Skip to main content

Lung and Mediastinal Tumors

Nuclear Oncology

Abstract

While CT and MRI provide high-resolution anatomic assessment of lung and mediastinal malignancies, [18F]FDG imaging is superior in differentiating benign from malignant lymphadenopathy and in the detection of distant metastases. Pre-therapy assessment with [18F]FDG can provide important prognostic information. In addition [18F]FDG PET/CT can eliminate about half of futile thoracotomies and is therefore recommended for staging of lung and mediastinal tumors. [18F]FDG imaging is also indicated in the diagnosis of recurrent disease and in monitoring treatment. [18F]FDG PET/CT has been introduced for radiation planning, enabling refining treatment volumes to allow increased dose in target volume and reduced toxicity to nontarget tissues. Although [18F]FDG is the most widely used tracer in oncology, other PET tracers are evaluated with specific clinical and research goals and may have a future role in the management of lung malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

[18F]FDG:

2-Deoxy-2-[18F]fluoro-d-glucose

18F-FLT:

3′-deoxy-3′-18F-fluorothymidine

18F-MISO:

18F-Fluoromisonidazole

AJCC:

American Joint Committee on Cancer

BAC:

Bronchioloalveolar carcinoma

BS:

Bone scintigraphy

CM:

Coccidioidomycosis

CT:

X-ray computed tomography

CTTA:

CT texture analysis

CTV:

Clinical tumor volume

CYP1A1:

Gene encoding for a member of the cytochrome P450 superfamily of enzymes

DOTA:

2-(4-Isothiocyanatobenzyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (macrocyclic coupling agent to label compounds of biological interest with metal radionuclides)

DOTATATE:

DOTA-Tyr3-octreotate

DOTATOC:

DOTA-octreotide

DWI:

Diffusion-weighted imaging

EBUS:

Endobronchial ultrasound

ECOG:

Eastern Cooperative Oncology Group

EGFR:

Epidermal growth factor receptor; the mutated form EGFRvIII plays a prominent role in tumorigenesis and proangiogenic signaling

EUS:

Endoscopic ultrasound

GGO:

Ground-glass opacity

GST mu:

Gene encoding for the mu class of glutathione S-transferase

GTV:

Gross tumor volume

HD:

Hodgkin’s disease

HIV:

Human immunodeficiency virus

HRCT:

High-resolution computed tomography

HU:

Hounsfield units

LLL:

Left lower lobe

M:

Metastasis status according to the AJCC/UICC TNM staging system

MDCT:

Multi-detector computed tomography

MinIP:

Minimum intensity projections

MIP:

Maximum intensity projection

MPM:

Malignant pleural mesothelioma

MPR:

Multiplanar reformations

MRI:

Magnetic resonance imaging

MTV:

Metabolic tumor volume

MVD:

Microvessel density

N:

Lymph node status according to the AJCC/UICC TNM staging system

NETs:

Neuroendocrine tumors

NHL:

Hodgkin’s lymphoma

NLST:

National lung screening trial

NOTA:

2-(4,7-Bis(2-(tert-butoxy)-2-oxoethyl)-1,4,7-triazonan-1-yl)acetic acid, a bifunctional chelating agent for metal radionuclides

NPV:

Negative predictive values

NSCLC:

Non-small cell lung cancers

PET:

Positron emission tomography

PET/CT:

Positron emission tomography/Computed tomography

PET/MRI:

Positron emission tomography/Magnetic resonance imaging

PFS:

Progression free survival

PPV:

Positive predictive values

PTV:

Planning target organ volume

RECIST:

Response evaluation criteria in solid tumors

RLL:

Right lower lobe

RML:

Right middle lobe

ROC:

Receiver operator curve

RUL:

Right upper lobe

SCLC:

Small-cell lung cancer

SPN:

Solitary pulmonary nodule

SRS:

Somatostatin receptor scintigraphy

STT:

Somatostatin

STTr:

Somatostatin receptor

SUV:

Standardized uptake value

SUVinc :

Increment in standardized uptake value in dual-phase acquisition

SUVmax :

Standardized uptake value at point of maximum

T:

Tumor status according to the AJCC/UICC TNM staging system

TB:

Tuberculosis

TLG:

Total lesion glycolysis

TNM:

AJCC/UICC staging system based on parameters “T” (tumor status), “N” (lymph node status), and “M” (distant metastasis status)

UICC:

Union Internationale Contre le Cancer (International Union Against Cancer)

WHO:

World Health Organization

References

  1. Howlader N, Noone AM, Krapcho M, et al., editors. SEER cancer statistics review, 1975–2012. Bethesda: National Cancer Institute. http://seer.cancer.gov/csr/1975_2012/, based on Nov 2014 SEER data submission, posted to the SEER web site, Apr 2015.

  2. Bailey-Wilson JE, Amos CI, Pinney SM, Petersen GM, de Andrade M, Wiest JS, Fain P, Schwartz AG, You M, Franklin W, et al. A major lung cancer susceptibility locus maps to chromosome 6q23–25. Am J Hum Genet. 2004;75:460–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schwartz AG. Genetic predisposition to lung cancer. Chest. 2004;125:86S–9S.

    Article  CAS  PubMed  Google Scholar 

  4. Brambilla E, Gazdar A. Pathogenesis of lung cancer signaling pathways: roadmap for therapies. Eur Respir J. 2009;33(6):1485–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rami-Porta R, Bolejack V, Crowley J, et al. The IASLC lung cancer staging project. Proposals for the revisions of the T descriptors in the forthcoming eighth edition of the TNM classification folr lung cancer. J Thorac Oncol. 2015;10:990–1003.

    Article  PubMed  Google Scholar 

  6. Campobasso O, Invernizzi B, Berrino F. Survival rates of lung cancer according to histological type. Br J Cancer. 1974;29(3):240–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Islam KMM, Jiang X, Anggondowati T, Lin G, Ganti AK, et al. Comorbidity and survival in lung cancer patients. Cancer Epidemiol Biomarkers Prev. 2015;24(7):1079–85.

    Article  PubMed  Google Scholar 

  8. Dalto SO, Stendig-Jessen M, Jakobsen E, Mellemgaard A, Osterlind K, Schutz J, Johansen C. Socioeconomic position and survival after lung cancer: Influence of stage, treatment and comorbidity among Danish patients with lung cancer diagnosed in 2004–2010. Acta Oncol. 2015;54(5):797–804.

    Article  Google Scholar 

  9. http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-per-cancer-type/lung-cancer/mortality

  10. Sakurai H, Asamura H, Goya T, et al. Survival differences by gender for resected non-small cell lung cancer: a retrospective analysis of 12,509 cases in Japanese Lung Cancer Registry study. J Thorac Oncol. 2010;10:1594–601.

    Article  Google Scholar 

  11. Ganesgan B, Panayiotou E, Burnand K, Dizdarevic S, Miles K. Thumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival. Eur Radiol. 2012;22(4):796–802.

    Article  Google Scholar 

  12. Ravanelli M, Farina D, Morassi M, Roca E, Cavalleri G, Tassi G, Maroldi R. Thexture analysis of advanced non-small cell lung cancer (NSCLC) on contrast-enhancer computer tomography: prediction of the response to first-line chemotherapy. Eur Radiol. 2013;23(12):3450–6.

    Article  PubMed  Google Scholar 

  13. Naidich DP, Webb RW, Muller NL, Krinsky GA, Zerhoun EA, Siegllman SS. Computed tomography and magnetic resonance of the thorax. 3rd ed. Philadelphia: Lippincott-Raven Publishers; 1999. p. 343–81.

    Google Scholar 

  14. Laurent F, Montaudon M, Corneloup O. CT and MRI of lung cancer. Respiration. 2006;73:133–42.

    Article  PubMed  Google Scholar 

  15. Henschke CI, McCauley DI, Yankelevich DF, et al. Early lung cancer action project: overall design and findings from baseline screening. Lancet. 1999;354:99–105.

    Article  CAS  PubMed  Google Scholar 

  16. National Lung Screening Trial Research Team. The National Lung Screening Trial: overview and study design. Radiology. 2011;258:243–53.

    Article  PubMed Central  Google Scholar 

  17. Gould MK. Clinical practice. Lung-cancer screening with low-dose computed tomography. N Engl J Med. 2014;371(19):1813–20.

    Article  CAS  PubMed  Google Scholar 

  18. Swensen SJ, Jett JR, Sloan JA, et al. Screening for lung cancer with low dose spiral computed tomography. Am J Respir Crit Care Med. 2002;165:508–13.

    Article  PubMed  Google Scholar 

  19. Pfiser DG, Jonson DM, Azzoli CG, et al. American Society of Clinical Oncology treatment of unresectable non-small-cell lung cancer guideline: update 2003. J Clin Oncol. 2004;22:330–53.

    Article  Google Scholar 

  20. Naidich DP, Rusinek H, McGuinness G, et al. Variables affecting pulmonary nodule detection with computed tomography:evaluation with three- dimensional computed simulation. J Thorac Imaging. 1993;8:291–9.

    Article  CAS  PubMed  Google Scholar 

  21. MacMahon H, Austin JH, Gamsu G, et al. Guidelines for management of small pulmonary nodules detected on CT scans: a statement from the Fleischner Society. Radiology. 2005;237(2):395–400.

    Article  PubMed  Google Scholar 

  22. Naidich DP, Bankier AA, MacMahon H, et al. Recommendations for the management of subsolid pulmonary nodules detected at CT: a statement from the Fleischner Society. Radiology. 2013;266(1):304–17.

    Article  PubMed  Google Scholar 

  23. Shaham D, Guralnik L. The solitary pulmonary nodule: radiologic considerations. Semin Ultrasound CT MRI. 2000;21:97–115.

    Article  CAS  Google Scholar 

  24. Truong MT, Ko JP, Rossi SE, et al. Update in the evaluation of the solitary pulmonary nodule. RadioGraphics. 2014;34(6):1658–79.

    Article  PubMed  Google Scholar 

  25. McWilliams A, Tammemagi MC, Mayo JR, et al. Probability of cancer in pulmonary nodules detected on first screening CT. N Engl J Med. 2013;369:910–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Revel MP, Bissery A, Bienvenu M, et al. Are two dimensional CT measurements of small non-clacified pulmonary nodules reliable ? Radiology. 2004;231:453–8.

    Article  PubMed  Google Scholar 

  27. Revel M-P, Merlin A, Peyrard S, et al. Software volumetric evaluation of doubling times for differentiating benign versus malignant pulmonary nodules. Am J Roentgenol. 2006;187(1):135–42.

    Article  Google Scholar 

  28. Wormanns D, Kohl G, Klotz E, et al. Volumetric measurements of pulmonary nodules at multi-row detector CT: in vivo reproducibility. Radiology. 2004;14:86–92.

    Google Scholar 

  29. Hasegawa M, Sone S, Takashima S, et al. Growth rate of small lung cancers detected on mass CT screening. Br J Radiol. 2000;73(876):1252–9.

    Article  CAS  PubMed  Google Scholar 

  30. de Hoop B, Gietema H, van de Vorst S, Murphy K, van Klaveren RJ, Prokop M. Pulmonary ground-glass nodules: increase in mass as an early indicator of growth. Radiology. 2010;255(1):199–206.

    Article  PubMed  Google Scholar 

  31. Swensen SJ, Viggiano RW, Midthun DE, et al. Lung nodule enhancement at CT: multicenter study. Radiology. 2000;214(1):73–80.

    Article  CAS  PubMed  Google Scholar 

  32. Ohno Y, Nishio M, Koyama H, Miura S, Yoshikawa T, Matsumoto S, et al. Dynamic contrast-enhanced CT and MRI for pulmonary nodule assessment. Am J Roentgenol. 2014;202(3):515–29.

    Article  Google Scholar 

  33. Chae EJ, Song JW, Krauss B, Song KS, Lee CW, Lee HJ, Seo JB. Dual-energy computed tomography characterization of solitary pulmonary nodules. J Thorac Imaging. 2010;25(4):301–10.

    Article  PubMed  Google Scholar 

  34. American Joint Committee on Cancer. AJCC cancer staging manual. 7th ed. New York: Springer; 2009.

    Google Scholar 

  35. Halpern BS, Schiepers C, Weber WA, et al. Presurgical staging of non-small cell lung cancer: positron emission tomography, integrated positron emission tomography/CT, and software image fusion. Chest. 2005;128:2289–97.

    Article  PubMed  Google Scholar 

  36. De Wever W, Ceyssens S, Mortelmans L, et al. Additional value pf PET-CT in the staging of lung cancer: comparison with CT alone, PET alone, and visual correlation of PET and CT. Eur Radiol. 2007;17:23–32.

    Article  CAS  PubMed  Google Scholar 

  37. Pfannenberg AC, Aschoff P, Brechtel K, et al. Low dose non-enhanced CT versus standard dose contrast-enhanced CT in combined PET/CT protocols for staging and theray planning in non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2007;34:36–44.

    Article  PubMed  Google Scholar 

  38. Gupta NC, Rogers JS, Graeber GM, et al. Clinical role of F-18 flurodeoxyglucose positron emission tomography imaging in patients with lung cancer and suspected malignant pleural effusion. Chest. 2002;122:1918–24.

    Article  CAS  PubMed  Google Scholar 

  39. Eramus JJ, Mcadams HP, Rossi SE, et al. FDG PET of pleural effusions in patients with non small cell lung cancer. AJR Am J Roentgenol. 2000;175:245–9.

    Article  Google Scholar 

  40. http://guidance.nice.org.uk/CG24

  41. Rami-Porta R, Crowley J, Goldstraw P. The revised TNM staging system for lung cancer. Ann Thorac Cardiovasc Surg. 2009;15:4–9.

    PubMed  Google Scholar 

  42. Goldstraw P, Crowley J, Chansky K, et al. The IASLC Lung Cancer Staging Project: proposals for the revision of the TNM stage groupings in the fourth coming (seventh) edition of the TNM classification of malignant tumours. J Thorac Oncol. 2007;2:706–14.

    Article  PubMed  Google Scholar 

  43. Shephard FA, Crowley J, van Houtte P, et al. The international association for the study of lung cancer staging project: peoposals regarding the clinical staging of small cell lung cancer in the fourthcoming (seventh) edition of the tumour, node, metastasis classification for lung cancer. J Thorac Oncol. 2007;2:1067–77.

    Article  Google Scholar 

  44. Storto ML, Ciccotosto C, Guidotti A, et al. Neoplastic extension across pulmonary fissures: value of spiral computed tomography and multi-planar reformations. J Thorac Imaging. 1998;13:204–10.

    Article  CAS  PubMed  Google Scholar 

  45. Pearlberg JL, Sandler MA, Beute GH, et al. Limitations of CT in evaluation of neoplasms involving the chest wall. J Comput Assist Tomogr. 1987;11:290–3.

    Article  CAS  PubMed  Google Scholar 

  46. Padovani B, Mouroux J, Seksik L, et al. Chest wall invasion by bronchogenic carcinoma; evaluation with MRI imaging. Radiology. 1993;187:33–8.

    Article  CAS  PubMed  Google Scholar 

  47. Akata S, Kaiiwara N, Park J, et al. Evaluation of chest wall invasion by lung cancer using respiratory dynamic MRI. J Med Imaging Radiat Oncol. 2008;52:36–9.

    Article  CAS  PubMed  Google Scholar 

  48. Kajiwara N, Akata S, Uchida O, et al. Cine MRI enables better therapeutic planning than CT in cases of possible lung cancer chest wall invasion. Lung Cancer. 2009;69:203–8.

    Article  PubMed  Google Scholar 

  49. McLoud TC, Swenson SJ. Lung carcinoma. Clin Chest Med. 1999;20:697–713.

    Article  CAS  PubMed  Google Scholar 

  50. White CS. MR evaluation of the pericardium and cardiac malignancies. Magn Reson Imaging Clin N Am. 1996;4(2):237–51.

    CAS  PubMed  Google Scholar 

  51. Takahashi K, Furuse M, Hanaoka H, et al. Pulmonary vein and left atrial invasion by lung cancer: assessment by breath-hold gadolinium-enhanced three-dimensional MR angiography. J Comput Assist Tomogr. 2000;24(4):557–61. [PubMed: 10966186].

    Article  CAS  PubMed  Google Scholar 

  52. Ohno Y, Adachi S, Motoyama A, et al. Multiphase ECG-triggered 3D contrast-enhanced MR angiography: utility for evaluation of hilar and mediastinal invasion of bronchogenic carcinoma. J Magn Reson Imaging. 2001;13(2):215–24.

    Article  CAS  PubMed  Google Scholar 

  53. Toloza EM, Harpole L, Detterbeck F, McCrory DC. Invasive staging of non-small cell lung cancer: a review of the current evidence. Chest. 2003;123:147s–56s.

    Article  Google Scholar 

  54. Sieren JC, Ohno Y, Koyama H, Sugimura K, McLennan G. Recent technological and application developments in computed tomography and magnetic resonance imaging for improved pulmonary nodule detection and lung cancer staging. J Magn Reson Imaging: JMRI. 2010;32(6):1353–69.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Henzler T, Goldstraw P, Wenz F, Pirker R, Weder W, Apfaltrer P, Meyer M, Buesing K, Crino L, Fennell D, Fink C, Grunenwald D, Manegold C, Pilz L, Schoenberg SO, Suresh S, Vansteenkiste J, Voigt W, Wängler B, Schmid-Bindert G. Perspectives of novel imaging techniques for staging, therapy response assessment, and monitoring of surveillance in lung cancer: summary of the Dresden 2013 Post WCLC-IASLC State-of-the-Art Imaging Workshop. J Thorac Oncol. 2015;10(2):237–49.

    Article  CAS  PubMed  Google Scholar 

  56. Silvestri GA, Littenberg B, Colice GL. The clinical evaluation for detecting metastatic lung cancer. A meta-analysis. Am J Respir Crit Care Med. 1995;152:225–30.

    Article  CAS  PubMed  Google Scholar 

  57. Wong J, Haramati LB, Rosenshtein A, Yane M, Austin JH. Non-small cell lung cancer: practice patterns of extrathoracic imaging. Acad Radiol. 1999;6:211–5.

    Article  CAS  PubMed  Google Scholar 

  58. Mayo-Smith WW, Boland GW, Noto RB, Lee MJ. State- of- the- art adrenal imaging. Radiographics. 2001;21:995–1012.

    Article  CAS  PubMed  Google Scholar 

  59. Suzuki K, Yamamoto M, Hasegawa Y, et al. Magnetic resonance imaging and computed tomography in the diagnoses of brain metastases of lung cancer. Lung Cancer. 2004;46:357–60.

    Article  CAS  PubMed  Google Scholar 

  60. Ohno Y, Koyama H, Nogami M, et al. Whole-body MR imaging vs. FDG-PET: comparison of accuracy of M-stage diagnosis for lung cancer patients. J Magn Reson Imaging. 2007;26(3):498–509.

    Article  PubMed  Google Scholar 

  61. Ohno Y, Koyama H, Onishi Y, et al. Non-small cell lung cancer: whole-body MR examination for M-stage assessment – utility for whole-body diffusion-weighted imaging compared with integrated FDG PET/CT. Radiology. 2008;248(2):643–54.

    Article  PubMed  Google Scholar 

  62. World Health Organization. WHO handbook for reporting results of cancer treatment: offset publication no. 48. Geneva: World Health Organization; 1979.

    Google Scholar 

  63. Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92:205–16.

    Article  CAS  Google Scholar 

  64. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.

    Article  CAS  PubMed  Google Scholar 

  65. Nishino M, Hatabu H, Johnson BE, McLoud TC. State of the art: response assessment in lung cancer in the era of genomic medicine. Radiology. 2014;271(1):6–27.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Bourgouin PM, McLoud TC, Fitzgibbon JF, et al. Differentiation of bronchogenic carcinoma from postobstructive pneumonitis by magnetic resonance imaging: histopathologic correlation. J Thorac Imaging. 1991;6(2):22–7.

    Article  CAS  PubMed  Google Scholar 

  67. Ohno Y, Adachi S, Kono M, Kusumoto M, Motoyama A, Sugimura K. Predicting the prognosis of non-small cell lung cancer patient treated with conservative therapy using contrast-enhanced MR imaging. Eur Radiol. 2000;10(11):1770–81.

    Article  CAS  PubMed  Google Scholar 

  68. Wychulis AR, Payne WS, Clagett OT, Woolner LB. Surgical treatment of mediastinal tumors: a 40-year experience. J Thorac Cardiovasc Surg. 1971;62:379–92.

    CAS  PubMed  Google Scholar 

  69. Armstrong P, Wilson AG, Dee P, Hancell DM. Imaging of diseases of the chest. London: Mosby; 2000. p. 789–892.

    Google Scholar 

  70. Kohman IJ. Approach to the diagnosis and staging of mediastinal masses. Chest. 1993;103:328S–30S.

    Article  CAS  PubMed  Google Scholar 

  71. Naidich DP, Webb RW, Mϋller NL, Krinsky GA, Zerhoun EA, Siegllman SS. Computed tomography and magnetic resonance of the thorax. 3rd ed. Philadelphia: Lippincott-Raven Publishers; 1999. p. 37–159.

    Google Scholar 

  72. Tecce PM, Fishmann EK, Kuhlman JE. CT evaluation of the anterior mediastinum: spectrum of disease. Radiographics. 1994;14:973–90.

    Article  CAS  PubMed  Google Scholar 

  73. Brown LR, Aughenbaugh GL. Masses of the anterior mediastinum: CT and MR imaging. AJR Am J Roentegenol. 1991;157:1171–80.

    Article  CAS  Google Scholar 

  74. Giron J, Fajadet P, Sans N, et al. Diagnostic approach to mediastinal masses. Eur J Radiol. 1998;27:21–42.

    Article  CAS  PubMed  Google Scholar 

  75. Ho VB, Prince HR. Thoracic MR aortography: imaging techniques and strategies. Radiographics. 1998;18:287–309.

    Article  CAS  PubMed  Google Scholar 

  76. Shaham D, Skilakaki MG, Goitein O. Imaging of the mediastinum: applications for thoracic surgery. Thorac Surg Clin. 2004;14:25–42.

    Article  PubMed  Google Scholar 

  77. Tomiyama N, Honda O, Tsubamoto M, et al. Anterior mediastinal tumors: diagnostic accuracy of CT and MRI. Eur J Radiol. 2009;69:280–8.

    Article  PubMed  Google Scholar 

  78. Landwehr P, Shulte O, Lackner K. MR imaging of the chest: mediastinum and chest wall. Eur Radiol. 1999;9:1737–44.

    Article  CAS  PubMed  Google Scholar 

  79. Whiten C, Khan S, Munneke G, Grubnik S. A diagnostic approach to mediastinal abnormalities. Radiographics. 2007;27:657–71.

    Article  Google Scholar 

  80. Sadohara J, Fujimoto K, Mϋller NL, et al. Thymic epithelial tumors: comparison of CT and MR imaging findings of low-risk thymomas, high – risk thymomas and thymic carcinomas. EurJ Radiol. 2006;60:70–9.

    Article  Google Scholar 

  81. Razek AA, Elmorsy A, Elshafey M, et al. Assesment of mediastinal tumors with diffusion weighted single- shot echo-planar MRI. J Magn Reson Imaging. 2009;30:535–40.

    Article  PubMed  Google Scholar 

  82. Bacha EA, Chaplier AR, Mcchiarini P, et al. Surgery for invasive primary mediastinal tumors. Ann Thorac Surg. 1998;66:234–9.

    Article  CAS  PubMed  Google Scholar 

  83. Roviaro G, Rebuffat C, Varoli F, et al. Videothoracoscopic excision of mediastinal masses: indications and technique. Ann Thorac Surg. 1994;58:1679–84.

    Article  CAS  PubMed  Google Scholar 

  84. Kantoff P. Surgical and medical management of germ cell tumors of the chest. Chest. 1993;103:313S–33S.

    Article  Google Scholar 

  85. Gawrychowsky J, Rokicki M, Gabriel A. Thymoma. The usefulness of some prognostic factors for diagnosis and treatment. Eur J Surg Oncol. 2000;26:203–8.

    Article  Google Scholar 

  86. Wrigh CD, Mathisen DJ. Mediastinal tumors: diagnosis and treatment. World J Surg. 2001;25:204–9.

    Article  Google Scholar 

  87. Strollo DC, Rosado-de-Christenson ML, Jett JR. Primary mediastinal tumors. Part 1: tumors of the anterior mediastinum. Chest. 1997;112:511–22.

    Article  CAS  PubMed  Google Scholar 

  88. Strollo DC, Rosado-de-Christenson ML. Tumors of the thymus. J Thorac Imaging. 1999;14:152–72.

    Article  CAS  PubMed  Google Scholar 

  89. Verstandig AG, Epstein DM, Miller Jr WT, et al. Thymoma. Report of 71 cases and a review. Crit Rev Diagn Imaging. 1992;33:201–30.

    CAS  PubMed  Google Scholar 

  90. Rosado-de-Christenson ML, Strollo DC, Marom EM. Imaging of thymic epithelial neoplasms. Hematol Oncol Clin North Am. 2008;22(3):409–31.

    Article  PubMed  Google Scholar 

  91. Koga K, Matsuno Y, Noguchi M, et al. A review of 79 thymomas: modification of staging system and reappraisal of conventional division into invasive and non-invasive thymoma. Pathol Int. 1994;44(5):359–67.

    Article  CAS  PubMed  Google Scholar 

  92. Travis WD, Brambilla E, Müller-Hermelink HK, Harris CC (Eds). Pathology & genetics: tumours of the lung, pleura, thymus and heart, World Health Organization classification of tumours. 10Lyon: IARC; 2004.

    Google Scholar 

  93. Huang T-W, Cheng Y-I, Tzoo C, et al. Middle mediastinal thymoma. Respirology. 2007;12:934–6.

    Article  PubMed  Google Scholar 

  94. Minniti S, Valentini M, Pinali L, et al. Thymic masses of the middle mediastinum. Report of two cases and review of the literature. J Thorac Imaging. 2004;19:192–5.

    Article  PubMed  Google Scholar 

  95. Jeong YJ, Lee KS, Kim J, et al. Does the thymic epithelial tumors enable us to differentiate histologic subtypes and predict prognosis? AJR Am J Roentgenol. 2004;183:283–9.

    Article  PubMed  Google Scholar 

  96. Tamiyama N, Mϋller NL, Elis SJ, et al. Invasive and noninvasive thymoma:distinctive CT features. J Comput Assist Tomgr. 2001;25:388–93.

    Article  Google Scholar 

  97. Rosado-de-Christenson ML, Galobardes J, Moran CA. Thymoma: radiologic-pathologic correlation. Radiographics. 1992;12:151–68.

    Article  CAS  PubMed  Google Scholar 

  98. Santana L, Givica A, Camacho C. Best cases from AFIP. Thymoma. Radiographics. 2002;22:S95–102.

    Article  PubMed  Google Scholar 

  99. Zerhouni EA, Scott Jr WW, Baker RR, et al. Invasive thymomas: diagnosis and evaluation by computed tomography. J Comput Assist Tomogr. 1982;6:92–100.

    Article  CAS  PubMed  Google Scholar 

  100. Maher MM, Shepard JA. Imaging of thymoma. Semin Thorac Cardiovasc Surg. 2005;17:12–9.

    Article  PubMed  Google Scholar 

  101. Sakai F, Sone S, Kiyono K, et al. MR imaging of thymoma: radiologic-pathologic correlation. AJR Am J Roentgenol. 1992;158:751–6.

    Article  CAS  PubMed  Google Scholar 

  102. Sakai S, Muriyama S, Saeda H, et al. Differential diagnosis between thymoma and non-thymoma by dynamic MR imaging. Acta Radiol. 2002;43:262–8.

    Article  CAS  PubMed  Google Scholar 

  103. Inaka T, Takahashi K, Mineta M, et al. Thymic hyperplasia and thymic gland tumors:differentiation with with chemical shift MR imaging. Radiology. 2007;243:869–76.

    Article  Google Scholar 

  104. Nohl-Oser HC. An investigation of the anatomy of the lymphatic drainage of the lungs. Ann R Coll Surg Engl. 1972;51:157–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Libshitz HI, McKeenna RJ, Mountain CF. Patterns of mediastinal metastasis in bronchogenic carcinoma. Chest. 1986;90:229–32.

    Article  CAS  PubMed  Google Scholar 

  106. Glazer HS, Semenkovich JW, Gutierrez FR. Mediastinum. In: Lee JKT, Sagel SS, Stanley RJ, Heiken JP, editors. Computed body tomography with MRI correlation. 3rd ed. Philadelphia: Lippincot-Raven Publishers; 1998. p. 261–349.

    Google Scholar 

  107. Castellino RA, Blank N, Hoppe RT, Cho C. Hodgkin disease: contributions of chest CT in the initial staging evaluation. Radiology. 1986;160:603–5.

    Article  CAS  PubMed  Google Scholar 

  108. Filly R, Blank N, Castellino R. Radiographic distribution of intrathoracic disease in previously untreated patients with Hodgkin’s disease and non- Hodgkin’s lymphoma. Radiology. 1976;120:277–81.

    Article  CAS  PubMed  Google Scholar 

  109. Castellino RA. Hodgkin disease: practical concepts for the diagnostic radiologist. Radiology. 1986;157:305–10.

    Article  Google Scholar 

  110. Kaplan HS. Hodgkin’s disease: unfolding concepts concerning its nature, management and prognosis. Cancer. 1980;45:2439–74.

    Article  CAS  PubMed  Google Scholar 

  111. Heron CW, Husband JE, Williams MP. Hodgkin disease: CT of the thymus. Radiology. 1988;167:647–51.

    Article  CAS  PubMed  Google Scholar 

  112. Castellino RA. The non-Hodgkin lymphomas: practical concepts for the diagnostic radiologist. Radiology. 1991;178:315–21.

    Article  CAS  PubMed  Google Scholar 

  113. Castellino RA, Hilton S, O’Brien JP, Portlock CS. Non-Hodgkin lymphoma: contribution of chest CT in the initial staging evaluation. Radiology. 1996;199:129–32.

    Article  CAS  PubMed  Google Scholar 

  114. McLeod TC, Epler GR, Gaensler EA, et al. A radiographic classification for sarcoidosis: physiologic correlation. Invest Radiol. 1982;17:129–38.

    Article  Google Scholar 

  115. Scadding JG, Mitchell DN (Eds). Sarcoidosis. London: Chapman and Hall; 1985.

    Google Scholar 

  116. Hillerdal G, Neu E, Osterman K, Schmekel B. Sarcoidosis: epidemiology and prognosis, a 15-year European study. Am Rev Respir Dis. 1984;130:29–32.

    CAS  PubMed  Google Scholar 

  117. Patil SN, Levin DL. Distribution of thoracic lymphadenopathy in sarcoidosis using computed tomography. J Thorac Imaging. 1999;14:114–7.

    Article  CAS  PubMed  Google Scholar 

  118. Clarke D, Mitchell AW, Dick R, James GD. The radiology of sarcoidosis. Sarcoidosis. 1994;11:90–9.

    CAS  PubMed  Google Scholar 

  119. Brauner MW, Grenier P, Mompoint D, et al. Pulmonary sarcoidosis: evaluation with high-resolution CT. Radiology. 1989;172:467–71.

    Article  CAS  PubMed  Google Scholar 

  120. Muller NL, Kullnig P, Miller RR. The CT findings of pulmonary sarcoidosis: analysis of 25 patients. AJR Am J Roentgenol. 1989;152:1179–82.

    Article  CAS  PubMed  Google Scholar 

  121. Johkoh T, Ikezoe J, Takeuchi N, et al. CT findings in “pseudoalveolar” sarcoidosis. J Comput Assist Tomogr. 1992;16:904–7.

    Article  CAS  PubMed  Google Scholar 

  122. Sider L, Horton Jr ES. Hilar and mediastinal adenopathy in sarcoidosis as detected by computed tomography. J Thorac Imaging. 1990;5:77–80.

    Article  CAS  PubMed  Google Scholar 

  123. Gotway MB, Tchao NK, Leung JW, et al. Sarcoidosis presenting as an enlarging solitary pulmonary nodule. J Thorac Imaging. 2001;16:117–22.

    Article  CAS  PubMed  Google Scholar 

  124. Conces DJ. Histoplasmosis. Semin Roentgenol. 1996;31(1):14–27.

    Article  PubMed  Google Scholar 

  125. McGuinness G, Naidich DP, Jagirdar J, et al. High resolution CT findings in miliary lung disease. J Comput Assist Tomogr. 1992;16(3):384–90.

    Article  CAS  PubMed  Google Scholar 

  126. Sherrick AD, Brown LR, Harms GF, Myers JL. The radiographic findings of fibrosing mediastinitis. Chest. 1994;106(2):484–9.

    Article  CAS  PubMed  Google Scholar 

  127. Einstein HE, Catanzaro A, Johnson R, et al. Pulmonary coccidioidomycosis. J Thorac Imaging. 1992;7:729–38.

    Google Scholar 

  128. Kim KI, Leung AN, Flint JD. Chronic pulmonary coccidioidomycosis: computed tomographic and pathologic findings in 18 patients. Can Assoc Radiol J. 1998;49(6):401–7.

    CAS  PubMed  Google Scholar 

  129. Freudlich IM, Bragg DG. Granulomatous infections of the lung. In: A radiologic approach to diseases of the chest. Philadelphia: Williams & Wilkins; 1992. p. 263–87.

    Google Scholar 

  130. Harisinghani MG, McLoud TC, Shepard JA, et al. Tuberculosis from head to toe. Radiographics. 2000;20(2):449–70.

    Article  CAS  PubMed  Google Scholar 

  131. Lee KS, Song KS, Lim TH, et al. Adult-onset pulmonary tuberculosis: findings on chest radiographs and CT scans. Am J Roentgenol. 1993;160(4):753–8.

    Article  CAS  Google Scholar 

  132. Eisenhuber E, Mostbeck G, Bankier A, Stadler A, Rumetshofer R. Radiologic diagnosis of lung tuberculosis. Radiologe. 2007;47(5):393–400.

    Article  CAS  PubMed  Google Scholar 

  133. Lee KM, Choe KH, Kim SJ. Clinical investigation of cavitary tuberculosis and tuberculous pneumonia. Korean J Intern Med. 2006;21(4):230–5.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Linh NN, Marks GB, Crawford AB. Radiographic predictors of subsequent reactivation of tuberculosis. Int J Tuberc Lung Dis. 2007;11(10):1136–42.

    CAS  PubMed  Google Scholar 

  135. Fischer B, Mortenses J. The future in diagnosis and staging of lung cancer: positron emission tomography. Respiration. 2006;73:267–76.

    Article  PubMed  Google Scholar 

  136. Bunyarovich T, Coleman E. PET evaluation of lung cancer. J Nucl Med. 2006;47:451–69.

    Google Scholar 

  137. Lee KS, Kim Y, Han J, Ko EJ, Park CK, Primack SL. Bronchioalveolar carcinoma: clinical, histopathologic, and radiologic findings. Radiographics. 1997;17:1345–57.

    Article  CAS  PubMed  Google Scholar 

  138. Nomori H, Watanabe K, Ohtsuka T, et al. Evaluation of F-18 fluorodeoxyglucose (FDG) PET scanning for pulmonary nodules less than 3 cm in diameter, with special reference to the CT images. Lung Cancer. 2004;45:19–27.

    Article  PubMed  Google Scholar 

  139. Sogard R, Fischer BMB, Mortensen J, Hogaard L, Lassen U. Preoperative staging of lung cancer with PET/CT:cost-effectiveness evaluation alongside a randomized controlled trial. Eur J Nucl Med Mol Imaging. 2011;38:802–9.

    Article  Google Scholar 

  140. Takeuchi S, Khiewavan B, Fox PS, Swisher SG, Rohren EM, Bassett Jr RL, Macapinlac HA. Impact of initial PET/CT staging in terms of clinical stage management plan and prognosis in 592 patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2014;41:906–14.

    Article  PubMed  Google Scholar 

  141. Pillot G, Siegel BA, Govindan R. Prognostic value of fluorodeoxy-glucose positron emission tomography in non-small cell lung cancer: a review. J Thorac Oncol. 2006;1:152–9.

    Article  PubMed  Google Scholar 

  142. Goodgame B, Pillot GA, Yang Z, et al. Prognostic value of preoperative positron emission tomography in resected stage I non-small cell lung cancer. J Thorac Oncol. 2008;3:130–4.

    Article  PubMed  Google Scholar 

  143. Tann M, Sandrasegaran S, Winer-Muram HT, Jennings SG, Welling ME, Fletcher JW. Can FDG-PET be used to predict growth of stage I lung cancer? Clin Radiol. 2008;63:856–63.

    Article  CAS  PubMed  Google Scholar 

  144. Im H-J, Pak K, Cheon GW, et al. Prognostic value of volumetric parameters in non-small-cell lung cancer: a meta-analysis. Eur J Nucl Med Mol Imaging. 2015;42:241–51.

    Article  CAS  PubMed  Google Scholar 

  145. Caicedo C, Garcia-Velloso MJ, Lozano MD, et al. Role of [18F]FDG PET in prediction of KRAS and EGFR mutation status in patients with advanced non-small-cell lung cancer. Eur J Nucl Med Mol Imaging. 2014;41:2058–65.

    Article  CAS  PubMed  Google Scholar 

  146. Swensen S, Jett J, Hartman T, Midthun D, Mandrekar S, Hillman S, Sykes AM, Aughenbaugh G, Bungum A, Allen K. CT screening for lung cancer. Radiology. 2005;235:259–65.

    Article  PubMed  Google Scholar 

  147. Gould MK, Maclean CC, Kuschne WG, et al. Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta analysis. JAMA. 2001;285:914–24.

    Article  CAS  PubMed  Google Scholar 

  148. Hellwig D, Ukena D, Paulsen F, Bamberg M, Kirsch CM. Meta-analyysis of the efficacy of positron-emission tomography with F-18-fluorodeoxyglucose in lung tumors. Basis for discussion of the German Cobsensus Conference on PET in Oncology 2000. Pneumologie. 2001;55(8):367–77.

    Article  CAS  PubMed  Google Scholar 

  149. Cai Y-X, Fu X-N, Sun W, Zhang N. Stage I non-small cell lung cancer: a meta-analysis. PLoS One. 2013;8(12):282366. doi:10.1371/journal/pone/0082366.

    Google Scholar 

  150. Bryant AS, Cerfolio RJ. The maximu, standardiszed uptake values on integrated FDG-PET/CT is useful in differentiating benign from malignant pulmonary nodules. Ann Thorac Surg. 2006;82(3):1016–20.

    Article  PubMed  Google Scholar 

  151. Hashimoto Y, Tsujikawa T, Kondo C, et al. Accuracy of PET for diagnosis of solid pulmonary lesions with 18F-FDG uptake below the standardized uptake value of 2.5. J Nucl Med. 2006;47:426–31.

    PubMed  Google Scholar 

  152. Bach PB. Inconsistencies in findings from the early lung cancer action project studies of lung cancer screening. J Natl Cancer Inst. 2011;103:1–5.

    Article  Google Scholar 

  153. Bastarrica G, Garcia-Velloso MJ, Lozano MD, et al. Early lung cancer detection using spiral computed tomography and positron emission tomography. Am J Respir Crit Care Med. 2005;171:1378–83.

    Article  Google Scholar 

  154. Raz DJ, Odisho AY, Franc BL, Jablons DM. Tumor fluoro-2-deoxy-d-glucose avidity on positron emission tomographic scan predicts mortality in patients with early-stage pure and mixed bronchioalveolar carcinoma. J Thorac Cardiovasc Surg. 2006;132:1189–95.

    Article  PubMed  Google Scholar 

  155. Demura Y, Tsuchida T, Uesaka D, Umeda Y, Morikawa M, Ameshima S, Ishizaki T, Fujibayashi Y, Okazawa H. Usefulness of 18F-fluorodeoxyglucose positron emission tomography for diagnosing disease activity and monitoring therapeutic response in patients with pulmonary mycobacteriosis. Eur J Nucl Med Mol Imaging. 2009;36(4):632–9.

    Article  PubMed  Google Scholar 

  156. Hofmeyer A, Lau WFE, Slavin MA. Mycobacterium tuberculosis infection in patients with cancer, the role of 18-fluorodeoxyglucose positron emission tomography for diagnosis and monitoring treatment response. Tuberculosis. 2007;87:459–63.

    Article  Google Scholar 

  157. Lee JW, Kim BS, Lee DS, Chung J-K, Lee MC, Kim S, Kang WJ. 18F-FDG PET/CT in mediatinal lymph node staging of non-small-cell lung cancer in a tuberculosis-endemic country: consideration of lymph-node calcification and distribution pattern to improve specificity. Eur J Nucl Med Mol imaging. 2009;36:1794–802.

    Article  PubMed  Google Scholar 

  158. Croft DR, Trapp J, Kernstine K, Kirchner P, Mullan B, Galvin J, Peterson MW, Gross T, McLennan G, Kern JA. FDG-PET imaging and the diagnosis of non-small cell lung cancer in a region of high histoplasmosis prevalence. Lung Cancer. 2002;36(3):297–30.

    Article  PubMed  Google Scholar 

  159. Keijsers RG, Grutters JC, van Velzen-Blad H, van den Bosch JM, Oyen WJ, Verzijlbergen FJ. 18F-FDG PET patterns and BAL cell profiles in pulmonary sarcoidosis. Eur J Nucl Med Mol Imaging. 2010;37(6):1181–8.

    Article  PubMed  Google Scholar 

  160. Aide N, Allouache D, Ollivier Y, de Raucourt S, Switsters O, Bardet S. Early 2′-deoxy-2′[18F]fluoro-d-glucose PET metabolic response after corticosteroid therapy to differentiate cancer from sarcoidosis and sarcoid-like lesions. Mol Imaging Biol. 2009;11:224–8.

    Article  PubMed  Google Scholar 

  161. Matthies A, Hickeson M, Cuchiara A, Alavi A. Dual time point 18F-FDG PET for the evaluation of pulmonary nodules. J Nucl Med. 2002;43:871–5.

    PubMed  Google Scholar 

  162. Chen HHW, Lee B-F, Su W-C, et al. The increment in standardized uptake value determined using dual-phase 18F – FDG PET is a promising prognostic factor in non-small-cell lung cancer. Eur J Nucl Med Mol imaging. 2013;40:1478–85.

    Article  CAS  PubMed  Google Scholar 

  163. Lardinois D, Weder W, Hany TF, et al. Staging of non-small-cell lung cancer with integrated positron – emission tomography and computed tomography. N Engl J Med. 2003;348:2500–7.

    Article  PubMed  Google Scholar 

  164. Cerfolio RJ, Ohja B, Bryant AS, Raghuveer V, Mountz JM, Bartolucci AA. The accuracy of integrated PET-CT compared with dedicated PET alone for the staging of patients with nonsmall cell lung cancer. Ann Thorac Surg. 2004;78:1017–23.

    Article  PubMed  Google Scholar 

  165. Shim SS, Lee KS, Kim BT, et al. Non-small cell lung cancer: prospective comparison of integrated FDG PET/CT and CT alone for preoperative staging. Radiology. 2005;236:1011–9.

    Article  PubMed  Google Scholar 

  166. De Wever W, Stroobants S, Coolen J, Verschakelen JA. Integrated PET/CT in the staging of nonsmall cell lung cancer: technical aspects and clinical integration. Eur Respir J. 2009;33:201–12.

    Article  CAS  PubMed  Google Scholar 

  167. Schaffer GJ, Wolf G, Schoellnast H, et al. Non-small-cell lung cancer: evaluation of pleural abnormalities on CT scans with 18F FDG PET. Radiology. 2004;231:858–65.

    Article  Google Scholar 

  168. Nestle U, Walter K, Schmidt S, et al. 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys. 1999;44:593–7.

    Article  CAS  PubMed  Google Scholar 

  169. Dillemans B, Deneffe G, Verschakelen J, Decramer M. Value of computed tomography and mediastinoscopy in preoperative evaluation of mediastinal nodes in non-small cell lung cancer. A study of 569 patients. Eur J Cardiothorac Surg. 1994;8:37–42.

    Article  CAS  PubMed  Google Scholar 

  170. Shields TW. The significance of ipsilateral mediastinal lymph node metastatsis (N2 disease) in non-small cell carcinoma of the lung. A commentary. J Thorac Cardovasc Surg. 1990;99:48–53.

    CAS  Google Scholar 

  171. Berlangieri SU, Scott AM, Knight SR, et al. F-18 fluorodeoxyglucose positron emission tomography in the non-invasive staging of non-small cell lung cancer. Eur J Cardiothorac Surg. 1999;16(Suppl 1):S25–30.

    Article  PubMed  Google Scholar 

  172. Birim O, Kappetein AP, Stijnen T, Borges AJ. Meta-analysis of positron emission tomographic and computed tomographic imaging in detecting mediastinal lymph node metastases in nonsmall cell lung cancer. Ann Thorac Surg. 2005;79:375–82.

    Article  PubMed  Google Scholar 

  173. Schrevens L, Lorent N, Dooms C, VAnsteenkiste J. The role of PET scan in diagnosis, staging, and management of non-small cell lung cancer. Oncologist. 2004;9:633–43.

    Article  PubMed  Google Scholar 

  174. Pieterman RM, van Putten JWG, Meuzelaar JJ, et al. Preoperative staging of non-small cell lung cancer with positron emission tomography. N Engl J Med. 2000;343:254–61.

    Article  CAS  PubMed  Google Scholar 

  175. Gonzalez-Stawinski GV, Lemaire A, Merchant F, et al. A comparative analysis of positron emission tomography and mediastinoscopy in staging non-small cell lung cancer. J Thorac Cardiovasc Surg. 2003;126:1900–5.

    Article  PubMed  Google Scholar 

  176. Quint LE, Tummala S, Brisson LJ, et al. Distribution of distant metastases from newly diagnosed non-small cell lung cancer. Ann Thorac Surg. 1996;62:246–50.

    Article  CAS  PubMed  Google Scholar 

  177. Kumar R, Xiu Y, Yu JQ, et al. 18F-FDG PET in evaluation of adrenal lesions in patients with lung cancer. J Nucl Med. 2004;45:2058–62.

    PubMed  Google Scholar 

  178. Jana S, Zhang T, Milstein DM, ISasi CR, Blaufox MD. FDG-PET and CT characterization of adrenal lesions in patients with lung cancer. Eur J Nucl Med Mol Imaging. 2006;33:29–35.

    Article  PubMed  Google Scholar 

  179. Marom EM, McAdams HP, Erasmus JJ, et al. Staging non-small cell lung cancer with whole-body PET. Radiology. 1999;212:803–9.

    Article  CAS  PubMed  Google Scholar 

  180. Peterson JJ, Kransdorf MJ, O’Connor MI. Diagnosis of occult bone metastases: positron emission tomography. Clin Orthop Relat Res. 2003;415(Suppl):S120–8.

    Article  Google Scholar 

  181. Qu X, Huang X, Yan W, Wu L, Dai K. A meta-analysis of 18F-FDG-PET-CT, 18F-FDG-PET, MRI and bone scintigraphy for disgnosis of bone metastases in patients with lung cancer. Eur J Radiol. 2012;81:1007–15.

    Article  PubMed  Google Scholar 

  182. Hetzel M, Arslandemir C, Konig HH, et al. F-18 NaF PET for detection of bone metastases in lung cancer: accuracy, cost effectiveness, and impact on patient management. J Bone Miner Res. 2003;18:206–14.

    Article  Google Scholar 

  183. Song JW, Oh Y-M, Shim T-S, Kim WS, Ryu J-S, Choi C-M. Efficacy comparison between 18F-FDG PET/CT and bone scintigraphy in detecting bony metastases of non-small-cell lung cancer. Lung Cancer. 2009;65:333–8.

    Article  PubMed  Google Scholar 

  184. Krüger S, Buck AK, Mottaghy FM, et al. Detection of bone metastases in patients with lung cancer: 99mTc-MDP planar bone scintigraphy, 18F-fluoride PET or 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2009;36:1807–12.

    Article  PubMed  Google Scholar 

  185. Vansteenkiste JF, Stroobants SG. The role of positron emission tomography with 18F-fluoro-2-deoxy-d-glucose in respiratory oncology. Eur Respir J. 2001;17:802–20.

    Article  CAS  PubMed  Google Scholar 

  186. Fischer B, Lassen U, Mortensen J, et al. Preoperative staging of lung cancer with combined PET-CT. N Engl J Med. 2009;361:32–9.

    Article  CAS  PubMed  Google Scholar 

  187. Van Tinteren H, Hoekstra OS, Smit EF, et al. Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non-small-cell lung cancer: the PLUS multicentre randomized trial. Lancet. 2002;359:1388–93.

    Article  PubMed  Google Scholar 

  188. Subedi N, Scarsbrook A, Darby M, Korde K, Mc Shane P, Muers MF. The clinical impact of integrated FDG PET-CT on management decisions in patients with lung cancer. Lung Cancer. 2009;64:301–7.

    Article  CAS  PubMed  Google Scholar 

  189. Delbeke D, Shöder H, Martin WH, Wahl RL. Hybrid imaging (SPECT/CT and PET/CT): improving therapeutic decisions. Semin Nucl Med. 2009;39:308–40.

    Article  PubMed  Google Scholar 

  190. Nestle U, Kremp S, Grosu A-L. Practical integration of [18F]-FDG-PET and PET-CT in the planning of radiotherapy for non-small cell lung cancer (NSCLC): the technical basis, ICRU-target volumes, problems, perspectives. Radiother Oncol. 2006;81:209–25.

    Article  CAS  PubMed  Google Scholar 

  191. Bradley J, Thorstad WL, Mutic S, et al. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2004;59:78–86.

    Article  PubMed  Google Scholar 

  192. Deniaud-Alexandre E, Touboul E, Lerouge D, et al. Impact of computed tomography and 18F-deoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2005;63:1432–41.

    Article  PubMed  Google Scholar 

  193. Gondi V, Bradley K, Mehta M, et al. Clinical impact of 18F fluorodeoxyglucose positron-emission tomography/computed tomography on radiotherapy planning in esophageal and non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2007;67:187–95.

    Article  PubMed  Google Scholar 

  194. Kolodziejczyk M, Kepka L, Dziuk M, et al. Impact of [18F] fluorodeoxyglucose PET-CT staging on treatment planning in radiotherapy incorporating elective nodal irradiation for non-small cell lung cancer: a prospective study. Int J Radiat Oncol Biol Phys. 2010. doi:10.1016/j.ijrobp.2010.04.018.

    PubMed  Google Scholar 

  195. Mcmanus M, Nestle U, Rosenzweig KE, et al. Use of PET and PET-CT for radiation therapy planning: IAEA expert report 2006-2007. Radiother Oncol. 2009;91:85–94.

    Article  Google Scholar 

  196. Pommier P, Touboul E, Chabaud S, Dussart S, Le Pechoux C, Giammarile F, Carrie C. Impact of 18F-FDG PET on treatment strategy and 3D radiotherapy planning in non-small cell lung cancer: a prospective multicenter study. AJR Am J Roentgenol. 2010;195:350–5.

    Article  PubMed  Google Scholar 

  197. Vila A, Sanchez-Reyes A, Conill C, et al. Comparison of positron emission tomography (PET) and computed tomography (CT) for better target volume definition in radiation therapy planning. Clin Transl Oncol. 2010;12:367–73.

    Article  PubMed  Google Scholar 

  198. De Ruysscher D, Kirsh C-M. PET scans in radiotherapy planning of lung cancer. Radiother Oncol. 2010. doi:10.1016/j.radonc.2010.07.002.

    Google Scholar 

  199. Caldwell CB, MAh K, Ung YC, et al. Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lunf tumors on CT: the impact of 18FDG-hybrid PET fusion. Int J Radiat Oncol Biol Phys. 2001;51:923–31.

    Article  CAS  PubMed  Google Scholar 

  200. Ciernik IF, Dizendorf E, Ciernik IF, et al. Radiation treatment planning with an integrated positron emission and computed tomography (PET/CT): a feasibility study. In J Radiat Oncol Biol Phys. 2003;57:853–63.

    Article  Google Scholar 

  201. Ashamalla H, Rafla S, Parikh K, et al. The contribution of integrated PET/CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer. Int J Tadiat Oncol Biol Phys. 2005;63:1016–23.

    Article  Google Scholar 

  202. Fox JL, Rengan R, O’Meara W, et al. Does registration of PET and planning CT images decrease interobserver and intraobsrver variation in delineating tumor volumes for non-small-cell lung cancer? Int J Radiat Oncol Biol Phys. 2005;62:70–5.

    Article  PubMed  Google Scholar 

  203. Steenbakkers RJ, Duppen JC, Fitton I, et al. Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis. Int J Radiat Oncol Biol Phys. 2006;64:435–48.

    Article  PubMed  Google Scholar 

  204. Hanna GG, McAleese J, Carson KJ, et al. 18F-FDG PET-CT simulation for non-small-cell lung cancer: effect in patients already staged by PET-CT. Int J Radiat Oncol Biol Phys. 2010;78:1040–51.

    Article  PubMed  Google Scholar 

  205. De Ruysscher D, Wanders S, van Haren E, et al. Selective mediastinal node irradiation based on FDG-PET scan data in patients with non-small cell lung cancer: a prospective clinical study. Int J Radiat Oncol Biol Phys. 2005;62:988–94.

    Article  PubMed  Google Scholar 

  206. Klopp AH, Chang JY, Tucker SL, et al. Intra-thoracic patterns of failure for non-small-cell lung cancer with positron-emission tomography/computed tomography-defined target delineation. Int J Radiat Oncol Biol Phys. 2007;69:1409–16.

    Article  PubMed  Google Scholar 

  207. Vansteeenkiste JF, Stroobants SG, De Leyn PR, et al. Prognostic importance of the standardized Uptake value on FDG PET scan in non small cell lung cancer: an analysis of 125 cases. J Clin Oncol. 1999;10:3201–6.

    Article  Google Scholar 

  208. Ahuja V, Coleman RE, Herndon J, Patz EF. The prognostic significance of fluorodeoxyglucose positron emission tomography imaging for patients with non small cell lung carcinoma. Cancer. 1998;83:918–24.

    Article  CAS  PubMed  Google Scholar 

  209. Higashi K, Ueda Y, Arisaka Y, et al. FDG uptake as a biologic prognostic factor for recurrence in patients with surgically resected non-small cell lung cancer. J Nucl Med. 2002;43:39–45.

    PubMed  Google Scholar 

  210. Jeong HJ, Min JJ, JM P, et al. Determination of the prognostic value of 18F-fluorodexoyglucose uptake by using positron emission tomography in patients with non small cell lung cancer. Nucl Med Commun. 2002;23:865–70.

    Article  CAS  PubMed  Google Scholar 

  211. Downey RJ, Akhurst T, Gonen M, et al. Preoperative F-18 fluorodeoxyglucose-positron emission tomography maximal standardized uptake value predicts survival after lung cancer resection. J Clin Oncol. 2004;22:3255–60.

    Article  PubMed  Google Scholar 

  212. Cerfolio R, Bryant A, Ohja B. The maximum standardised uptake values on positron emission tomography of non-small cell lung cancer predicts stage, recurrence and survival. J Thorac Cardiovasc Surg. 2005;130:151–9.

    Article  PubMed  Google Scholar 

  213. Weber WA, Petersen V, Schmidt B, et al. Positron-emission-tomography in non-small-cell lung cancer: prediction of response to chemotherapy by quantitative assessment of glucose use. J Clin Oncol. 2003;21:2651–7.

    Article  CAS  PubMed  Google Scholar 

  214. Hoekstra CJ, Stroobants SG, Smit EF, et al. Prognostic relevance of response evaluation using [18F]-2-fluoro-2-deoxy-d-glucose positron emission tomography in patients with locally advanced non-small-cell lung cancer. J Clin Oncol. 2005;23:8362–70.

    Article  PubMed  Google Scholar 

  215. Hellwig D, Graeter TP, Ukena D, et al. Value of F-18-fluorodeoxyglucose positron emission tomography after induction therapy of locally advanced bronchogenic carcinoma. J Thorac Cardiovasc Surg. 2004;128:892–9.

    Article  PubMed  Google Scholar 

  216. Nahmias C, Hanna WT, Wahl LM, et al. Time course of early response to chemotherapy in non-small cell lung cancer patients with 18F-FDG PET/CT. J Nucl Med. 2007;48:744–51.

    Article  CAS  PubMed  Google Scholar 

  217. Eschmann SM, Friedel G, Paulsen F, et al. 18F-FDG PET for assessment of therapy response and pre-operative evaluation after neo-adjuvant radio-chemotherapy in stage III non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2007;34:463–71.

    Article  PubMed  Google Scholar 

  218. Cerfolio RJ, Bryant AS, Winokur TS, Ohja B, Bartolucci AA. Repeat FDG-PET after neoadjuvant therapy is a predictor of pathologic response in patients with non-small cell lung cancer. Ann Thorac Surg. 2004;78:1903–9.

    Article  PubMed  Google Scholar 

  219. Moon SH, Cho S-H, Park LC, et al. Metabolic response evaluated by 18F-FDG PET/CT as a potential screening tool in identifying a subgroup of patients with advanced non-small-cell lung cancer for immediate maintenance therapy after first-line chemotherapy. Eur J Nucl Med Mol Imaging. 2013;40:1005–13.

    Article  CAS  PubMed  Google Scholar 

  220. Vera P, Mezzani-Saillard S, Edet-Sanson A, et al. FDG PET during radiochemotherapy is predictive of outcome at 1 year in non-small-cell lung cancer patients: a prospective multicenter study (RTEP2). Eur J Nucl Med Mol Imaging. 2014;41:1057–65.

    Article  CAS  PubMed  Google Scholar 

  221. Lu F, Huang J, Sima CS, et al. Patterns of recurrence and second primary lung cancer in early-stage lung cancer survivors followed with routine computed tomography surveillance. J Thorac Cardiovasc Surg. 2013;145:75–81.

    Article  Google Scholar 

  222. Calman L, Beaver K, Hind D, Lorigan P, Roberts C, Lloyd-Jones M. Survival benefits from follow-up of patients with lung cancer: a systematic review and meta-analysis. J Thorac Oncol. 2011;6:1993–2004.

    Article  PubMed  Google Scholar 

  223. Colt HG, Murgu SD, Korst RJ, Slatore CG, Unger M, Quadrelli S. Follow-up and surveillance of the patient with lung cancer after curative-intent therapy: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(Suppl 5):e437S–54S.

    Article  PubMed  Google Scholar 

  224. Antoniou AJ, Marcus C, Tahari AK, Wahl RL, Subramaniam RM. Follow up or surveillance 18F-FDG PET/CT and survival outcome in lung cancer patients. J Nucl Med. 2014;55:1062–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Marcus C, Paidpally V, Antoniou A, Zaheer A, Wahl RL, Subramaniam RM. 18F-FDG PET/CT and lung cancer: value of fourth and subsequent follow-up scans for patient management. J Nucl Med. 2015;56:204–8.

    Article  PubMed  CAS  Google Scholar 

  226. Hicks RJ, Lau E, Alam NZ, Chen RY. Imaging in the diagnosis and treatment of non-small cell lung cancer. Respirology. 2007;12:165–72.

    Article  PubMed  Google Scholar 

  227. Keidar Z, Haim N, Guralnik L, Wollner M, Bar-Shalom R, Ben-Nun A, Israel O. PET/CT using 18F-FDG in suspected lung cancer recurrence: diagnostic value and impact on patient management. J Nucl Med. 2004;45:1640–6.

    PubMed  Google Scholar 

  228. Nestle U, Hellwig D, Scmidt S, et al. 2-deoxy-2-[18F]-fluoro-d-glucose positron emission tomography in target volume definition for radiotherapy of patients with non-small-cell lung cancer. Mol Imaging Biol. 2002;4:257–63.

    Article  PubMed  Google Scholar 

  229. Gilman MD, Aquino SL. State-of-the-art FDG-PET imaging of lung cancer. Semin Roentgenol. 2005;40:143–53.

    Article  PubMed  Google Scholar 

  230. Gorenberg M, Bar-Shalom R, Israel O. Patterns of FDG uptake in post-thoracotomy surgical scars in patients with lung cancer. Brit J Radiol. 2008;81:821–5.

    Article  CAS  PubMed  Google Scholar 

  231. Samson DJ, Seidenfeld J, Simon GR, et al. Evidence for management of small cell lung cancer: ACCP evidence-based clinical practice guidelines (2nd edition). Chest. 2007;132(3 Suppl):314S–23S.

    Article  PubMed  Google Scholar 

  232. Abrams J, Doyle LA, Aisner J. Staging, prognostic factors, and special considerations in small cell lung cancer. Semin Oncol. 1988;15:261–77.

    CAS  PubMed  Google Scholar 

  233. Fischer BM, Mortensen J, Langer SW, et al. A prospective study of PET/CT in initial staging of small-cell lung cancer: comparison with CT, bone scintigraphy and bone marrow analysis. Ann Oncol. 2007;18:338–45.

    Article  CAS  PubMed  Google Scholar 

  234. Van Loon J, De Ruysscher D, Wanders R, et al. Selective nodal irradiation on basis of 18FDG-PET scans in limited-disease small-cell lung cancer: a prospective study. Int J Radiat Oncol Biol Phys. 2010;77:329–36.

    Article  PubMed  Google Scholar 

  235. Lee YJ, Cho A, Cho BC, et al. High tumor metabolic activity as measured by fluorodeoxyglucose positron emission tomography is associated with poor prognosis in limited and extensive stage small-cell lung cancer. Clin Cancer Res. 2009;15:2426–32.

    Article  CAS  PubMed  Google Scholar 

  236. Kamel EM, Zwahlen D, Wyss MT, et al. Whole body 18F-FDG-PET improves the management of patients with small cell lung cancer. J Nucl Med. 2003;44:1911–7.

    PubMed  Google Scholar 

  237. Van Loon J, Offermann C, Bosmans G, et al. 18FDG-PET based radiation planning of mediastinal lymph nodes in limnited disease small cell lung cancer changes radiotherapy fields: a planning study. Radiother Oncol. 2008;87:49–54.

    Article  PubMed  Google Scholar 

  238. Groves AM, Win T, Ben-Haim S, et al. Non-[18F]FDG PET in clinical oncology. Lancet Oncol. 2007;8:822–30.

    Article  PubMed  Google Scholar 

  239. Groves AM, Mohan HK, Wegner EA, et al. Positron emission tomography using 18F fluorodeoxyglucose to show thymic carcinoid. Am J Roentgenol. 2004;182:511–4.

    Article  Google Scholar 

  240. Ginj M, Zhang H, Waser B, et al. Somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc Natl Acad Sci USA. 2006;103:16436–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Reubi JC, Waser B. Concomitant expression of several peptide receptors in neuroendocrine tumours: molecular basis for in vivo multireceptor tumour targeting. Eur J Nucl Med Mol Imaging. 2003;30:781–93.

    Article  CAS  PubMed  Google Scholar 

  242. Koukouraki S, Strauss LG, Georgoulias V, et al. Comparison of the pharmacokinetics of 68Ga-DOTATOC and [18F]FDG in patients with metastatic neuroendocrine tumours scheduled for 90Y-DOTATOC therapy. Eur J Nucl Med Mol Imaging. 2006;33:1115–22.

    Article  CAS  PubMed  Google Scholar 

  243. Kayani I, Conry BG, Groves AM, Win T, Dickson J, Caplin M, Bomanji JB. A comparison of 68Ga-DOTATATE and 18F-FDG PET/CT in pulmonary neuroendocrine tumors. J Nucl Med. 2009;50:1927–32.

    Article  PubMed  Google Scholar 

  244. Shim SS, Lee KS, Kim BT, et al. Integrated PET/CT and the dry pleural dissemination of peripheral adenocarcinoma of the lung: diagnostic implications. J Comput Assist Tomogr. 2006;30:70–6.

    Article  PubMed  Google Scholar 

  245. Erasmus JJ, McAdams HP, Rossi SE, et al. FDG PET of pleural effusions in patients with non-small cell lung cancer. Am J Roentgenol. 2000;175:245–9.

    Article  CAS  Google Scholar 

  246. Dunn MM. Asbestos and lung. Chest. 1989;95:1304–8.

    Article  CAS  PubMed  Google Scholar 

  247. Robinson BW, Lake RA. Advances in malignant mesothelioma. N Engl J Med. 2005;353:1591–603.

    Article  CAS  PubMed  Google Scholar 

  248. Benamore RE, O’Doherty MJ, Entwisle JJ. Use of imaging in the management of malignant pleural mesothelioma. Clin Radiol. 2005;60:1237–47.

    Article  CAS  PubMed  Google Scholar 

  249. Gill RR, Gerbaudo VH, Sugarbaker DJ, et al. Current trends in radiologic management of malignant pleural mesothelioma. Semin Thorac Cardiovasc Surg. 2009;21:111–20.

    Article  PubMed  Google Scholar 

  250. Marom EM, Erasmus JJ, Oass HI, et al. The role of imaging in malignant pleural mesothelioma. Semin Oncol. 2002;29:26–35.

    Article  PubMed  Google Scholar 

  251. Yamamuro M, Gerbaudo VH, Gill RR, et al. Morphologic and functional imaging of malignant pleural mesothelioma. Eur J Radiol. 2007;64:356–66.

    Article  PubMed  Google Scholar 

  252. Wang JZ, Reddy GP, Gotway MB, et al. Malignant pleural mesothelioma: evaluation with CT, MR imaging, and PET. Radiographics. 2004;24:105–19.

    Article  PubMed  Google Scholar 

  253. Kawashima A, Libshitz HI. Malignant pleural mesothelioma: CT manifestations in 50 cases. Am J Roentgenol. 1990;155:965–9.

    Article  CAS  Google Scholar 

  254. Sahin AA, Coplu L, Selcuk ZT, et al. Malignant pleural mesothelioma caused by enviropmental exposure to asbestos or erionite in rural Turkey: Ct findings in 84 patients. AJR Am J Roentgenol. 1993;161:533–7.

    Article  CAS  PubMed  Google Scholar 

  255. Patz EF, Shaffer K, Piwnica-Worms DR, et al. Malignant pleural mesothelioma: value of CT and MR imaging in predicting resectability. Am J Roetgenol. 1992;159:961–6.

    Article  Google Scholar 

  256. Heelan RT, Rusch VW, Begg CB, et al. Staging of malignant pleural mesothelioma: comparison of CT and MR imaging. Am J Roetgenol. 1999;172:1039–47.

    Article  CAS  Google Scholar 

  257. Hierholzer J, Luo L, Bittner RC, et al. MRI and CT in the differential diagnosis of pleural disease. Chest. 2000;118:604–9.

    Article  CAS  PubMed  Google Scholar 

  258. Hatabu H, Tadamura E, Levin DL, et al. Quantitative assessment of pulmonary perfusion with dynamic contrast-enhanced MRI. Magn Reson Med. 1999;42:1033–8.

    Article  CAS  PubMed  Google Scholar 

  259. Benard F, Sterman D, Smith RJ, Kaiser LR, Al-belda SM, Alavi A. Metabolic imaging of malignant pleural mesothelioma with fluorodeoxyglucose positron emission tomography. Chest. 1998;114:713–22.

    Article  CAS  PubMed  Google Scholar 

  260. Zhuang H, Pourdehnad M, Lambright ES, et al. Dual time point 18F-FDG PET imaging for differentiating malignant from inflammatory processes. J Nucl Med. 2001;42:1412–7.

    CAS  PubMed  Google Scholar 

  261. Ng DC, HAin SF, O’Doherty MJ, Dussek J. Prognostic value of FDG PET imaging in malignant pleural mesothelioma. J Nucl Med. 2000;41:1443–4.

    CAS  PubMed  Google Scholar 

  262. Subramaniam RM, Wilcox B, Aubry MC, Jett J, Peller PJ. 18F-fluoro-2-deoxy-d-glucose positron emission tomography and positron emission tomography/computed tomography imaging of malignant pleural mesothelioma. J Med Imaging Radiation Oncol. 2009;53:160–70.

    Article  CAS  Google Scholar 

  263. Nowak AK, Armato III SG, Ceresoli GL, Yildirim H, Francis RJ. Imaging in pleural mesothelioma: a review of imaging research presented at the 9th international meeting of the international mesothelioma interest group. Lung Cancer. 2010;70:1–6.

    Article  PubMed  Google Scholar 

  264. Ceresoli GL, Chiti A, Zucali PA, Rodari M, et al. Early response evaluation in malignant pleural mesothelioma by positron emission tomography with [18F]fluorodeoxyglucose. J Clin Oncol. 2006;24:4587–93.

    Article  PubMed  Google Scholar 

  265. Lee HY, Hyun SH, Lee KS, et al. Volume-based parameter of 18F-FDG PET/CT in malignant pleural mesothelioma: prediction of therapeutic response and prognostic implication. Ann Surg Oncol. 2010;17:2787–94.

    Article  PubMed  Google Scholar 

  266. Genestreti G, Moretti A, Piciucchi S, et al. FDG PET/CT response evaluation in malignant pleural mesothelioma patients treated with talc pleurodesis and chmothrapy. J Cancer. 2012;3:241–5.

    Article  PubMed  PubMed Central  Google Scholar 

  267. Phlivan B, Topkan E, Onal C, et al. Comparison of CT and integrated PET-CT based radiation therapy planning in patients with malignant pleural mesothelioma. Radiat Oncol. 2009;4:35.

    Article  Google Scholar 

  268. Luzzi L, Campione A, Gorla A, et al. Role of fluorine-flurodeoxyglucose positron emission tomography/computed tomography in preoperative assessment of anterior mediastinal masses. Eur J Cardiothorac Surg. 2009;36:475–9.

    Article  PubMed  Google Scholar 

  269. Kumar A, Regmi SK, Dutta R, et al. Characterization of thymic masses using 18F-FDG PET-CT. Ann Nucl Med. 2009;23:569–77.

    Article  PubMed  Google Scholar 

  270. Sung YM, Lee KS, Kim B-T, Choi JY, Shim YM, Yi CA. 18F-FDG PET/CT of thymic epithelial tumors: usefulness for distinguishing and staging tumorsubgroups. J Nucl Med. 2006;47:1628–34.

    PubMed  Google Scholar 

  271. Benveniste MFK, Movan CA, Maelawi O, Fox PS, Swisher SG, Munden RF, Marom EM. FDG PET-CT aids in the preoperative assessment of patients with newly diagnosed thymic epithelial malignancies. J Thorac Oncol. 2013;8:502–10.

    Article  PubMed  Google Scholar 

  272. Thomas A, Mena E, Kurdziel K, et al. 18F-fluorodeoxyglucose positron emission tomography in management of patients with thymic epithelial tumors. Clin Cancer Res. 2013;19:1487–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Katakura H, Fukuse T, Shiraishi I, et al. Mediastinal synovial sarcoma. Thorac Cardiovasc Surg. 2009;57:183–5.

    Article  CAS  PubMed  Google Scholar 

  274. Scwenzer NF, Schraml C, Muller M, et al. Pulmonary lesion assessment: comparison of WB hybrid MR/PET and PET/CT imaging – pilot study. Radiology. 2012;264:551–8.

    Article  Google Scholar 

  275. Heusch P, Buchbender C, Kohler J, et al. thoracic staging in lung cancer: prospective comparison of 18F-FDG PET/MR imaging and 18F-FDG PET/CT. J Nucl Med. 2014;55:373–8.

    Article  CAS  PubMed  Google Scholar 

  276. Fraioli F, Screaton NJ, James SM, et al. Non-small-cell lung cancer resectability: diagnostic value of PET/MR. Eur J Nucl Med Mol Imaging. 2015;52:49–55.

    Article  CAS  Google Scholar 

  277. Huellner MW, Barbosa FDG, Hausmann L, et al. TNM staging of NSCLC: Comparison of PET/MR and PET/CT. J Nucl Med. 2016;57:21–6.

    Article  CAS  PubMed  Google Scholar 

  278. Hara T, Inagaki K, Kosaka N, Morita T. Sensitive detection of mediastinal lymph node metastasis of lung cancer with 11C-choline PET. J Nucl Med. 2000;41:1507–13.

    CAS  PubMed  Google Scholar 

  279. Pieterman RM, Que TH, Elsinga PH, et al. Comparison of 11C-choline and 18F-FDG PET in primary diagnosis and staging of patients with thoracic cancer. J Nucl Med. 2002;43:167–72.

    PubMed  Google Scholar 

  280. DeRoose CM, De A, Loening AM. Multimodality imaging of tumor xenografts and metastases in mice with combined small animal PET, small animal CT and bioluminescence imaging. J Nucl Med. 2007;48:295–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  281. Dehdashti F, Mintun MA, Lewis JS, et al. In vivo assessment of tumor hypoxia in lung cancer with 60Cu-ATSM. Eur J Nucl Med Mol Imaging. 2003;30:844–50.

    Article  CAS  PubMed  Google Scholar 

  282. Eschmann SM, Paulsen F, Reimold M, et al. Prognostic impact of hypoxia imaging with 18F-misonidazole PET in Non-small cell lung cancer and head and neck cancer before radiotherapy. J Nucl Med. 2005;46:253–60.

    PubMed  Google Scholar 

  283. Yang W, Zhang Y, Fu Z, Sun X, Mu D, Yu J. Imaging proliferation of 18F-FLT PET/CT correlates with the expression of microvessel density of tumour tissue in non-small-cell lung cancer. Eur J Nucl med Mol Imaging. 2012;39:1289–96.

    Article  CAS  PubMed  Google Scholar 

  284. Everitt SJ, Ball DL, Hicks RJ, et al. Differential 18F-FDG and 18F-FLT uptake on serial PET/CT imaging before and during definitive chemoradiation for non-small-cell lung cancer. J Nucl Med. 2014;55:1069–74.

    Article  CAS  PubMed  Google Scholar 

  285. Gao S, Wu H, Li W, et al. A pilot study imaging integrin αvβ3 with RGD PET/CT in suspected lung cancer patients. Eur J Nucl Med Mol Imaging. 2015;42:2029–37.

    Article  CAS  PubMed  Google Scholar 

  286. Zheng K, Liang N, Zhang J, et al. 68Ga-NOTA-PRGD2 PET/CT for integrin imaging in patients with lung cancer. J Nucl Med. 2015;56:1823–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Ben-Haim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Arnon, E., Win, T., Israel, O., Guralnik, L., Ben-Haim, S. (2016). Lung and Mediastinal Tumors. In: Strauss, H., Mariani, G., Volterrani, D., Larson, S. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-26067-9_13-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26067-9_13-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-26067-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Diagnostic Applications of Nuclear Medicine: Lung and Mediastinal Tumors
    Published:
    20 May 2022

    DOI: https://doi.org/10.1007/978-3-319-26067-9_13-4

  2. Diagnostic Applications of Nuclear Medicine: Lung and Mediastinal Tumors
    Published:
    02 April 2022

    DOI: https://doi.org/10.1007/978-3-319-26067-9_13-3

  3. Diagnostic Applications of Nuclear Medicine: Lung and Mediastinal Tumors
    Published:
    05 July 2017

    DOI: https://doi.org/10.1007/978-3-319-26067-9_13-2

  4. Original

    Lung and Mediastinal Tumors
    Published:
    10 November 2016

    DOI: https://doi.org/10.1007/978-3-319-26067-9_13-1