Skip to main content

Freezing Stress in Tree Xylem

  • Chapter
  • First Online:
Progress in Botany 77

Part of the book series: Progress in Botany ((BOTANY,volume 77))

Abstract

Freezing in plant xylem is a complex process affecting living and dead components. This book chapter gives a brief overview of methods for analyzing freezing dynamics and tissue damage and focuses on the effects of freezing stress in the xylem symplast and apoplast. Survival strategies, such as supercooling, extracellular freezing, or avoidance of critical bubble formation/expansion in conduits are discussed, and insights from experimental and field studies available in the literature summarized. The final part deals with trees at the Alpine timberline, which are exposed to intense freezing as well as extreme drought stress every winter. Timberline trees are thus an interesting model system to study combined effects of drought and freezing stress in tree xylem and respective avoidance, tolerance, and repair strategies of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alves G, Sauter JJ, Julien JL, Fleurat-Lessard P, Améglio T, Guilliot A, Pétel G, Lacointe A (2001) Plasma membrane H+-ATPase, succinate and isocitrate dehydrogenases activities of vessel-associated cells in walnut trees. J Plant Physiol 158:1263–1271

    Article  CAS  Google Scholar 

  • Alves G, Améglio T, Guilliot A, Fleurat-Lessard P, Lacointe A, Pétel G, Julien JL (2004) Winter variation of xylem sap pH in walnut tree: implication of the plasma membrane H+-ATPase of vessel-associated cells. Tree Physiol 24:99–105

    Article  CAS  PubMed  Google Scholar 

  • Alves G, Decourteix M, Fleurat-Lessard P, Sakr S, Bonhomme M, Améglio T, Lacointe A, Julien JL, Petel G, Guilliot A (2007) Spatial activity and expression of plasma membrane H+-ATPase in stem xylem of walnut during dormancy and growth resumption. Tree Physiol 27:1471–1480

    Article  CAS  PubMed  Google Scholar 

  • Améglio T, Cruiziat P (1992) Tension/pressure alternation in walnut xylem sap during winter: the role of winter temperature. C R Acad Sci III 315:429–435

    Google Scholar 

  • Améglio T, Cruiziat P, Béraud S (1995) Tension-pressure alternation in walnut xylem sap during winter: effect on hydraulic conductivity of twigs. C R Acad Sci III 318:351–357

    Google Scholar 

  • Améglio T, Cochard H, Ewers F (2001a) Stem diameter variations and cold hardiness in walnut trees. J Exp Bot 52:2135–2142

    PubMed  Google Scholar 

  • Améglio T, Ewers FW, Cochard H, Martignac M, Vandame M, Bodet C, Cruiziat P (2001b) Winter stem pressures in walnut trees: effects of carbohydrates, cooling and freezing. Tree Physiol 21:387–394

    Article  PubMed  Google Scholar 

  • Améglio T, Bodet C, Lacointe A, Cochard H (2002) Winter embolism, mechanisms of xylem hydraulic conductivity recovery and springtime growth patterns in walnut and peach trees. Tree Physiol 22:1211–1220

    Article  PubMed  Google Scholar 

  • Améglio T, Ewers FW, Cochard H (2003) Gelista™: a new tool for testing frost hardiness by stem diameter variations. Acta Horticult 618:509–515

    Article  Google Scholar 

  • Améglio T, Decourteix M, Alves G, Valentin V, Sakr S, Julien JL, Petel G, Guilliot A, Lacointe A (2004) Temperature effects on xylem sap osmolarity in walnut trees: evidence for a vitalistic model of winter embolism repair. Tree Physiol 24:785–793

    Article  PubMed  Google Scholar 

  • Aronsson A (1975) Influence of photo- and thermoperiod on the initial stages of frost hardening and dehardening of phytotron-grown seedlings of scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies L. Karst.). Stud Forestalia Suecia 128:1–20

    Google Scholar 

  • Arora R, Wisniewski M (1996) Accumulation of a 60-kD dehydrin protein in peach xylem tissues and its relationship to cold acclimation. Hortscience 31:923–925

    CAS  Google Scholar 

  • Arora R, Rowland LJ, Palta GR (1997) Chill-responsive dehydrins in blueberry: are they associated with cold hardiness or dormancy transitions? Physiol Plant 101:8–16

    Article  CAS  Google Scholar 

  • Arora R, Rowland LJ, Ogden EL, Dhanaraj AL, Marian CO, Ehlenfeldt MK, Vinyard B (2004) Dehardening kinetics, bud development, and dehydrin metabolism in blueberry cultivars during deacclimation at constant, warm temperatures. J Am Soc Hortic Sci 129:667–674

    CAS  Google Scholar 

  • Asahina E (1956) The freezing process of plant cells. Contr Inst Low Temp Sci Hokkaido Univ 10:83–126

    Google Scholar 

  • Ashworth AN, Malone SR, Ristic Z (1993) Response of woody plant cells to dehydrative stress. Int J Plant Sci 154:90–99

    Article  Google Scholar 

  • Ball MC, Canny MJ, Huang CX, Egerton JJG, Wolfe J (2006) Freeze/thaw-induced embolism depends on nadir temperature: the heterogeneous hydration hypothesis. Plant Cell Environ 29:729–745

    Article  CAS  PubMed  Google Scholar 

  • Bauer H, Nagele M, Comploj M, Galler V, Mair M, Unterpertinger E (1994) Photosynthesis in cold acclimated leaves of plants with various degrees of frost tolerance. Physiol Plant 91:403–412

    Article  CAS  Google Scholar 

  • Bonhomme M, Peuch M, Améglio T, Rageau R, Guilliot A, Decourteix M, Alves G, Sakr S, Lacointe A (2010) Carbohydrate uptake from xylem vessels and its distribution among stem tissues and buds in walnut (Juglans regia L.). Tree Physiol 30:89–102

    Article  CAS  PubMed  Google Scholar 

  • Boorse GC, Bosma TL, Meyer AC, Ewers FW, Davis SD (1998) Comparative methods of estimating freezing temperatures and freezing injury in leaves of chaparral shrubs. Int J Plant Sci 159:513–521

    Article  Google Scholar 

  • Brodersen CR, McElrone AJ (2013) Maintenance of xylem network transport capacity: a review of embolism repair in vascular plants. Front Plant Sci 4:108

    Article  PubMed  PubMed Central  Google Scholar 

  • Brodersen CR, McElrone AJ, Choat B, Matthews MA, Shackel KA (2010) The dynamics of embolism repair in xylem: in vivo visualizations using high-resolution computed tomography. Plant Physiol 154:1088–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodersen CR, McElrone AJ, Choat B, Lee EF, Shackel KA, Matthews MA (2013) In vivo visualizations of drought-induced embolism spread in Vitis vinifera. Plant Physiol 161:1820–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke MJ, Gusta LV, Quamme HA, Weiser CJ, Li PH (1976) Freezing and injury in plants. Annu Rev Plant Physiol Plant Mol Biol 27:507–528

    Article  Google Scholar 

  • Burr KE, Tinus RW, Wallner SJ, King RM (1990) Comparison of 3 cold hardiness tests for conifer seedlings. Tree Physiol 6:351–369

    Article  PubMed  Google Scholar 

  • Campbell RK, Sugano AI (1975) Phenology of bud burst in Douglas-fir related to provenance, photoperiod, chilling, and flushing temperature. Bot Gaz 136:290–298

    Article  Google Scholar 

  • Cannell MGR, Sheppard LJ, Smith RI, Murray MB (1985) Autumn frost damage on young Picea sitchensis. Shoot frost hardening and the probability of frost damage in Scotland. Forestry 58:145–166

    Article  Google Scholar 

  • Canny MJ (1997) Vessel contents of leaves after excision—a test of Scholander’s assumption. Am J Bot 84:1217–1222

    Article  CAS  PubMed  Google Scholar 

  • Cavender-Bares J (2005) Impacts of freezing on long-distance transport in woody plants. In: Holbrook NM, Zwieniecki M, Melcher P (eds) Vascular transport in plants. Elsevier, Oxford

    Google Scholar 

  • Cavender-Bares J, Cortes P, Rambal S, Joffre R, Miles B, Rocheteau A (2005) Summer and winter sensitivity of leaves and xylem to minimum freezing temperatures: a comparison of co-occurring Mediterranean oaks that differ in leaf lifespan. New Phytol 168:597–612

    Article  CAS  PubMed  Google Scholar 

  • Charra-Vaskou K, Charrier G, Wortemann R, Beikircher B, Cochard H, Améglio T, Mayr S (2012) Drought and frost resistance of trees: a comparison of four species at different sites and altitudes. Ann For Sci 69:325–333

    Article  Google Scholar 

  • Charrier G, Améglio T (2011) The timing of leaf fall affects cold acclimation by interactions with air temperature through water and carbohydrate contents. Environ Exp Bot 72:351–357

    Article  Google Scholar 

  • Charrier G, Bonhomme M, Lacointe A, Améglio T (2011) Are budburst dates, dormancy and cold acclimation in walnut trees (Juglans regia L.) under mainly genotypic or environmental control? Int J Biometeorol 55:763–774

    Article  PubMed  Google Scholar 

  • Charrier G, Cochard H, Améglio T (2013a) Evaluation of the impact of frost resistances on potential altitudinal limit of trees. Tree Physiol 33:891–902

    Article  PubMed  Google Scholar 

  • Charrier G, Poirier M, Bonhomme M, Lacointe A, Améglio T (2013b) Frost acclimation in different organs of walnut trees Juglans regia L.: how to link physiology and modelling? Tree Physiol 33:1229–1241

    Article  CAS  PubMed  Google Scholar 

  • Charrier G, Charra-Vaskou K, Benoit L, Améglio T, Mayr S (2014a) Changes in ultrasound velocity and attenuation indicate freezing of xylem sap. Agric For Meteorol 185:20–25

    Article  Google Scholar 

  • Charrier G, Charra-Vaskou K, Kasuga J, Cochard H, Mayr S, Améglio T (2014b) Freeze-thaw stress. Effects of temperature on hydraulic conductivity and ultrasonic activity in ten woody angiosperms. Plant Physiol 164:992–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choat B, Medek DE, Stuart SA, Pasquet-Kok J, Egerton JJG, Salari H, Sack L, Ball MC (2011) Xylem traits mediate a trade-off between resistance to freeze–thaw-induced embolism and photosynthetic capacity in overwintering evergreens. New Phytol 191:996–1005

    Article  CAS  PubMed  Google Scholar 

  • Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martinez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ, Zanne AE (2012) Global convergence in the vulnerability of forests to drought. Nature 491:752–755

    CAS  PubMed  Google Scholar 

  • Christensen-Dalsgaard KK, Tyree M (2013) Does freezing and dynamic flexing of frozen branches impact the cavitation resistance of Malus domestica and the Populus clone Walker? Oecologia 173:665–674

    Article  PubMed  Google Scholar 

  • Christensen-Dalsgaard KK, Tyree M (2014) Frost fatigue and spring recovery of xylem vessels in three diffuse-porous trees in situ. Plant Cell Environ 37:1074–1085

    Article  PubMed  Google Scholar 

  • Christersson L (1978) The influence of photoperiod and temperature on the development of frost hardiness in seedlings of Pinus sylvestris and Picea abies. Physiol Plant 44:288–294

    Article  Google Scholar 

  • Cochard H, Tyree MT (1990) Xylem dysfunction in Quercus: vessel sizes, tyloses, cavitation and seasonal changes in embolism. Tree Physiol 6:393–407

    Article  PubMed  Google Scholar 

  • Cochard H, Bodet C, Ameglio T, Cruiziat P (2000) Cryo-scanning electron microscopy observations of vessel content during transpiration in walnut petioles. Plant Physiol 124:1191–1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cochard H, Lemoine D, Améglio T, Granier A (2001) Mechanisms of xylem recovery from winter embolism in Fagus sylvatica. Tree Physiol 21:27–33

    Article  CAS  PubMed  Google Scholar 

  • Cochard H, Froux F, Mayr S, Coutand C (2004) Xylem wall collapse in water-stressed pine needles. Plant Physiol 134:401–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cochard H, Badel E, Herbette S, Delzon S, Choat B, Jansen S (2013) Methods for measuring plant vulnerability to cavitation: a critical review. J Exp Bot 64:4779–4791

    Article  CAS  PubMed  Google Scholar 

  • Cochard H, Delzon S, Badel E (2015) X-ray microtomography (micro-CT): a reference technology for high-resolution quantification of xylem embolism in trees. Plant Cell Environ 38:201–206. doi:10.1111/pce.12391

    Article  CAS  PubMed  Google Scholar 

  • Davis SD, Sperry JS, Hacke UG (1999) The relationship between xylem conduit diameter and cavitation caused by freezing. Am J Bot 86:1367–1372

    Article  CAS  PubMed  Google Scholar 

  • Decourteix M, Alves G, Brunel N, Améglio T, Guilliot A, Lemoine R, Pétel G, Sakr S (2006) JrSUT1, a putative xylem sucrose transporter, could mediate sucrose influx into xylem parenchyma cells and be up-regulated by freeze–thaw cycles over the autumn–winter period in walnut tree (Juglans regia L.). Plant Cell Environ 29:36–47

    Article  CAS  PubMed  Google Scholar 

  • Decourteix M, Alves G, Bonhomme M, Peuch M, Baaziz KB, Brunel N, Guilliot A, Rageau R, Améglio T, Pétel G, Sakr S (2008) Sucrose (JrSUT1) and hexose (JrHT1 and JrHT2) transporters in walnut xylem parenchyma cells: their potential role in early events of growth resumption. Tree Physiol 28:215–224

    Article  CAS  PubMed  Google Scholar 

  • Dennis FG Jr (1987) Producing temperate-zone fruits at low latitudes: an overview. Hortscience 22:1226–1227

    Google Scholar 

  • Dennis FG Jr (1994) Dormancy. What we know (and don’t know). Hortscience 29:1249–1255

    Google Scholar 

  • Dereuddre J, Gazeau C (1992) Les végétaux et les très basses températures. In: Come D (ed) Les végétaux et le froid. Hermann, Paris, pp 107–175

    Google Scholar 

  • Dexter ST, Tottingham WE, Graber LF (1930) Preliminary results in measuring the hardiness of plants. Plant Physiol 5:215–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dexter ST, Tottingham WE, Graber LF (1932) Investigations of the hardiness of plants by measurement of electrical conductivity. Plant Physiol 7:63–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Druart N, Johansson A, Baba K, Schrader J, Sjodin A, Bhalerao RR, Resman L, Trygg J, Moritz T, Bhalerao RP (2007) Environmental and hormonal regulation of the activity-dormancy cycle in the cambial meristem involves stage-specific modulation of transcriptional and metabolic networks. Plant J 50:557–573

    Article  CAS  PubMed  Google Scholar 

  • Ewers FW (1985) Xylem structure and water conduction in conifer trees, dicot trees, and lianas. Int Assoc Wood Anat Bull 6:309–317

    Google Scholar 

  • Ewers FW, Améglio T, Cochard H, Beaujard F, Martignac M, Vandame M, Bodet C, Cruiziat P (2001) Seasonal variation of xylem pressure in walnut trees: root and stem pressure. Tree Physiol 21:1123–1132

    Article  CAS  PubMed  Google Scholar 

  • Feild TS, Brodribb T (2001) Stem water transport and freeze-thaw xylem embolism in conifers and angiosperms in a Tasmanian treeline heath. Oecologia 127:314–320

    Article  Google Scholar 

  • Feild TS, Brodribb T, Holbrook NM (2002) Hardly a relict: freezing and the evolution of vesselless wood in Winteraceae. Evolution 56:464–478

    Article  PubMed  Google Scholar 

  • Friedrich J (1897) Über den Einfluss der Witterung auf den Baumzuwachs. Mitt Forstl Versuchswesen Österreichs 22:155

    Google Scholar 

  • Fuchigami LH, Weiser CJ, Kobayashi K, Timmis R, Gusta LV (1982) A degree growth stage (degree GS) model and cold acclimation in temperate woody plants. In: Li PH, Sakai A (eds) Plant cold hardiness and freezing stress. Mechanisms and crop implications, vol 2. Academic, New York, NY, pp 93–116

    Chapter  Google Scholar 

  • Fujikawa S, Kuroda K (2000) Cryo-scanning electron microscopic study on freezing behavior of xylem ray parenchyma cells in hardwood species. Micron 31:669–686

    Article  PubMed  Google Scholar 

  • Fujikawa S, Kuroda K, Fukazawa K (1994) Ultrastructural study of deep super-cooling of xylem ray parenchyma cells from Styrax obassia. Micron 25:241–252

    Article  Google Scholar 

  • Greer DH, Warrington IJ (1982) Effect of photoperiod, night temperature, and frost incidence on development of frost hardiness in Pinus radiata. Aust J Plant Physiol 9:333–334

    Article  Google Scholar 

  • Griffith M, McIntyre CH (1990) The effect of photoperiod and temperature on growth and frost resistance of winter rye root systems. Physiol Plant 79:519–525

    Article  Google Scholar 

  • Groß M, Rainer I, Tranquillini W (1991) Über die Frostresistenz der Fichte mit besonderer Berücksichtigung der Zahl der Gefrierzyklen und der Geschwindigkeit der Temperaturänderung beim Frieren und Auftauen. Forstwiss Centralbl 110:207–217

    Article  Google Scholar 

  • Gusta LV, Wisniewski M, Nesbitt NT, Gusta ML (2004) The effect of water, sugars, and proteins on the pattern of ice nucleation and propagation in acclimated and non acclimated canola leaves. Plant Physiol 135:1642–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guy CL (1990) Cold acclimation and freezing stress tolerance role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol 41:187–223

    Article  CAS  Google Scholar 

  • Guy CL, Huber JLA, Huber SC (1992) Sucrose phosphate synthase and sucrose accumulation at low-temperature. Plant Physiol 100:502–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hacke U, Sauter JJ (1996) Xylem dysfunction during winter and recovery of hydraulic conductivity in diffuse-porous and ring-porous trees. Oecologia 105:435–439

    Article  Google Scholar 

  • Hacke UG, Sperry JS (2001) Functional and ecological xylem anatomy. Perspect Plant Ecol Evol Syst 4:97–115

    Article  Google Scholar 

  • Hacke UG, Stiller V, Sperry JS, Pittermann J, McCulloh KA (2001) Cavitation fatigue. Embolism and refilling cycles can weaken the cavitation resistance of xylem. Plant Physiol 125:779–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hacker J, Neuner G (2007) Ice propagation in plants visualized at the tissue level by infrared differential thermal analysis (IDTA). Tree Physiol 27:1661–1670

    Article  PubMed  Google Scholar 

  • Hacker J, Ladinig U, Wagner J, Neuner G (2011) Inflorescences of alpine cushion plants freeze autonomously and may survive subzero temperatures by supercooling. Plant Sci 180:149–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammel HT (1967) Freezing of xylem sap without cavitation. Plant Physiol 42:55–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen J, Beck E (1988) Evidence for ideal and non-ideal equilibrium freezing of leaf water in frost hardy ivy (Hedera helix) and winter barley (Hordeum vulgare). Bot Acta 101:76–82

    Article  Google Scholar 

  • Heide OM (1993a) Daylength and thermal time responses of budburst during dormancy release in some northern deciduous trees. Physiol Plant 88:531–540

    Article  Google Scholar 

  • Heide OM (1993b) Dormancy release in beech buds (Fagus sylvatica) requires both chilling and long days. Physiol Plant 89:187–191

    Article  Google Scholar 

  • Heide OM, Prestrud AK (2005) Low temperature, but not photoperiod controls growth cessation and dormancy induction and release in apple and pear. Tree Physiol 25:109–114

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann H (1857) Witterung und Wachstum, oder Grundzüge der Pflanzenklimatologie. Leipzig 312–334

    Google Scholar 

  • Holten V, Bertrand CE, Anisimov MA, Sengers JV (2012) Thermodynamics of supercooled water. J Chem Phys 136:094507

    Article  CAS  PubMed  Google Scholar 

  • Howell GS, Weiser CJ (1970) The environmental control of cold acclimation in apple. Plant Physiol 45:390–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irving RM, Lanphear FO (1968) Regulation of cold hardiness in Acer negundo. Plant Physiol 43:9–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa M, Ide H, Price WS, Arata Y, Nakamura T, Kishimoto T (2009) Freezing behaviours in plant tissues: visualization using NMR micro-imaging and biochemical regulatory factors involved. In: Gusta LV, Wisniewski ME, Tanino KK (eds) Plant cold hardiness: from the laboratory to the field. CAB International, Cambridge, pp 19–28

    Chapter  Google Scholar 

  • Just J, Sauter JJ (1991) Changes in hydraulic conductivity upon freezing of the xylem of Populus x canadensis Moench “robusta”. Trees 5:117–121

    Article  Google Scholar 

  • Kaku S, Iwaya M (1979) Deep supercooling in xylems and ecological distribution in the genera Ilex, Viburnum and Quercus in Japan. Oikos 33:402–411

    Article  Google Scholar 

  • Kalberer SR, Wisniewski M, Arora R (2006) Deacclimation and reacclimation of cold-hardy plants: current understanding and emerging concepts. Plant Sci 171:3–16

    Article  CAS  Google Scholar 

  • Katz C, Oren R, Schulze E-D, Milburn JA (1989) Uptake of water and solutes through twigs of Picea abies (L.) Karst. Trees 3:33–37

    Article  Google Scholar 

  • Khanizadeh S, Buszard D, Zarkadas CG (1992) Effect of crop load on hardiness, protein and amino acids content of apple flower buds at the wintering stage and the beginning of the growth. J Plant Nutr 15:2441–2455

    Article  CAS  Google Scholar 

  • Kikuta SB, Richter H (2003) Ultrasound acoustic emissions from freezing xylem. Plant Cell Environ 26:383–388

    Article  Google Scholar 

  • Körner C (2003) Alpine plant life, 2nd edn. Springer, Heidelberg

    Book  Google Scholar 

  • Körner C (2012) Alpine treelines. Springer, Heidelberg

    Book  Google Scholar 

  • Kuroda K, Ohtani J, Kubota M, Fujikawa S (1999) Seasonal changes in the freezing behavior of xylem ray parenchyma cells in four boreal hardwood species. Cryobiology 38:81–88

    Article  PubMed  Google Scholar 

  • Lacointe A, Deleens E, Améglio T, Saint-Joanis B, Lelarge C, Vandame M, Song GC, Daudet FA (2004) Testing the branch autonomy theory: a 13C/14C double-labeling experiment on differentially shaded branches. Plant Cell Environ 27:1159–1168

    Article  CAS  Google Scholar 

  • Landsberg JJ (1974) Apple fruit bud development and growth. Analysis and an empirical model. Ann Bot 38:1013–1023

    Google Scholar 

  • Lang GA, Early JD, Martin GC, Darnell RL (1987) Endo-, para- and ecodormancy: physiological terminology and classification for dormancy research. Hortscience 22:371–377

    Google Scholar 

  • Langan SJ, Ewers FW, Davis SD (1997) Xylem dysfunction caused by water stress and freezing in two species of co-occurring chaparral shrubs. Plant Cell Environ 20:425–437

    Article  Google Scholar 

  • Larcher W (1972) Der Wasserhaushalt immergrüner Pflanzen im Winter. Ber Dtsch Bot Ges 85:315–327

    Google Scholar 

  • Laur J, Hacke UG (2014) Exploring Picea glauca aquaporins in the context of needle water uptake and xylem refilling. New Phytol 2013:388–400

    Article  CAS  Google Scholar 

  • Leinonen I (1996) A simulation model for the annual frost hardiness and freeze damage of Scots Pine. Ann Bot 78:687–693

    Article  Google Scholar 

  • Lemoine D, Granier A, Cochard H (1999) Mechanism of freeze-induced embolism in Fagus sylvatica L. Trees 13:206–210

    Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses. Chilling, freezing, and high temperature stress: physiological ecology series. Academic, New York, NY

    Google Scholar 

  • Lindén L (2002) Measuring cold hardiness in woody plants. University of Helsinki, Department of Applied Biology, Helsinki, p 57

    Google Scholar 

  • Lindén L, Palonen P, Lindén M (2000) Relating freeze-induced electrolyte leakage measurements to lethal temperature in red raspberry. J Am Soc Hortic Sci 125:429–435

    Google Scholar 

  • Lintunen A, Hölttä, T, Kulmala M (2013) Anatomical regulation of ice nucleation and cavitation helps trees to survive freezing and drought stress. Sci Rep 3.2031. doi:10.1038/srep02031

  • Lintunen A, Lindfors L, Kolari P, Juurola E, Nikinmaa E, Hölttä T (2014) Bursts of CO2 released during freezing offer a new perspective on avoidance of winter embolism in trees. Ann Bot. 114:1711–1718. doi:10.1093/aob/mcu190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipp CC, Nilsen ET (1997) The impact of subcanopy light environment on the hydraulic vulnerability of Rhododendron maximum to freeze-thaw cycles and drought. Plant Cell Environ 20:1264–1272

    Article  Google Scholar 

  • Lo Gullo MA, Salleo S (1993) Different vulnerabilities of Quercus ilex L. to freeze- and summer drought-induced xylem embolism: an ecological interpretation. Plant Cell Environ 16:511–519

    Article  Google Scholar 

  • Loris K, Havranek WM, Wieser G (1999) The ecological significance of thickness changes in stem, branches and twigs of Pinus cembra L. during winter. Phyton 39:117–122

    Google Scholar 

  • Maldonado CA, Zuniga GE, Corcuera LJ, Alberdi M (1997) Effect of water stress on frost resistance of oat leaves. Environ Exp Bot 38:99–107

    Article  CAS  Google Scholar 

  • Martinez-Vilalta J, Pockman W (2002) The vulnerability to freezing-induced xylem cavitation of Larrea tridentata (Zygophyllaceae) in the Chihuahuan desert. Am J Bot 89:1916–1924

    Article  PubMed  Google Scholar 

  • Mayr S (2007) Limits in water relations. In: Wieser G, Tausz M (eds) Trees at their upper limit. Treelife limitation at the alpine timberline. Springer, Berlin, pp 145–162

    Chapter  Google Scholar 

  • Mayr S, Charra-Vaskou K (2007) Winter at the alpine timberline causes complex within-tree patterns of water potential and embolism in Picea abies. Physiol Plant 131:131–139

    Article  CAS  PubMed  Google Scholar 

  • Mayr S, Rosner S (2011) Cavitation in dehydrating xylem of Picea abies: energy properties of ultrasonic emissions reflect tracheid dimensions. Tree Physiol 31:59–67

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayr S, Sperry JS (2010) Freeze-thaw induced embolism in Pinus contorta: centrifuge experiments validate the “thaw-expansion hypothesis” but conflict with ultrasonic emission data. New Phytol 185:1016–1024

    Article  PubMed  Google Scholar 

  • Mayr S, Zublasing V (2010) Ultrasonic emissions from conifer xylem exposed to repeated freezing. J Plant Physiol 167:34–40

    Article  CAS  PubMed  Google Scholar 

  • Mayr S, Wolfschwenger M, Bauer H (2002) Winter-drought induced embolism in Norway spruce (Picea abies) at the Alpine timberline. Physiol Plant 115:74–80

    Article  CAS  PubMed  Google Scholar 

  • Mayr S, Gruber A, Bauer H (2003a) Repeated freeze-thaw cycles induce embolism in drought stressed conifers (Norway spruce, stone pine). Planta 217:436–441

    Article  CAS  PubMed  Google Scholar 

  • Mayr S, Schwienbacher F, Bauer H (2003b) Winter at the Alpine timberline: why does embolism occur in Norway spruce but not in stone pine? Plant Physiol 131:780–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayr S, Hacke U, Schmid P, Schwienbacher F, Gruber A (2006a) Frost drought in conifers at the alpine timberline: xylem dysfunction and adaptations. Ecology 87:3175–3185

    Article  PubMed  Google Scholar 

  • Mayr S, Wieser G, Bauer H (2006b) Xylem temperatures during winter in conifers at the alpine timberline. Agric For Meteorol 137:81–88

    Article  Google Scholar 

  • Mayr S, Cochard H, Améglio T, Kikuta S (2007) Embolism formation during freezing in the wood of Picea abies. Plant Physiol 143:60–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayr S, Schmid P, Laur J, Rosner S, Charra-Vaskou K, Daemon B, Hacke UG (2014) Uptake of water via branches helps timberline conifers refill embolized xylem in late winter. Plant Physiol 164:1731–1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazur P (1966) Physical and chemical basis of injury in single-celled microorganisms subjected to freezing and thawing. In: Meryman HT (ed) Cryobiology. Academic, New York, NY, pp 213–315

    Google Scholar 

  • Mazur P (1969) Freezing injury in plants. Annu Rev Plant Physiol 20:419–448

    Article  Google Scholar 

  • McCulloh KA, Johnson DM, Meinzer FC, Lachenbruch B (2011) An annual pattern of native embolism in upper branches of four tall conifer species. Am J Bot 98:1007–1015

    Article  PubMed  Google Scholar 

  • Michaelis P (1934) Ökologische Studien an der Baumgrenze, IV. Zur Kenntnis des winterlichen Wasserhaushaltes. Jahrb Wiss Bot 80:169–247

    Google Scholar 

  • Morin X, Améglio T, Ahas R, Besson C, Lanta V, Lebourgeois F, Miglietta F, Chuine I (2007) Variation of cold hardiness and carbohydrate content from dormancy induction to budburst among provenances of three European oak species. Tree Physiol 27:817–825

    Article  CAS  PubMed  Google Scholar 

  • Moshkov BS (1935) Photoperiodismus und Frosthärte ausdauernder Gewächse. Planta 23:774–803

    Article  Google Scholar 

  • Muldrew K, Acker JP, Elliott JAW, McGann LE (2004) The water to ice transition: implications for living cells. In: Fuller BJ, Lane N, Benson EE (eds) Life in the Frozen State. CRC Press, Boca Raton

    Google Scholar 

  • Nardini A, Salleo S, LoGullo MA, Pitt F (2000) Different responses to drought and freeze stress of Quercus ilex L. growing along a latitudinal gradient. Plant Ecol 148:139–147

    Article  Google Scholar 

  • Nardini A, Lo Gullo MA, Salleo S (2011) Refilling embolized xylem conduits: is it a matter of phloem unloading? Plant Sci 180:604–611

    Article  CAS  PubMed  Google Scholar 

  • Neuner G, Xu B, Hacker J (2010) Velocity and pattern of ice propagation and deep supercooling in woody stems of Castanea sativa, Morus nigra and Quercus robur measured by IDTA. Tree Physiol 30:1037–1045

    Article  PubMed  Google Scholar 

  • Pearce RS (2001) Plant freezing and damage. Ann Bot 87:417–424

    Article  CAS  Google Scholar 

  • Pearce RS, Fuller MP (2001) Freezing of barley studied by infrared video thermography. Plant Physiol 125:227–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng Y, Arora R, Li G, Wang X, Fessehaie A (2008) Rhododendron catawbiense plasma membrane intrinsic proteins are aquaporins, and their over-expression compromises constitutive freezing tolerance and cold acclimation ability of transgenic Arabidopsis plants. Plant Cell Environ 31:1275–1289

    Article  CAS  PubMed  Google Scholar 

  • Perry TO (1971) Dormancy of trees in winter. Science 171:29–36

    Article  CAS  PubMed  Google Scholar 

  • Pittermann J, Sperry JS (2003) Tracheid diameter is the key trait determining the extent of freezing-induced embolism in conifers. Tree Physiol 23:907–914

    Article  PubMed  Google Scholar 

  • Pittermann J, Sperry JS (2006) Analysis of freeze–thaw embolism in conifers. The interaction between cavitation pressure and tracheid size. Plant Physiol 140:374–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pockman WT, Sperry JS (1997) Freezing-induced xylem cavitation and the northern limit of Larrea tridentata. Oecologia 109:19–27

    Article  Google Scholar 

  • Poirier M, Lacointe A, Améglio T (2010) A semi-physiological model of cold hardening and dehardening in walnut stem. Tree Physiol 30:1555–1569

    Article  PubMed  Google Scholar 

  • Pramsohler M, Neuner G (2013) Dehydration and osmotic adjustment in apple stem tissue during winter as it relates to the frost resistance of buds. Tree Physiol 33:807–816

    Article  PubMed  Google Scholar 

  • Pramsohler M, Hacker J, Neuner G (2012) Freezing pattern and frost killing temperature of apple (Malus domestica) wood under controlled conditions and in nature. Tree Physiol 32:819–828

    Article  PubMed  Google Scholar 

  • Rajashekar CB, Burke MJ (1982) Liquid water during slow freezing based on cell water relations and limited experimental testing. In: Li PH, Sakai A (eds) Plant cold hardiness and freezing. Academic, New York, NY

    Google Scholar 

  • Rajashekar CB, Li PH, Caerter JV (1983) Frost injury and heterogenous ice nucleation in leaves of tuber-bearing Solanum species. Ice nucleation activity of external source of nucleants. Plant Physiol 71:749–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raschi A, Scarascia Mugnozza G, Surace R, Valentini R, Vazzana C (1989) The use of ultrasound technique to monitor freezing and thawing of water in plants. Agric Ecosyst Environ 27:411–418

    Article  Google Scholar 

  • Rasmussen DH, MacKenzie AP (1972) Effect of solute on ice-solution interfacial free energy; calculation from measured homogeneous nucleation temperatures. In: Water structure at the water-polymer interface. Springer, pp. 126–145

    Google Scholar 

  • Raunkiaer C (1934) The life forms of plants and statistical plant geography. Claredon Press, Oxford

    Google Scholar 

  • Repo T, Makela A, Hanninen H (1990) Modeling frost resistance of trees. Silva Carelica 15:61–74

    Google Scholar 

  • Richards JH, Bliss LC (1986) Winter water relations of a deciduous timberline conifer, Larix lyallii Parl. Oecologia 69:16–24

    Article  Google Scholar 

  • Richardson EA, Seeley SD, Walker DR (1974) A model for estimating the completion of rest for Redhaven and Elberta peach trees. Hortscience 9:331–332

    Google Scholar 

  • Richter H (2001) The cohesion theory debate continues: the pitfalls of cryobiology. Trends Plant Sci 6:456–457

    Article  CAS  PubMed  Google Scholar 

  • Robson DJ, McHardy WJ, Petty JA (1988) Freezing in Conifer Xylem II. Pit aspiration and bubble formation. J Exp Bot 39:1617–1621

    Article  Google Scholar 

  • Rodrigo J (2000) Spring frosts in deciduous fruit trees—morphological damage and flower hardiness. Sci Hortic 85:155–173

    Article  Google Scholar 

  • Ruelland E, Vaultier MN, Zachowski A, Hurry V (2009) Cold signalling and cold acclimation in plants. Adv Bot Res 49:35–150

    Article  CAS  Google Scholar 

  • Sachs J (1860) Kristallbildung beim Gefrienen und Auftauen saftiger Pflanzenteile, mitgeteilt von W. Hofmeister. Ber Verhandl Sächs Akad Wiss 12:1–50

    Google Scholar 

  • Sakai A, Larcher W (1987) Frost survival of plants. Responses and adaptation to freezing stress. Ecological studies. Springer, Berlin

    Google Scholar 

  • Sakr S, Alves G, Morillon RL, Maurel K, Decourteix M, Guilliot A, Fleurat-Lessard P, Julien JL, Chrispeels MJ (2003) Plasma membrane aquaporins are involved in winter embolism recovery in walnut tree. Plant Physiol 133:630–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarvas R (1974) Investigations on the annual cycle of development of forest trees. 2. Autumn dormancy and winter dormancy. Commun Inst For Fenn 84:101

    Google Scholar 

  • Scorza R, Okie WR (1990) Peaches (Prunus). In: Moore JN, Ballington J (eds) ISHS Acta Horticulturae 290: genetic resources of temperate fruit and nut crops. Wageningen, ISHS, pp 175–231

    Google Scholar 

  • Sevanto S, Holbrook NM, Ball MC (2012) Freeze/thaw-induced embolism: probability of critical bubble formation depends on speed of ice formation. Front Plant Sci 3:107

    Article  PubMed  PubMed Central  Google Scholar 

  • Shirazi AM, Fuchigami LH (1995) Effect of near lethal stress on bud dormancy and stem cold hardiness in red-osier dogwood. Tree Physiol 15:275–279

    Article  PubMed  Google Scholar 

  • Smith WK, Young DR, Carter GA, Hadley JL, McNaughton GM (1984) Autumn stomatal closure in six conifer species of the Central Rocky Mountains. Oecologia 63:237–242

    Article  Google Scholar 

  • Sparks JP, Black RA (2000) Winter hydraulic conductivity and xylem cavitation in coniferous trees from upper and lower treeline. Arct Antarct Alp Res 32:397–403

    Article  Google Scholar 

  • Sparks JP, Campbell GS, Black RA (2001) Water content, hydraulic conductivity, and ice formation in winter stems of Pinus contorta: a TDR case study. Oecologia 127:468–475

    Article  Google Scholar 

  • Sperry JS, Robson DJ (2001) Xylem cavitation and freezing in conifers. In: Bigras FJ, Colombo SJ (eds) Conifer cold hardiness. Kluwer Academic, Dordrecht, pp 121–136

    Chapter  Google Scholar 

  • Sperry JS, Sullivan JEM (1992) Xylem embolism in response to freeze-thaw cycles and water stress in ring-porous, diffuse-porous and conifer species. Plant Physiol 100:605–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperry JS, Donnelly JR, Tyree MT (1988a) A method for measuring hydraulic conductivity and embolism in xylem. Plant Cell Environ 11:35–40

    Article  Google Scholar 

  • Sperry JS, Donnelly JR, Tyree MT (1988b) Seasonal occurrence of xylem embolism in sugar maple (Acer saccharum). Am J Bot 75:1212–1218

    Article  Google Scholar 

  • Sperry JS, Nichols KL, Sullivan JEM, Eastlack SE (1994) Xylem embolism in ring-porous, diffuse-porous, and coniferous trees of northern Utah and interior Alaska. Ecology 75:1736–1752

    Article  Google Scholar 

  • Stattin E, Verhoef N, Balk P, van Wordragen M, Lindstrom A (2012) Development of a molecular test to determine the vitality status of Norway spruce (Picea abies) seedlings during frozen storage. New For 43:665–678

    Article  Google Scholar 

  • Strullu-Derrien C, Kenrick P, Tafforeau P, Cochard H, Bonnemain JL, Le Herisse A, Lardeux H, Badel E (2014) The earliest wood and its hydraulic properties documented in c. 407-million-year-old fossils using synchrotron microtomography. Bot J Linn Soc 175:423–437

    Article  Google Scholar 

  • Stuart SA, Choat B, Martin KC, Holbrook NM, Ball MC (2007) The role of freezing in setting the latitudinal limits of mangrove forests. New Phytol 173:576–583

    Article  CAS  PubMed  Google Scholar 

  • Sucoff E (1969) Freezing of conifer xylem and the cohesion-tension theory. Physiol Plant 22:424–431

    Article  Google Scholar 

  • Sutinen ML, Palta JP, Reich PB (1992) Seasonal differences in freezing stress resistance of needles of Pinus nigra and Pinus resinosa: evaluation of the electrolyte leakage method. Tree Physiol 11:241–254

    Article  PubMed  Google Scholar 

  • Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 294:417–426

    Article  Google Scholar 

  • Tanino K, Weiser CJ, Fuchigami LH, Chen THH (1990) Water content during abscisic acid induced freezing tolerance in bromegrass cells. Plant Physiol 93:460–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson AJ, Moncrieff SM (1982) Prediction of bud burst in Douglas-fir by degree-day accumulation. Can J For Res 12:448–452

    Article  Google Scholar 

  • Topp BL, Sherman WB, Raseira MCB (2008) Low-chill cultivar development. In: Layne DR, Bassi D (eds) The peach: botany, production and uses. CABI, Wallingford, UK, pp 106–138

    Chapter  Google Scholar 

  • Tranquillini W (1979) Physiological ecology of the alpine timberline. Tree existence at high altitudes with special reference to the European Alps. Ecological studies, vol 31. Springer, Berlin

    Google Scholar 

  • Tranquillini W, Platter W (1983) Der winterliche Wasserhaushalt der Lärche (Larix decidua Mill.) an der alpinen Waldgrenze. Verh Ges Ökol 9:433–443

    Google Scholar 

  • Trifiló P, Raimondo F, Lo Gullo MA, Barbera PM, Salleo S, Nardini A (2014) Relax and refill: xylem rehydration prior to hydraulic measurements favours embolism repair in stems and generates artificially low PLC values. Plant Cell Environ 37:2491–2499

    Article  PubMed  CAS  Google Scholar 

  • Turner H (1961) Jahresgang und biologische Wirkung der Sonnen- und Himmelsstrahlung an der Waldgrenze der Ötztaler Alpen. Wetter Leben 13:93–113

    Google Scholar 

  • Tyree MT, Sperry JS (1989) Characterization and propagation of acoustic emission signals in woody plants: towards an improved acoustic emission counter. Plant Cell Environ 12:371–382

    Article  Google Scholar 

  • Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Tyree MT, Davis SD, Cochard H (1994) Biophysical perspectives of xylem evolution: is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? IAWA J 15:335–360

    Article  Google Scholar 

  • Uemura M, Steponkus PL (1994) A contrast of the plasma membrane lipid composition of oat and rye leaves in relation to freezing tolerance. Plant Physiol 104:479–496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uemura M, Tominaga Y, Nakagawara C, Shigematsu S, Minami A, Kawamura Y (2006) Responses of the plasma membrane to low temperatures. Physiol Plant 126:81–89

    Article  CAS  Google Scholar 

  • Utsumi Y, Sano Y, Fujikawa S, Funada R, Ohtani J (1998) Visualization of cavitated vessels in winter and refilled vessels in spring in diffuse-porous trees by cryo-scanning electron microscopy. Plant Physiol 117:1463–1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venturas MD, MacKinnon ED, Jacobsen AL, Pratt RB (2014) Excising stem samples underwater at native tension does not induce xylem cavitation. Plant Cell Environ. 38:1060–1068. doi:10.1111/pce.12461

    Article  PubMed  CAS  Google Scholar 

  • Vergeynst LL, Dierick M, Bogaerts J, Cnudde V, Steppe K (2015) Cavitation: a blessing in disguise? New method to establish vulnerability curves and assess hydraulic capacitance of woody tissues. Tree Physiol 35:400–409. doi:10.1093/treephys/tpu056

    Article  PubMed  Google Scholar 

  • Vogt UK (2001) Hydraulic vulnerability, vessel refilling, and seasonal courses of stem water potential of Sorbus aucuparia L. and Sambucus nigra L. J Exp Bot 52:1527–1536

    Article  CAS  PubMed  Google Scholar 

  • Weinberger JH (1950) Prolonged dormancy of peaches. Proc Am Soc Hortic Sci 56:129–133

    Google Scholar 

  • Weiser CJ (1970) Cold resistance and acclimation in woody plants. In: Cold hardiness, dormancy and freeze protection of fruit crops. LRP Publications, Pullman, WA, pp 403–410

    Google Scholar 

  • Weiser RL, Wallner SJ (1988) Freezing woody plant stems produces acoustic emissions. J Am Soc Hortic Sci 113:636–639

    Google Scholar 

  • Welling A, Palva ET (2006) Molecular control of cold acclimation in trees. Physiol Plant 127:167–181

    Article  CAS  Google Scholar 

  • Welling A, Kaikuranta P, Rinne P (1997) Photoperiodic induction of dormancy and freezing tolerance in Betula pubescens. Involvement of ABA and dehydrins. Physiol Plant 100:119–125

    Article  CAS  Google Scholar 

  • Wheeler JK, Huggett BA, Tofte AN, Rockwell FE, Holbrook NM (2013) Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism. Plant Cell Environ 36:1938–1949

    CAS  PubMed  Google Scholar 

  • Wiegand KM (1906) Pressure and flow of sap in the maple. Am Nat 40:409–453

    Article  Google Scholar 

  • Willson CJ, Jackson RB (2006) Xylem cavitation caused by drought and freezing stress in four co-occurring Juniperus species. Physiol Plant 127:374–382

    Article  CAS  Google Scholar 

  • Winget CH, Kozlowski TT (1964) Winter shrinkage in stems of forest trees. J For 62:335–337

    Google Scholar 

  • Wisniewski M, Lindow SE, Ashworth EN (1997) Observations of ice nucleation and propagation in plants using infrared video thermography. Plant Physiol 113:327–334

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfe J, Bryant G (2001) Cellular cryobiology: thermodynamic and mechanical effects. Int J Refrig 24:438–450

    Article  Google Scholar 

  • Wolkerstorfer SV, Rosner S, Hietz P (2012) An improved method and data analysis for ultrasound acoustic emissions and xylem vulnerability in conifer wood. Physiol Plant 146:184–191

    Article  CAS  PubMed  Google Scholar 

  • Xing W, Rajashekar CB (2001) Glycine betaine involvement in freezing tolerance and water stress in Arabidopsis thaliana. Environ Exp Bot 46:21–28

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S (1984) Studies on freezing injury of plant cells. 1. Relation between thermotropic poperties of isolated plasma membrane vesicles and freezing injury. Plant Physiol 75:38–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida S, Uemura M (1986) Lipid composition of plasma membrane and tonoplasts isolated from etiolated seedlings of mung bean (Vigna radiata L.). Plant Physiol 82:807–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang MIN, Willison JHM (1987) An improved conductivity method for the measurement of frost hardiness. Can J Bot 65:710–715

    Article  CAS  Google Scholar 

  • Zhu XB, Cox RM, Meng FR, Arp PA (2001) Responses of xylem cavitation, freezing injury and shoot dieback to a simulated winter thaw in yellow birch seedlings growing in different nursery culture regimes. For Ecol Manag 145:243–253

    Article  Google Scholar 

  • Zimmermann MH (1978) Hydraulic architecture of some diffuse-porous trees. Can J Bot 56:2286–2295

    Article  Google Scholar 

  • Zimmermann MH (1983) Xylem structure and the ascent of sap. Springer, New York, NY, p 143

    Book  Google Scholar 

  • Zweifel R, Häsler R (2000) Frost-induced reversible shrinkage of bark of mature, subalpine conifers. Agric For Meteorol 102:213–222

    Article  Google Scholar 

  • Zwieniecki MA, Holbrook NM (2009) Confronting Maxwell’s demon: biophysics of xylem embolism repair. Trends Plant Sci 14:530–534

    Article  CAS  PubMed  Google Scholar 

  • Zwieniecki MA, Melcher PJ, Ahrens ET (2013) Analysis of spatial and temporal dynamics of xylem refilling in Acer rubrum L. using magnetic resonance imaging. Front Plant Sci 4:265

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This review was prepared in the frame of the project I826-B25 “Acoufreeze” funded by the Austrian and French research agencies (FWF and ANR), respectively. We thank Georg Leitinger, Department of Ecology, University of Innsbruck, for providing the thermographic camera. We thank Prof. Rainer Matyssek and the anonymous reviewer for thoughtful comments and help to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Mayr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mayr, S., Améglio, T. (2016). Freezing Stress in Tree Xylem. In: Lüttge, U., Cánovas, F., Matyssek, R. (eds) Progress in Botany 77. Progress in Botany, vol 77. Springer, Cham. https://doi.org/10.1007/978-3-319-25688-7_13

Download citation

Publish with us

Policies and ethics