Skip to main content

Heusler Alloy Ribbons: Structure, Martensitic Transformation, Magnetic Transitions, and Exchange Bias Effect

  • Chapter
  • First Online:
Novel Functional Magnetic Materials

Abstract

We outline the microstructure, crystal structure, first-order martensitic transformation, and magnetic properties observed in selected Heusler Ni–Mn–Z (Z = In, Sn) alloys produced in ribbon shape by melt spinning. Along with a detailed description of Heusler alloy ribbon production and structural, calorimetric, and magnetic characterization, we highlight various characteristic features associated with the disorder influence on the magnetostructural martensitic transformation related to phase coexistence, metastability, supercooling, and superheating as a consequence of its first-order nature. Magnetic field and annealing effect on the martensitic phase transformation are also analyzed. The understanding of that transition process helps us to explain the exchange bias effect observed in the martensite phase of Ni–Mn–In and Ni–Mn–Sn systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. de Groot, R.A., Mueller, F.M., van Engen, P.G., Buschow, K.H.J.: New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50, 2024–2027 (1983)

    Article  ADS  Google Scholar 

  2. de Groot, R.A., Mueller, F.M., van Engen, P.G., Buschow, K.H.J.: Half-metallic ferromagnets and their magneto-optical properties. J. Appl. Phys. 55, 2151 (1984)

    Article  ADS  Google Scholar 

  3. Kübler, J.: First principle theory of metallic magnetism. Physica B 127, 257–263 (1984)

    Google Scholar 

  4. Fang, C.M., de Wijs, G.A., de Groot, R.A.: Spin-polarization in half-metals. J. Appl. Phys. 91, 8340 (2002)

    Article  ADS  Google Scholar 

  5. Hanssen, K.E.H.M., Mijnarends, P.E.: Positron-annihilation study of the half-metallic ferromagnet NiMnSb: theory. Phys. Rev. B 34, 5009 (1986)

    Article  ADS  Google Scholar 

  6. Galanakis, I., Ostanin, S., Alouani, M., Dreysse, H., Wills, J.M.: Ab initio ground state and L2,3 x-ray magnetic circular dichroism of Mn-based Heusler alloys. Phys. Rev. B 61, 4093 (2000)

    Article  ADS  Google Scholar 

  7. Kang, J.-S., Park, J.-G., Olson, C.G., Youn, S.J., Min, B.I.: Valence band and Sb 4d core level photoemission of the XMnSb-type Heusler compounds (X = Pt, Pd, Ni). J. Phys. Condens. Matter 7, 3789 (1995)

    Article  ADS  Google Scholar 

  8. Kang, J.-S., Hong, S.H., Jung, S.W., Lee, Y.P., Park, J.-G., Olson, C.G., Youn, S.J., Min, B.I.: Electronic structures of the half-metallic Heusler alloys: NiMnSb and PtMnSb. Solid State Commun. 88, 635–657 (1993)

    Article  Google Scholar 

  9. Galanakis, I.: Surface properties of the half-and full-Heusler alloys. J. Phys. Condens. Matter 14, 6329 (2002)

    Article  ADS  Google Scholar 

  10. Galanakis, I., Dederichs, P.H., Papanikolaou, N.: Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Phys. Rev. B 66, 174429 (2002)

    Article  ADS  Google Scholar 

  11. Galanakis, I., Dederichs, P.H., Papanikolaou, N.: Origin and properties of the gap in the half-ferromagnetic Heusler alloys. Phys. Rev. B 66, 134428 (2002)

    Article  ADS  Google Scholar 

  12. Liu, B.G.: Robust half-metallic ferromagnetism in zinc-blende CrSb. Phys. Rev. B. 67, 172411 (2003)

    Article  ADS  Google Scholar 

  13. Xie, W.H., Xu, Y.Q., Liu, B.G., Pettifor, D.G.: Half-metallic ferromagnetism and structural stability of zincblende phases of the transition-metal chalcogenides. Phys. Rev. Lett. 91, 037204 (2003)

    Article  ADS  Google Scholar 

  14. Galanakis, I.: Surface half-metallicity of CrAs in the zinc-blende structure. Phys. Rev. B 66, 012406 (2002)

    Article  ADS  Google Scholar 

  15. Pickett, W.E., Singh, D.J.: Electronic structure and half-metallic transport in the La1 − xCaxMnO3 system. Phys. Rev. B 53, 1146 (1996)

    Article  ADS  Google Scholar 

  16. Singh, D.J., Pickett, W.E.: Pseudogaps: Jahn-Teller distortions, and magnetic order in manganite perovskites. Phys. Rev. B 57, 88 (1998)

    Article  ADS  Google Scholar 

  17. Kobayashi, K.-I., Kimura, T., Sawada, H., Terakura, K., Tokura, Y.: Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature 395, 677–680 (1998)

    Article  ADS  Google Scholar 

  18. Schwarz, K.: CrO2 predicted as a half-metallic ferromagnet. J. Phys. F. Met. Phys. 16, L211 (1986)

    Article  ADS  Google Scholar 

  19. van Lueken, H., de Groot, R.A.: Electronic structure of the chromium dioxide (001) surface. Phys. Rev. B 51, 7176 (1995)

    Article  ADS  Google Scholar 

  20. Korotin, M.A., Anisimov, V.I., Khomskii, D.I., Sawatzky, G.A.: CrO2: a self-doped double exchange ferromagnet. Phys. Rev. Lett. 80, 4305 (1998)

    Article  ADS  Google Scholar 

  21. Lewis, S.P., Allen, P.B., Sasaki, T.: Band structure and transport properties of CrO2. Phys. Rev. B 55, 10253 (1997)

    Article  ADS  Google Scholar 

  22. de Groot, R.A., Buschow, K.H.J.: Recent developments in half-metallic magnetism. J. Magn. Magn. Mater. 54–57, 1377 (1986)

    Article  Google Scholar 

  23. Penicaud, M., Silberchoit, B., Sommers, C.B., Kübler, J.: Calculated electronic band structure and magnetic moments of ferrites. J. Magn. Magn. Mater. 103, 212–220 (1992)

    Article  ADS  Google Scholar 

  24. Irkhin, V.Y., Katsnelson, M.I.: Half-metallic ferromagnets. Phys. Usp. 37, 659 (1994)

    Article  ADS  Google Scholar 

  25. Mazin, I.I.: Robust half metallicity in FexCo1 − xS2. Appl. Phys. Lett. 77, 3000 (2000)

    Article  ADS  Google Scholar 

  26. Webster, P.J., Ziebeck, K.R.A.: Alloys and compounds of d-elements with main group elements. Part 2. In: Wijn, H.R.J. (ed.) Landolt-Börnstein, New Series, Group III (Vol 19) Pt.c, pp. 75–184. Springer, Berlin (1988)

    Google Scholar 

  27. Ziebeck, K.R.A., Neumann, K.U.: Magnetic properties of metals. In: Wijn, H.R.J. (ed.) Landolt-Börnstein, New Series, Group III (vol 32/c), pp. 64–414. Springer, Berlin (2001)

    Google Scholar 

  28. Stadler, S., Khan, M., Mitchell, J., Ali, N., Gomes, A.M., Dubenko, I., Takeuchi, A.Y., Guimarães, A.P.: Magnetocaloric properties of Ni2Mn1 − xCuxGa. Appl. Phys. Lett. 88, 192511 (2006)

    Article  ADS  Google Scholar 

  29. Krenke, T., Duman, E.M., Wassermann, E.F., Moya, X., Mañosa, L., Planes, A.: Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys. Nat. Mater. 4, 450–454 (2005)

    Article  ADS  Google Scholar 

  30. Han, Z.D., Wang, D.H., Zhang, C.L., Xuan, H.C., Gu, B.X., Du, Y.W.: Low-field inverse magnetocaloric effect in Ni50 − xMn39 + xSn11 Heusler alloys. Appl. Phys. Lett. 90, 042507 (2007)

    Article  ADS  Google Scholar 

  31. Sánchez Llamazares, Y.W., Hernando, B., Prida, V.M., García, C., González, J., Varga, R., Ross, C.A.: Magnetic field influence on the structural transformation in ferromagnetic shape memory alloy Mn50Ni40In10 melt spun ribbons. J. Appl. Phys. 105, 07A945 (2009)

    Article  Google Scholar 

  32. Wang, B.M., Wang, L., Liu, Y., Zhao, B.C., Zhao, Y., Yang, Y., Zhang, H.: Strong thermal-history-dependent magnetoresistance behavior in Ni49.5Mn34.5In16. J. Appl. Phys. 106, 063909 (2009)

    Article  ADS  Google Scholar 

  33. Ma, S.C., Xuan, H.C., Zhang, C.L., Wang, L.Y., Cao, Q.Q., Wang, D.H., Du, Y.W.: Investigation of the intermediate phase and magnetocaloric properties in high-pressure annealing Ni–Mn–Co–Sn alloy. Appl. Phys. Lett. 97, 052506 (2010)

    Article  ADS  Google Scholar 

  34. Umetsu, R.Y., Ito, K., Ito, W., Koyama, K., Kanomata, T., Ishida, K., Kainuma, R.: Kinetic arrest behavior in martensitic transformation of NiCoMnSn metamagnetic shape memory alloy. J. Alloys Compd. 509, 1389–1393 (2011)

    Article  Google Scholar 

  35. Han, Z.D., Wang, D.H., Zhang, C.L., Xuan, H.C., Zhang, J.R., Gu, B.X., Du, Y.W.: The martensitic transformation and the magnetocaloric effect in Ni50 − xMn38 + xIn12 alloys. Solid State Commun. 146, 124–127 (2008)

    Article  ADS  Google Scholar 

  36. Ito, W., Imano, Y., Kainuma, R., Sutou, Y., Oikawa, K., Ishida, K.: Martensitic and magnetic transformation behaviors in Heusler-type NiMnIn and NiCoMnIn metamagnetic shape memory alloys. Metall. Mater. Trans. A 38, 759–766 (2007)

    Article  Google Scholar 

  37. Hernando, B., Sánchez Llamazares, J.L., Prida, V.M., Baldomir, D., Serantes, D., Ilyn, M., González, J.: Magnetocaloric effect in preferentially textured Mn50Ni40In10 melt spun ribbons. Appl. Phys. Lett. 94, 222502 (2009)

    Article  ADS  Google Scholar 

  38. Yu, S.Y., Liu, Z.H., Liu, G.D., Chen, J.L., Cao, Z.X., Wu, G.H., Zhang, B., Zhang, X.X.: Large magnetoresistance in single-crystalline Ni50 Mn50 − xInx alloys (x = 14 − 16) upon martensitic transformation. Appl. Phys. Lett. 89, 162503 (2006)

    Article  ADS  Google Scholar 

  39. Coll, R., Escoda, L., Saurina, L., Sánchez-Llamazares, J.L., Hernando, B., Suñol, J.J.: Martensitic transformation in Mn-Ni-Sn Heusler alloys. J. Therm. Anal. Calorim. 99, 905–909 (2010)

    Article  Google Scholar 

  40. Khovaylo, V.V., Rodionova, V.V., Shevyrtalov, S.N., Novosad, V.: Magnetocaloric effect in “reduced” dimensions: thin films, ribbons, and microwires of Heusler alloys and related compounds. Phys. Status Solidi B 251, 2104–2113 (2014)

    Article  ADS  Google Scholar 

  41. Schlagel, D.L., McCallum, R.W., Lograsso, T.A.: Influence of solidification structure on the magnetic properties of Ni-Mn-Sn Heusler alloys. J. Alloys Compd. 463, 38–46 (2008)

    Article  Google Scholar 

  42. Moya, X., Mañosa, L., Planes, A., Krenke, T., Acet, M., Wassermann, E.F.: Martensitic transition and magnetic properties in Ni-Mn-X alloys. Mater. Sci. Eng. A 438–440, 911–915 (2006)

    Article  Google Scholar 

  43. Krenke, T., Duman, E., Acet, M., Moya, X., Mañosa, L., Planes, A.: Effect of Co and Fe on the inverse magnetocaloric properties of Ni-Mn-Sn. J. Appl. Phys. 102, 033903 (2007)

    Article  ADS  Google Scholar 

  44. Chen, L., Hu, F.X., Wang, J., Shen, J., Sun, J.R., Shen, B.G., Yin, J.H., Pan, L.Q., Huang, Q.Z.: Effect of post-annealing on martensitic transformation and magnetocaloric effect in Ni45Co5Mn36.7In13.3 alloys. J. Appl. Phys. 109, 07A939 (2011)

    Google Scholar 

  45. Sánchez-Alarcos, V., Recarte, V., Pérez-Landazábal, J.L., Gómez-Polo, C., Rodríguez-Velamazán, J.A.: Role of magnetism on martensitic transformation in Ni-Mn based magnetic shape memory alloys. Acta Mater. 60, 459–468 (2012)

    Article  Google Scholar 

  46. Ishikawa, H., Umetsu, R.Y., Kobayashi, K., Fujita, A., Kainuma, R., Ishida, K.: Atomic ordering and magnetic properties in Ni2Mn(GaxAl1-x) Heusler alloys. Acta Mater. 56, 4789–4797 (2008)

    Article  Google Scholar 

  47. Ito, W., Nagasato, M., Umetsu, R.Y., Kainuma, R., Kanomata, T., Ishida, K.: Magnetic field-induced reverse transformation in B2-type NiCoMnAl shape memory alloys. Appl. Phys. Lett. 93, 232503 (2008)

    Article  ADS  Google Scholar 

  48. Recarte, V., Pérez-Landazábal, J.L., Sánchez-Alarcos, V.: Dependence of the relative stability between austenite and martensite phases on the atomic order in a Ni-Mn-In metamagnetic shape memory alloy. J. Alloys Compd. 536S, S308–S311 (2012)

    Article  Google Scholar 

  49. Zheng, H.X., Xia, M.X., Liu, J., Huang, Y.L., Li, J.G.: Martensitic transformation of (Ni55.3Fe17.6Ga27.1)100-xCox magnetic shape memory alloys. Acta Mater. 53, 5125–5129 (2005)

    Article  Google Scholar 

  50. Zheng, H.X., Wu, D., Xue, S., Frenzel, J., Eggeler, G., Zhai, Q.: Martensitic transformation in rapidly solidified Heusler Ni49mn39Sn12 alloys. Acta Mater. 59, 5692–5699 (2011)

    Article  Google Scholar 

  51. Zhao, X.G., Hsieh, C.C., Lai, J.G., Cheng, X.J., Chang, W.C., Cui, W.B., et al.: Scr. Mater. 63, 250 (2005)

    Article  Google Scholar 

  52. Santos, J.D., Sánchez, T., Álvarez, P., Sánchez, M.L., Sánchez, M.L., Sánchez Llamazares, J.L., Hernando, B.: Microstructure and magnetic properties of Ni50Mn37Sn13 Heusler alloy ribbons. Appl. Phys. Lett. 103, 07B326 (2008)

    Google Scholar 

  53. Xuan, H.C., Deng, Y., Wang, D.H., Zhang, C.L., Han, Z.D., Du, Y.W.: Effect of the annealing on the martensitic transformation and magnetoresistance in Ni-Mn-Sn ribbons. J. Phys. D. Appl. Phys. 41, 215002 (2008)

    Article  ADS  Google Scholar 

  54. Hernando, B., Sánchez Llamazares, J.L., Santos, J.D., Escoda, L., Varga, R., Baldomir, D., Serantes, D.: Thermal and magnetic field-induced martensite-austenite transition in Ni50.3Mn35.3Sn14.1 ribbons. Appl. Phys. Lett. 92, 042504 (2008)

    Article  ADS  Google Scholar 

  55. Hernando, B., Sánchez Llamazares, J.L., Santos, J.D., Sánchez, M.L., Escoda, L., Suñol, J.J., Varga, R., García, C., González, J.: Grain oriented NiMnSn and NiMnIn Heusler alloy ribbons produced by melt spinning: martensitic transformation and magnetic properties. J. Magn. Magn. Mater. 321, 763–768 (2009)

    Article  ADS  Google Scholar 

  56. Sánchez Llamazares, J.L., Sánchez, T., Santos, J.D., Pérez, M.J., Sánchez, M.L., Hernando, B., Escoda, L.L., Suñol, J.J., Varga, R.: Martensitic phase transformation in rapidly solidified Mn50Ni40In10 alloy ribbons. Appl. Phys. Lett. 92, 012513 (2008)

    Article  ADS  Google Scholar 

  57. Wang, W., Yu, J., Zhai, Q., Luo, Z., Zheng, H.: Origin of retarded martensitic transformation in Heusler Ni-Mn-Sn melt-spun ribbons. Intermetallics 42, 126–129 (2013)

    Article  Google Scholar 

  58. Esakki, M.S., Rama Rao, N.V., Maniel Raja, M., Raj Kumar, D.M., Mohan Radheep, D., Arumugan, S.: Influence of Ni/Mn concentration on the structural, magnetic and magnetocaloric properties in Ni50-xMn37 + xSn13 Heusler alloys. J. Phys. D. Appl. Phys. 43, 425002 (2010)

    Article  ADS  Google Scholar 

  59. Wang, C., Meyer, J., Teichert, N., Auge, A., Rausch, E., Balke, B., Hütten, A., Fecher, G.H., Felser, C.: Heusler nanoparticles for spintronics and ferromagnetic shape memory alloys. J. Vacuum Sci. Tech. B. 32, 020802 (2014)

    Article  Google Scholar 

  60. Gaitzsch, U., Drache, J., McDonald, K., Müllner, P., Lindquist, P.: Obtaining of Ni-Mn-Ga magnetic shape memory alloy by annealing electrochemically deposited Ga/Mn/Ni layers. Thin Solid Films 522, 171–174 (2012)

    Article  ADS  Google Scholar 

  61. Babita, I., Gopalan, L., Rajasekhar, M., Ram, S.: Studies on ordering temperature and martensite stabilization in Ni55Mn20-xGa25 + x alloys. J. Alloys Compd. 475, 276–280 (2009)

    Article  Google Scholar 

  62. Prasad, R.V.S., Srinivas, M., Manivel Raja, M., Phanikumar, G.: Microstructure and magnetic properties of Ni2(Mn, Fe)Ga Heusler alloys rapidly solidified by melt spinning. Metall. Mater. Trans. A 45A, 2161–2170 (2014)

    Article  ADS  Google Scholar 

  63. Liu, J., Woodcock, T.G., Scheerbaum, N., Gutfleisch, O.: Influence of annealing on magnetic field-induced structural transformation and magnetocaloric effect in Ni-Mn-In-Co ribbons. Acta Mater. 57, 4911–4920 (2009)

    Article  Google Scholar 

  64. Kreissl, M., Kanomata, T., Matsumoto, M., Neumann, K.U., Ouladdiaf, B., Stephens, T., Ziebeck, K.R.A.: The influence of atomic order and residual strain on the magnetic and structural properties of Ni2MnGa. J. Magn. Magn. Mater. 272, 2033–2034 (2004)

    Article  ADS  Google Scholar 

  65. Yu, S.Y., Hu, S.J., Kang, S.S., Gu, A.J.: Martensitic transformation in Ni-rich Ni55Mn25In20 Heusler alloy: Experiment and first-principles calculations. J. Alloys Compd. 633, 18–21 (2015)

    Article  Google Scholar 

  66. Rama Rao, N.V., Gopalan, R., Manivel Raja, M., Arout Chelvane, J., Majumdar, B., Chandrasekaran, V.: Magneto-structural transformation studies in melt-spun Ni-Mn-Ga ribbons. Scr. Mater. 56, 405–408 (2007)

    Article  Google Scholar 

  67. Cai, W., Feng, Y., Sui, F.H., Gao, Z.Y., Dong, G.F.: Microstructure and martensitic transformation behavior of the Ni50Mn36In14 melt-spun ribbons. Scr. Mater. 58, 830–833 (2008)

    Article  Google Scholar 

  68. Albertini, F., Besseghini, S., Paoluzi, A., Pareti, L., Pasquale, M., Passaretti, F., Sasso, C.P., Stantero, A., Villa, E.: Structural, magnetic and anisotropic properties of Ni2MnGa melt-spun ribbons. J. Magn. Magn. Mater. 1421, 242–245 (2002)

    Google Scholar 

  69. Quintana-Nedelcos, A., Sánchez-Llamazares, J.L., Ríos-Jara, D., Lara-Rodríguez, A.G., García-Fernández, T.: Effect of quenching rate on the average grain size and martensitic transformation temperature in rapidly solidified polycrystalline Ni50Mn37Sn13 alloy ribbons. Phys. Status Solidi A 210, 2159–2165 (2013)

    Article  Google Scholar 

  70. Moya, X., Mañosa, L., Planes, A., Krenke, T., Duman, E., Acet, M., Wassermann, E.F.: Calorimetric study of the inverse magnetic effect in ferromagnetic Ni-Mn-Sn. J. Magn. Magn. Mater. 316, e572–e574 (2007)

    Article  ADS  Google Scholar 

  71. Dubenko, I., Samanta, T., Kumar, P.A., Kazakov, A., Prudnikov, V., Stadler, S., Granovsky, A., Zhukov, A., Ali, N.: Magnetocaloric effect and multifunctional properties of Ni-Mn-Sn Heusler alloys. J. Magn. Magn. Mater. 324, 3530–3534 (2012)

    Article  ADS  Google Scholar 

  72. Hu, F.X., Wang, J., Chen, L., Zhao, J.L., Sun, J.R., Shen, B.G.: Effect of the introduction of H atoms on magnetic entropy change in metamagnetic Heusler alloys Ni-Mn-In. Appl. Phys. Lett. 95, 112503 (2009)

    Article  ADS  Google Scholar 

  73. Bachaga, T., Daly, R., Khitouni, M., Escoda, L., Saurina, J., Suñol, J.J.: Thermal and structural analysis of Mn49.3Ni43.7Sn7.0 Heusler alloy ribbons. Entropy 17, 646–657 (2015)

    Article  ADS  Google Scholar 

  74. González-Legarreta, L., Rosa, W.O., García, J., Ipatov, M., Nazmunnahar, M., Escoda, L., Suñol, J.J., Prida, V.M., Somer, R.L., González, J., Leoni, M., Hernando, B.: Annealing effect on the crystal structure and exchange bias in Heusler Ni45.5Mn43.6In11.5 alloy ribbons. J Alloys Compd. 582, 588–593 (2014)

    Article  Google Scholar 

  75. Comtesse, D., Gruner, M.E., Ogura, M., Sokolovskiy, V.V., Buchelnikov, V.D., Grünebohm, A., Arróyave, R., Singh, N., Gottschall, T., Gutfleisch, O., Chernenko, V.A., Albertini, F., Fähler, S., Entel, P.: First-principles calculation of the instability leading to giant inverse magnetocaloric effects. Phys. Rev. B 89, 184403 (2014)

    Article  ADS  Google Scholar 

  76. Planes, A., Mañosa, L., Acet, M.: Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys. J. Phys. Condens. Matter. 21, 233201 (2009)

    Article  ADS  Google Scholar 

  77. Krenke, T., Acet, M., Wassermann, E.F., Moya, X., Mañosa, L., Planes, A.: Ferromagnetism in the austenitic and martensitic states of Ni−Mn−In alloys. Phys. Rev. B 73, 174413 (2006)

    Article  ADS  Google Scholar 

  78. Yu, B.F., Gao, Q., Zhang, B., Meng, X.Z., Chen, Z.: Review on research of room temperature magnetic refrigeration. Int. J. Refrig. 26, 622 (2003)

    Article  Google Scholar 

  79. Yan, J.L., Li, Z.Z., Chen, X., Zhou, K.W., Shen, S.X., Zhou, H.B.: Martensitic transition and magnetocaloric properties in Ni45Mn44− xFexSn11 alloys. J. Alloy Compd. 506, 516 (2010)

    Article  Google Scholar 

  80. Chatterjee, S., Giri, S., De, S.K., Majumdar, S.: Giant magneto-caloric effect near room temperature in Ni–Mn–Sn–Ga alloys. J. Alloy Compd. 503, 273 (2010)

    Article  Google Scholar 

  81. Yu, H.J., Fu, H., Zeng, Z.M., Sun, J.X., Wang, Z.G., Zhou, W.L., Zu, X.T.: Phase transformations and magnetocaloric effect in Ni–Fe–Ga ferromagnetic shape memory alloy. J. Alloy Compd. 477, 732 (2009)

    Article  Google Scholar 

  82. Sasıoglu, E., Sandratskii, L.M., Bruno, P.: First-principles calculation of the intersublattice exchange interactions and Curie temperatures of the full Heusler alloys Ni2MnX (X = Ga, In, Sn, Sb). Phys. Rev. B 70, 024427 (2004)

    Article  ADS  Google Scholar 

  83. Tan, C.L., Huang, Y.W., Tian, X.H., Jiang, J.X., Cai, W.: Origin of magnetic properties and martensitic transformation of Ni-Mn-In magnetic shape memory alloys. Appl. Phys. Lett. 100, 132402 (2012)

    Article  ADS  Google Scholar 

  84. Reichl, L.E.: A modern course in statistical physics, 2nd edn. John Wiley, New York (1998)

    MATH  Google Scholar 

  85. Mukherjee, T., Michalski, S., Skomski, R., Sellmyer, D.J., Binek, C.: Overcoming the spin-multiplicity limit of entropy by means of lattice degrees of freedom: A minimal model. Phys. Rev. B 83, 214413 (2011)

    Article  ADS  Google Scholar 

  86. Pecharsky, V.K., Gschneidner Jr., K.A.: Some common misconceptions concerning magnetic refrigerant materials. J. Appl. Phys. 90, 4614 (2001)

    Article  ADS  Google Scholar 

  87. Pecharsky, V.K., Gschneidner Jr., K.A., Pecharsky, A.O., Tishin, A.M.: Thermodynamics of the magnetocaloric effect. Phys. Rev. B 64, 144406 (2001)

    Article  ADS  Google Scholar 

  88. Imry, Y., Wortis, M.: Influence of quenched impurities on first-order phase transitions. Phys. Rev. B 19, 3580 (1979)

    Article  ADS  Google Scholar 

  89. Caballero-Flores, R., Sánchez, T., Rosa, W.O., García, J., González-Legarreta, L., Serantes, D., Prida, V.M., Escoda, L., Suñol, J.J., Hernando, B.: On tuning the magnetocaloric effect in Ni–Mn–In Heusler alloy ribbons with thermal treatment. J. Alloy. Compd. 545, 216 (2012)

    Article  Google Scholar 

  90. Yeomans, J.M.: Statistical mechanics of phase transitions. Claredon, Oxford (1992)

    Google Scholar 

  91. Roy, S.B.: First order magneto-structural phase transition and associated multi-functional properties in magnetic solids. J. Phys. Condens. Matter. 25, 183201 (2013)

    Article  ADS  Google Scholar 

  92. Caballero-Flores, R., González-Legarreta, L., Rosa, W.O., Sánchez, T., Prida, V.M., Escoda, L., Suñol, J.J., Batdalov, A.B., Aliev, A.M., Koledov, V.V., Shavrov, V.G., Hernando, B.: Magnetocaloric effect, magnetostructural and magnetic phase transformations in Ni50.3Mn36.5Sn13.2 Heusler alloy ribbons. J. Alloy Compd. 629, 332 (2015)

    Article  Google Scholar 

  93. Krenke, T., Acet, M., Wassermann, E.F., Moya, X., Mañosa, L., Planes, A.: Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni − Mn − Sn alloys. Phys. Rev. B 72, 014412 (2005)

    Article  ADS  Google Scholar 

  94. Shamberger, P.J., Ohuchi, F.S.: Hysteresis of the martensitic phase transition in magnetocaloric-effect Ni-Mn-Sn alloys. Phys. Rev. B 79, 144407 (2009)

    Article  ADS  Google Scholar 

  95. Hopkinson, J.: Magnetic properties of alloys of nickel and iron. Proc. R. Soc. A 48, 1 (1890)

    Article  Google Scholar 

  96. Sólyom, J.: Fundamentals of the physics of solids, 1st edn. Springer, Berlin (2007)

    Google Scholar 

  97. Prudnikov, V.N., Kazakov, A.P., Titov, I.S., Kovarskii, Y.N., Perov, N.S., Granovsky, A.B., Dubenko, I., Pathak, A.K., Ali, N., Gonzalez, J.: Quasi-diamagnetism and exchange anisotropy in Ni-Mn-In-Co Heusler alloys. Phys. Solid State 53, 490 (2011)

    Article  ADS  Google Scholar 

  98. de Oliveira, N.A., von Ranke, P.J.: Theoretical aspects of the magnetocaloric effect. Phys. Rep. 489, 89 (2010)

    Article  ADS  Google Scholar 

  99. Buchelnikov, V.D., Entel, P., Taskaev, S.V., Sokolovskiy, V.V., Hucht, A., Ogura, M., Akai, H., Gruner, M.E., Nayak, S.K.: Monte Carlo study of the influence of antiferromagnetic exchange interactions on the phase transitions of ferromagnetic Ni-Mn-X alloys (X = In, Sn, Sb). Phys. Rev. B 78, 184427 (2008)

    Article  ADS  Google Scholar 

  100. Wang, B.M., Liu, Y., Wang, L., Huang, S.L., Zhao, Y., Yang, Y., Zhang, H.: Exchange bias and its training effect in the martensitic state of bulk polycrystalline Ni49.5Mn34.5In16. J. Appl. Phys. 104, 043916 (2008)

    Article  ADS  Google Scholar 

  101. Khan, M., Dubenko, I., Stadler, S., Ali, N.: Exchange bias in bulk Mn rich Ni-Mn-Sn Heusler alloys. J. Appl. Phys. 102, 113914 (2007)

    Article  ADS  Google Scholar 

  102. Khan, M., Dubenko, I., Stadler, S., Ali, N.: Exchange bias behavior in Ni-Mn-Sb Heusler alloys. Appl. Phys. Lett. 91, 072510 (2007)

    Article  ADS  Google Scholar 

  103. Jing, C., Chen, J., Li, Z., Qiao, Y., Kang, B., Cao, S., Zhang, J.: Exchange bias behavior and inverse magnetocaloric effect in Ni50Mn35In15 Heusler alloy. J. Alloy Compd. 475, 1–4 (2009)

    Article  Google Scholar 

  104. Wang, B.M., Liu, Y., Ren, P., Xia, B., Ruan, K.B., Yi, J.B., Ding, J., Li, X.G.: Large exchange bias after zero-field cooling from an unmagnetized state. Phys. Rev. Lett. 106, 077203 (2011)

    Article  ADS  Google Scholar 

  105. Machavarapu, R., Jakob, G.: Exchange bias effect in the martensitic state of Ni-Co-Mn-Sn film. Appl. Phys. Lett. 102, 232406 (2013)

    Article  ADS  Google Scholar 

  106. Acet, M., Mañosa, L., Planes, A.: Magnetic-field-induced effects in martensitic Heusler-based magnetic shape memory alloys. In: Buschow, K.H.J. (ed.) Handbook of magnetic materials, 19th edn, p. 231. Elsevier, Amsterdam (2011)

    Google Scholar 

  107. Nogués, J., Schuller, I.K.: Exchange bias. J. Magn. Magn. Mater. 192, 203 (1999)

    Article  ADS  Google Scholar 

  108. Wang, B.M., Liu, Y., Xia, B., Ren, P., Wang, L.: Large exchange bias obtainable through zero-field cooling from an unmagnetized state in Ni-Mn-Sn alloys. J. Appl. Phys. 111, 043912 (2012)

    Article  ADS  Google Scholar 

  109. Singh, R., Ingale, B., Varga, L.K., Khovaylo, V.V., Chatterjee, R.: Large exchange-bias in Ni55Mn19Al24Si2 polycrystalline ribbons. Physica B 448, 143–146 (2014)

    Article  ADS  Google Scholar 

  110. Bhatti, K.P., El-Khatib, S., Srivastava, V., James, R.D., Leighton, C.: Small-angle neutron scattering study of magnetic ordering and inhomogeneity across the martensitic phase transformation in Ni50-xCoxMn40Sn10 alloys. Phys. Rev. B 85, 134450 (2012)

    Article  ADS  Google Scholar 

  111. Cai, J.W., Liu, K., Chien, C.L.: Exchange coupling in the paramagnetic state. Phys. Rev. B 60, 72 (1999)

    Article  ADS  Google Scholar 

  112. Leighton, C., Fitzsimmons, M.R., Hoffmann, A., Dura, J., Majkrzak, C.F., Lund, M.S., Schuller, I.K.: Thickness-dependent coercive mechanisms in exchange-biased bilayers. Phys. Rev. B 65, 064403 (2002)

    Article  ADS  Google Scholar 

  113. Li, Z., Chao, J., Chen, J., Yuan, S., Cao, S., Zhang, J.: Observation of exchange bias in the martensitic state of Ni50Mn36Sn14 Heusler alloy. App. Phys. Lett. 91, 112505 (2007)

    Article  ADS  Google Scholar 

  114. Sánchez-Llamazares, J.L., Flores-Zúñiga, H., Ríos-Jara, D., Sánchez-Valdes, C.F., García-Fernández, T., Ross, C.A., García, C.: Structural and magnetic characterization of the intermartensitic phase transition in NiMnSn Heusler alloy ribbons. J. Appl. Phys. 113, 17948 (2013)

    Google Scholar 

  115. Ray, M.K., Bagani, K., Banerjee, S.: Effect of excess Ni on martensitic transition, exchange bias and inverse magnetocaloric effect in Ni2 + xMn1.4-xSn0.6 alloy. J. Alloy Compd. 600, 55–59 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

Financial support under Spanish MINECO research projects MAT2013-47231-C2-1-P, MAT2013-47231-C2-2-P, and MAT2013-48054-C2-2-R is acknowledged. Scientific support from the University of Oviedo SCT is also recognized.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. González-Legarreta or B. Hernando .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

González-Legarreta, L. et al. (2016). Heusler Alloy Ribbons: Structure, Martensitic Transformation, Magnetic Transitions, and Exchange Bias Effect. In: Zhukov, A. (eds) Novel Functional Magnetic Materials. Springer Series in Materials Science, vol 231. Springer, Cham. https://doi.org/10.1007/978-3-319-26106-5_3

Download citation

Publish with us

Policies and ethics