevaluable segments, the native vessel segments showed serious limitations in imaging quality. Radiation exposure was 9.88 ± 3.20 mSv (9.69 ± 3.25 mSv male; 12.08 ± 1.35 mSv female). Conclusion 16-slice MSCT based CABG assessment offers sufficient diagnostic accuracy. However, focussing on the bypass anastomoses and the native revascularized coronary arteries, clinical value is limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yusuf S, Reddy S, Ounpuu S et al (2001) Global burden of cardiovascular diseases: part I: general considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation 104:2746–2753. doi:10.1161/hc4601.099487

    Article  PubMed  CAS  Google Scholar 

  2. Fitzgibbon GM, Kafka HP, Leach AJ (1996) Coronary bypass graft fate and patient outcome: angiographic follow-up of 5,065 grafts related to survival and reoperation in 1,388 patients during 25 years. J Am Coll Cardiol 28:616–626. doi:10.1016/0735-1097(96)00206-9

    Article  PubMed  CAS  Google Scholar 

  3. Rifon J, Paramo JA, Panizo C et al (1997) The increase of plasminogen activator inhibitor activity is associated with graft occlusion in patients undergoing aorto-coronary bypass surgery. Br J Haematol 99:262–267. doi:10.1046/j.1365-2141.1997.3913205.x

    Article  PubMed  CAS  Google Scholar 

  4. Hamon M, Biondi-Zoccai GG, Malagutti P et al (2006) Diagnostic performance of multi-slice spiral computed tomography of coronary arteries as compared with conventional invasive coronary angiography: a meta-analysis. J Am Coll Cardiol 48:1896–1910. doi:10.1016/j.jacc.2006.08.028

    Article  PubMed  Google Scholar 

  5. Burgstahler C, Beck T, Kuettner A et al (2006) Non-invasive evaluation of coronary artery bypass grafts using 16-row multi-slice computed tomography with 188 ms temporal resolution. Int J Cardiol 106:244–249. doi:10.1016/j.ijcard.2005.02.017

    Article  PubMed  Google Scholar 

  6. Meyer TS, Martinoff S, Hadamitzky M et al (2007) Improved non-invasive assessment of coronary artery bypass grafts with 64-slice computed tomographic angiography in an unselected patient population. J Am Coll Cardiol 49:946–950. doi:10.1016/j.jacc.2006.10.066

    Article  PubMed  Google Scholar 

  7. Yamamoto M, Kimura F, Niinami H et al (2006) Non-invasive assessment of off-pump coronary artery bypass surgery by 16-channel multidetector-row computed tomography. Ann Thorac Surg 81:820–827. doi:10.1016/j.athoracsur.2005.08.069

    Article  PubMed  Google Scholar 

  8. Flohr T, Kuttner A, Bruder H et al (2003) Performance evaluation of a multi-slice CT system with 16-slice detector and increased gantry rotation speed for isotropic submillimeter imaging of the heart. Herz 28:7–19. doi:10.1007/s00059-003-2456-1

    Article  PubMed  Google Scholar 

  9. Deetjen A, Mollmann S, Conradi G et al (2007) Use of automatic exposure control in multi-slice computed tomography of the coronaries: comparison of 16-slice and 64-slice scanner data with conventional coronary angiography. Heart 93:1040–1043. doi:10.1136/hrt.2006.103838

    Article  PubMed  Google Scholar 

  10. Tsapaki V (2001) Patient and staff dosimetry problems in interventional radiology. Radiat Prot Dosimetry 94:113–116

    PubMed  CAS  Google Scholar 

  11. Silber S, Finsterer S, Krischke I et al (2003) Non-invasive angiography of coronary bypass grafts with cardio-CT in a cardiology practice. Herz 28:126–135. doi:10.1007/s00059-003-2464-1

    Article  PubMed  Google Scholar 

  12. Hamby RI, Aintablian A, Wisoff BG et al (1977) Comparative study of the postoperative flow in the saphenous vein and internal mammary artery bypass grafts. Am Heart J 93:306–315. doi:10.1016/S0002-8703(77)80249-4

    Article  PubMed  CAS  Google Scholar 

  13. Anders K, Baum U, Schmid M et al (2006) Coronary artery bypass graft (CABG) patency: assessment with high-resolution submillimeter 16-slice multidetector-row computed tomography (MDCT) versus coronary angiography. Eur J Radiol 57:336–344. doi:10.1016/j.ejrad.2005.12.018

    Article  PubMed  Google Scholar 

  14. Nieman K, Pattynama PM, Rensing BJ et al (2003) Evaluation of patients after coronary artery bypass surgery: CT angiographic assessment of grafts and coronary arteries. Radiology 229:749–756. doi:10.1148/radiol.2293020856

    Article  PubMed  Google Scholar 

  15. Jabara R, Chronos N, Klein L et al (2007) Comparison of multidetector 64-slice computed tomographic angiography to coronary angiography to assess the patency of coronary artery bypass grafts. Am J Cardiol 99:1529–1534. doi:10.1016/j.amjcard.2007.01.026

    Article  PubMed  Google Scholar 

  16. Pache G, Saueressig U, Frydrychowicz A et al (2006) Initial experience with 64-slice cardiac CT: non-invasive visualization of coronary artery bypass grafts. Eur Heart J 27:976–980. doi:10.1093/eurheartj/ehi824

    Article  PubMed  Google Scholar 

  17. Achenbach S, Ulzheimer S, Baum U et al (2000) Non-invasive coronary angiography by retrospectively ECG-gated Multi-slice spiral CT. Circulation 102:2823–2828

    PubMed  CAS  Google Scholar 

  18. Dill T, Deetjen A, Ekinci O et al (2008) Radiation dose exposure in multi-slice computed tomography of the coronaries in comparison with conventional coronary angiography. Int J Cardiol 124:307–311. doi:10.1016/j.ijcard.2007.02.010

    Article  PubMed  Google Scholar 

  19. Hendel RC, Patel MR, Kramer CM et al. ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR (2006) Appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol 48:1475–1497. doi:10.1016/j.jacc.2006.07.003

  20. Schroeder S, Achenbach S, Bengel F et al (2007) Working Group Nuclear Cardiology and Cardiac CT; European Society of Cardiology; European Council of Nuclear Cardiology.Cardiac computed tomography: indications, applications, limitations, and training requirements: report of a Writing Group deployed by the Working Group Nuclear Cardiology and Cardiac CT of the European Society of Cardiology and the European Council of Nuclear Cardiology. Eur Heart J 29(4):531–556. doi:10.1093/eurheartj/ehm5440

    Article  PubMed  Google Scholar 

  21. Malagutti P, Nieman K, Meijboom WB et al (2007) Use of 64-slice CT in symptomatic patients after coronary bypass surgery: evaluation of grafts and coronary arteries. Eur Heart J 28:1879–1885. doi:10.1093/eurheartj/ehl155

    Article  PubMed  Google Scholar 

  22. Kamdar AR, Meadows TA, Roselli EE et al (2008) Multidetector computed tomographic angiography in planning of reoperative cardiothoracic surgery. Ann Thorac Surg 85(4):1245–1246. doi:10.1016/j.athoracsur.2007.11.075

    Article  Google Scholar 

  23. Aviram G, Sharony R, Kramer A et al (2005) Modification of surgical planning based on cardiac multidetector computed tomography in reoperative heart surgery. Ann Thorac Surg 79(2):589–595. doi:10.1016/j.athoracsur.2004.07.012

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Langer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Kiedrowski, H., Wiemer, M., Franzke, K. et al. Non-invasive coronary angiography: the clinical value of multi-slice computed tomography in the assessment of patients with prior coronary bypass surgery. Int J Cardiovasc Imaging 25, 161–170 (2009). https://doi.org/10.1007/s10554-008-9361-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-008-9361-x

Keywords

Navigation