Skip to main content

Invertebrates in Created and Restored Wetlands

  • Chapter
  • First Online:
Invertebrates in Freshwater Wetlands

Abstract

Wetland creation and restoration has increased drastically during the last four decades owing to a combination of reasons, including mitigation banking, pollutant retention, biodiversity conservation, and recreation. These ecosystems are often intensely managed and invertebrate controls are highly specific to each wetland type. They offer unique opportunities to test ecological theory, particularly succession and community assembly. On the applied side, research in these systems has focused on the use of invertebrates as indicators of ecological conditions, and on the potential and limits of multifunctionality (e.g., nutrient retention and biodiversity conservation). The development or recovery of wetland structure and functioning is highly context-dependent and currently limited, and invertebrate successional trajectories are difficult to anticipate. Nevertheless, created and restored wetlands may positively contribute to sustaining invertebrate metapopulations and metacommunities by increasing the density of waterbodies available at the landscape scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamus PR, Brandt KH (1990) Impacts on quality of inland wetlands of the United States: a survey of indicators, techniques, and applications of community-level biomonitoring data. EPA Report 600/3–90/073 (1990). USEPA Environ Research Laboratory

    Google Scholar 

  • Angélibert S, Marty P, Céréghino R, Giani N (2004) Seasonal variations in the physical and chemical characteristics of ponds: implications for biodiversity conservation. Aquat Conserv Mar Freshw Ecosys 14:439–456

    Article  Google Scholar 

  • Awal S, Svozil D (2010) Macro-invertebrate species diversity as a potential universal measure of wetland ecosystem integrity in constructed wetlands in South East Melbourne. Aquat Ecosys Health Manage 13:472–479

    Article  Google Scholar 

  • Badosa A, Frisch D et al (2010) Recovery of zooplankton diversity in a restored Mediterranean temporary marsh in Doñana National Park (SW Spain). Hydrobiologia 654:67–82

    Article  CAS  Google Scholar 

  • Baines CB, McCauley SJ, Rowe L (2014) The interactive effects of competition and predation risk on dispersal in an insect. Biol Lett 10:20140287

    Article  PubMed Central  PubMed  Google Scholar 

  • Balcombe CK, Anderson JT, Fortney RH, Kordek WS (2005) Aquatic macroinvertebrate assemblages in mitigated and natural wetlands. Hydrobiologia 541:175–188

    Article  Google Scholar 

  • Ballantine K, Schneider R (2009) Fifty-five years of soil development in restored freshwater depressional wetlands. Ecol Appl 19:1467–1480

    Article  PubMed  Google Scholar 

  • Barnes LE (1983) The colonization of ball‐clay ponds by macroinvertebrates and macrophytes. Freshw Biol 13:561–578

    Article  Google Scholar 

  • Becerra-Jurado G, Callanan M et al (2009) Comparison of macroinvertebrate community structure and driving environmental factors in natural and wastewater treatment ponds. Hydrobiologia 634:153–165

    Article  CAS  Google Scholar 

  • Becerra-Jurado G, Johnson J et al (2010) The potential of integrated constructed wetlands (ICWs) to enhance macroinvertebrate diversity in agricultural landscapes. Wetlands 30:393–404

    Article  Google Scholar 

  • Becerra-Jurado G, Foster G, Harrington R, Kelly-Quinn M (2014) Integrated constructed wetlands: hotspots for freshwater coleopteran diversity in the landscape of Ireland. Biology and environment: Proceedings of the Royal Irish Academy, p 271–279

    Google Scholar 

  • Bie T, Meester L et al (2012) Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecol Lett 15:740–747

    Article  PubMed  Google Scholar 

  • Bilton DT, Freeland JR, Okamura B (2001) Dispersal in freshwater invertebrates. Annu Rev Ecol Syst 32:159–181

    Article  Google Scholar 

  • Boets P, Michels E et al (2011) Integrated constructed wetlands (ICW): ecological development in constructed wetlands for manure treatment. Wetlands 31:763–771

    Article  Google Scholar 

  • Bohonak AJ, Jenkins DG (2003) Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecol Lett 6:783–796

    Article  Google Scholar 

  • Boix D, Sala J, Quintana XD, Moreno-Amich R (2004) Succession of the animal community in a Mediterranean temporary pond. J North Am Benthol Soc 23:29–49

    Article  Google Scholar 

  • Boothby J, Hull AP (1997) A census of ponds in Cheshire, North West England. Aquat Conserv Mar Freshw Ecosys 7:75–79

    Article  Google Scholar 

  • Borja A, Dauer DM, Elliott M, Simenstad CA (2010) Medium- and long-term recovery of estuarine and coastal ecosystems: patterns, rates and restoration effectiveness. Estuar Coasts 33:1249–1260

    Article  Google Scholar 

  • Brainard AS, Fairchild GW (2012) Sediment characteristics and accumulation rates in constructed ponds. J Soil Water Conserv 67:425–432

    Article  Google Scholar 

  • Breaux A, Serefiddin F (1999) Validity of performance criteria and a tentative model for regulatory use in compensatory wetland mitigation permitting. Environ Manag 24:327–336

    Article  Google Scholar 

  • Brix H (1994) Use of constructed wetlands in water pollution control: historical development, present status, and future perspectives. Water Sci Technol 30:209–224

    CAS  Google Scholar 

  • Brown PH, Lant CL (1999) The effect of wetland mitigation banking on the achievement of no-net-loss. Environ Manage 23:333–345

    Article  PubMed  Google Scholar 

  • Burks RL, Mulderij G et al (2006) Center stage: the crucial role of macrophytes in regulating trophic interactions in shallow lake wetlands. Springer, New York

    Google Scholar 

  • Burton TM, Uzarski DG et al (1999) Development of a preliminary invertebrate index of biotic integrity for Lake Huron coastal wetlands. Wetlands 19:869–882

    Article  Google Scholar 

  • Cairns J, Pratt JR (1993) A history of biological monitoring using benthic macroinvertebrates. In: Rosenberg DM, Resh VH (eds) Freshwater biomonitoring and benthic macroinvertebrates. Kluwer, Boston, pp 10–27

    Google Scholar 

  • Cañedo-Argüelles M, Rieradevall M (2011) Early succession of the macroinvertebrate community in a shallow lake: response to changes in the habitat condition. Limnologica—Ecol Manage Inland Waters 41:363–370

    Article  Google Scholar 

  • Carpenter SR, Lodge DM (1986) Effects of submersed macrophytes on ecosystem processes. Aquat Bot 26:341–370

    Article  Google Scholar 

  • Chase JM (2003) Experimental evidence for alternative stable equilibria in a benthic pond food web. Ecol Lett 6:733–741

    Article  Google Scholar 

  • Chase JM, Biro EG, Ryberg WA, Smith KG (2009) Predators temper the relative importance of stochastic processes in the assembly of prey metacommunities. Ecol Lett 12:1210–1218

    Article  PubMed  Google Scholar 

  • Christman VD, Voshell JR (1993) Changes in the benthic macroinvertebrate community in two years of colonization of new experimental ponds. Internat Rev Gesam Hydrobiol Hydrogr 78:481–491

    Article  Google Scholar 

  • Clarke KR, Warwick RM (2001) A further biodiversity index applicable to species lists: variation in taxonomic distinctness. Mar Ecol Progr Ser 216:265–278

    Article  Google Scholar 

  • Collinge SK, Ray C (2009) Transient patterns in the assembly of vernal pool plant communities. Ecology 90:3313–23

    Article  PubMed  Google Scholar 

  • Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111(982):1119–1144

    Article  Google Scholar 

  • Copeland C (2010) Wetlands: an overview of issues. Congressional Research Service, Washington, DC, RL33483

    Google Scholar 

  • Cowardin LM, Carter V, Golet FC, LaRoe ET (1979) Classification of wetlands and deepwater habitats of the United States. US Department of the Interior, Fish and Wildlife Service, Washington, DC

    Google Scholar 

  • Craft C, Reader J, Sacco JN, Broome SW (1999) Twenty-five years of ecosystem development of constructed Spartina alterniflora (Loisel) marshes. Ecol Appl 9:1405–1419

    Article  Google Scholar 

  • Curran M, Hellweg S, Beck J (2014) Is there any empirical support for biodiversity offset policy? Ecol Appl 24:617–32

    Article  PubMed  Google Scholar 

  • Dahl TE (1990) Wetlands losses in the United States 1780’s to 1980’s. US Department of the Interior, Fish and Wildlife Service, Washington, DC

    Google Scholar 

  • Daniels AE, Cumming GS (2008) Conversion or conservation? Understanding wetland change in northwest Costa Rica. Ecol Appl 18:49–63

    Article  PubMed  Google Scholar 

  • Davis J, Horwitz P et al (2006) Are river bioassessment methods using macroinvertebrates applicable to wetlands? Hydrobiologia 572:115–128

    Article  Google Scholar 

  • De Szalay FA, Resh VH (2000) Factors influencing macroinvertebrate colonization of seasonal wetlands: responses to emergent plant cover. Freshw Biol 45:295–308

    Article  Google Scholar 

  • Denny P (1997) Implementation of constructed wetlands in developing countries. Water Sci Technol 35:27–34

    Article  Google Scholar 

  • Fairchild GW, Faulds AM, Matta JF (2000) Beetle assemblages in ponds: effects of habitat and site age. Freshw Biol 44:523–534

    Article  Google Scholar 

  • Fairchild GW, Robinson C, Brainard AS, Coutu GW (2013) Historical changes in the distribution and abundance of constructed ponds in response to changing population density and land use. Landsc Res 38:593–606

    Article  Google Scholar 

  • Feldman RS, Connor EF (1992) The relationship between pH and community structure of invertebrates in streams of the Shenandoah National Park, Virginia, USA. Freshw Biol 27:261–276

    Article  Google Scholar 

  • Fisher SG (1983) Succession in streams. In: Barnes JR, Minshall CW (eds) Stream ecology. Springer, New York, pp 7–27

    Chapter  Google Scholar 

  • Fontanarrosa MS, Chaparro GN, O’Farrell I (2013) Temporal and spatial patterns of macroinvertebrates associated with small and medium-sized free-floating plants. Wetlands 33:47–63

    Article  Google Scholar 

  • Forbes AE, Chase JM (2002) The role of habitat connectivity and landscape geometry in experimental zooplankton metacommunities. Oikos 96:433–440

    Article  Google Scholar 

  • Frisch D, Green AJ (2007) Copepods come in first: rapid colonization of new temporary ponds. Fund Appl Limnol 168:289–297

    Article  Google Scholar 

  • Garbutt A, Wolters M (2008) The natural regeneration of salt marsh on formerly reclaimed land. Appl Veg Sci 11:335–344

    Article  Google Scholar 

  • Gardner TA, von Hase A et al (2013) Biodiversity offsets and the challenge of achieving No Net Loss. Conserv Biol 27:1254–1264

    Article  PubMed  Google Scholar 

  • Gibbs JP (2000) Wetland loss and biodiversity conservation. Conserv Biol 14:314–317

    Article  Google Scholar 

  • Goodnight CJ (1973) The use of aquatic macroinvertebrates as indicators of stream pollution. Trans Am Microsc Soc 1:1–13

    Article  Google Scholar 

  • Gutrich J, Hitzhusen F (2004) Assessing the substitutability of mitigation wetlands for natural sites: estimating restoration lag costs of wetland mitigation. Ecol Econ 48:409–424

    Article  Google Scholar 

  • Hall DL, Willig MR et al (2004) Aquatic macroinvertebrate diversity of playa wetlands: the role of landscape and island biogeographic characteristics. Wetlands 24:77–91

    Article  Google Scholar 

  • Hansson L, Brönmark C, Anders Nilsson P, Åbjörnsson K (2005) Conflicting demands on wetland ecosystem services: nutrient retention, biodiversity or both? Freshw Biol 50:705–714

    Article  CAS  Google Scholar 

  • Hartzell D, Bidwell JR, Davis CA (2007) A comparison of natural and created depressional wetlands in central Oklahoma using metrics from indices of biological integrity. Wetlands 27:794–805

    Article  Google Scholar 

  • Hawkes HA (1998) Origin and development of the biological monitoring working party score system. Water Res 32:964–968

    Article  Google Scholar 

  • Hein AM, Gillooly JF (2011) Predators, prey, and transient states in the assembly of spatially structured communities. Ecology 92:549–555

    Article  PubMed  Google Scholar 

  • Herrmann J (2012) Chemical and biological benefits in a stormwater wetland in Kalmar, SE Sweden. Limnologica—Ecol Manage Inland Waters 42:299–309

    Article  CAS  Google Scholar 

  • Herrmann J, Boström A, Bohmann I (2001) Invertebrate colonisation into the man-made Kalmar Daemme wetland dam system. Verh Int Ver Theor Angew Limnol 27:1653–1656

    Google Scholar 

  • Hosomi M, Murakami A, Sudo R (1994) A four-year mass balance for a natural wetland system receiving domestic wastewater. Water Sci Technol 30:235–244

    CAS  Google Scholar 

  • Hossler K, Bouchard V, Fennessy M (2011) No-net-loss not met for nutrient function in freshwater marshes: recommendations for wetland mitigation policies. Ecosphere 2:1–36

    Article  Google Scholar 

  • Hsu CB, Hsieh HL et al (2011) Biodiversity of constructed wetlands for wastewater treatment. Ecol Eng 37:1533–1545

    Article  Google Scholar 

  • Hume C (2008) Wetland vision technical document [electronic resource]: overview and reporting of project philosophy and technical approach. Wetland Vision Partnership

    Google Scholar 

  • Irfanullah H, Moss B (2005) A filamentous green algae-dominated temperate shallow lake: variations on the theme of clear-water stable states? Arch Hydrobiol 163:25–47

    Article  CAS  Google Scholar 

  • Jeffries MJ (2002) Evidence for individualistic species assembly creating convergent predator: prey ratios among pond invertebrate communities. J Anim Ecol 71:173–184

    Article  Google Scholar 

  • Jeffries MJ (2012) Ponds and the importance of their history: an audit of pond numbers, turnover and the relationship between the origins of ponds and their contemporary plant communities in south-east Northumberland, UK. Hydrobiologia 689:11–21

    Article  Google Scholar 

  • Johnson PTJ, Hoverman JT et al (2013) Urbanization and wetland communities: applying metacommunity theory to understand the local and landscape effects. J Appl Ecol 50:34–42

    Article  Google Scholar 

  • Kadlec RH, Wallace S (2008) Treatment wetlands. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Karouna-Renier NK, Sparling DW (2001) Relationships between ambient geochemistry, watershed land-use and trace metal concentrations in aquatic invertebrates living in stormwater treatment ponds. Environ Pollut 112:183–192

    Article  CAS  PubMed  Google Scholar 

  • Kashian DR, Burton TM (2000) A comparison of macroinvertebrates of two Great Lakes coastal wetlands: testing potential metrics for an index of ecological integrity. J Great Lakes Res 26:460–481

    Article  Google Scholar 

  • Kiehl K, Kirmer A et al (2010) Species introduction in restoration projects—evaluation of different techniques for the establishment of semi-natural grasslands in Central and Northwestern Europe. Basic Appl Ecol 11:285–299

    Article  Google Scholar 

  • Kim DG, Kang HJ et al (2014) Analyses of benthic macroinvertebrate colonization during the early successional phases of created wetlands in temperate Asia. Fund Appl Limnol 184:35–49

    Article  Google Scholar 

  • King RS, Richardson CJ (2002) Evaluating subsampling approaches and macroinvertebrate taxonomic resolution for wetland bioassessment. J North Am Benthol Soc 21:150–171

    Article  Google Scholar 

  • Kivaisi AK (2001) The potential for constructed wetlands for wastewater treatment and reuse in developing countries: a review. Ecol Eng 16:545–560

    Article  Google Scholar 

  • Klimkowska A, Van Diggelen R, Bakker JP, Grootjans AP (2007) Wet meadow restoration in Western Europe: a quantitative assessment of the effectiveness of several techniques. Biol Conserv 140:318–328

    Article  Google Scholar 

  • Knight R, Clarke R, Bastian R (2001) Surface flow (SF) treatment wetlands as a habitat for wildlife and humans. Water Sci Technol 44:27–37

    CAS  PubMed  Google Scholar 

  • Kolkwitz R, Marsson M (1908) Ökologie der pflanzlichen Saprobien. Borntraeger

    Google Scholar 

  • Kovalenko KE, Ciborowski JJH et al (2013) Food web structure in oil sands reclaimed wetlands. Ecol Appl 23:1048–60

    Article  CAS  PubMed  Google Scholar 

  • Lake PS, Bayly IAE, Morton DW (1989) The phenology of a temporary pond in western Victoria, Australia, with special reference to invertebrate succession. Arch Hydrobiol 115:171–202

    Google Scholar 

  • Lazzaro X, Lacroix G et al (2009) Predator foraging behaviour drives food‐web topological structure. J Anim Ecol 78:1307–1317

    Article  PubMed  Google Scholar 

  • Legendre P, Dallot S, Legendre L (1985) Succession of species within a community: chronological clustering, with applications to marine and freshwater zooplankton. Am Nat 125:257–288

    Article  Google Scholar 

  • Levin LA, Talley TS (2002) Natural and manipulated sources of heterogeneity controlling early faunal development of a salt marsh. Ecol Appl 12:1785–1802

    Article  Google Scholar 

  • Levin LA, Talley D, Thayer G (1996) Succession of macrobenthos in a created salt marsh. Mar Ecol Progr Ser Oldendorf 141:67–82

    Article  Google Scholar 

  • Lichko LE, Calhoun AJK (2003) An evaluation of vernal pool creation projects in New England: project documentation from 1991–2000. Environ Manage 32:141–151

    Article  PubMed  Google Scholar 

  • Liu D, Ge Y et al (2008) Constructed wetlands in China: recent developments and future challenges. Front Ecol Environ 7:261–268

    Article  Google Scholar 

  • Lodge DM, Barko JW et al (1988) Spatial heterogeneity and habitat interactions in lake communities. In: Complex interactions in lake communities. Springer, New York, p 181–208

    Google Scholar 

  • Louette G, De Meester L, Declerck S (2008) Assembly of zooplankton communities in newly created ponds. Freshw Biol 53:2309–2320

    Google Scholar 

  • Lunde KB, Resh VH (2012) Development and validation of a macroinvertebrate index of biotic integrity (IBI) for assessing urban impacts to Northern California freshwater wetlands. Environ Monitor Assess 184:3653–3674

    Article  CAS  Google Scholar 

  • Marchetti MP, Garr M, Smith ANH (2010) Evaluating wetland restoration success using aquatic macroinvertebrate assemblages in the Sacramento Valley, California. Restor Ecol 18:457–466

    Article  Google Scholar 

  • Margalef R (1968) Perspectives in ecological theory. Chicago University Press, Chicago

    Google Scholar 

  • Marklund O, Sandsten H, Hansson L, Blindow I (2002) Effects of waterfowl and fish on submerged vegetation and macroinvertebrates. Freshw Biol 47:2049–2059

    Article  Google Scholar 

  • Matthews JW, Spyreas G (2010) Convergence and divergence in plant community trajectories as a framework for monitoring wetland restoration progress. J Appl Ecol 47:1128–1136

    Article  Google Scholar 

  • Matthews JW, Spyreas G, Endress AG (2009) Trajectories of vegetation-based indicators used to assess wetland restoration progress. Ecol Appl 19:2093–2107

    Article  PubMed  Google Scholar 

  • Mays PA, Edwards GS (2001) Comparison of heavy metal accumulation in a natural wetland and constructed wetlands receiving acid mine drainage. Ecol Eng 16:487–500

    Article  Google Scholar 

  • McCauley SJ, Davis CJ, Nystrom J, Werner EE (2009) A hump-shaped relationship between isolation and abundance of Notonecta irrorata colonists in aquatic mesocosms. Ecology 90:2635–2641

    Article  PubMed  Google Scholar 

  • McPeek MA (2004) The growth/predation risk trade‐off: so what is the mechanism? Am Nat 163:E88–E111

    Article  PubMed  Google Scholar 

  • Meli P, Rey Benayas JM, Balvanera P, Martínez Ramos M (2014) Restoration enhances wetland biodiversity and ecosystem service supply, but results are context-dependent: a meta-analysis. PLoS One 9, e93507

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Miguel-Chinchilla L, Boix D, Gascón S, Comín FA (2014) Taxonomic and functional successional patterns in macroinvertebrates related to flying dispersal abilities: a case study from isolated manmade ponds at reclaimed opencast coal mines. Hydrobiologia 732:111–122

    Article  CAS  Google Scholar 

  • Milner AM, Robertson AL et al (2008) Colonization and development of an Alaskan stream community over 28 years. Front Ecol Environ 6:413–419

    Article  Google Scholar 

  • Mitsch WJ, Wise KM (1998) Water quality, fate of metals, and predictive model validation of a constructed wetland treating acid mine drainage. Water Res 32:1888–1900

    Article  CAS  Google Scholar 

  • Montoya D, Rogers L, Memmott J (2012) Emerging perspectives in the restoration of biodiversity-based ecosystem services. Trends Ecol Evol 27:666–672

    Article  PubMed  Google Scholar 

  • Moore MT, Cooper CM et al (2009) Mitigation of two pyrethroid insecticides in a Mississippi Delta constructed wetland. Environ Pollut 157:250–256

    Article  CAS  PubMed  Google Scholar 

  • Moorhead DL, Hall DL, Willig MR (1998) Succession of macroinvertebrates in playas of the Southern High Plains, USA. J North Am Benthol Soc 17:430–442

    Article  Google Scholar 

  • Moreno-Mateos D, Comín FA (2010) Integrating objectives and scales for planning and implementing wetland restoration and creation in agricultural landscapes. J Environ Manage 91:2087–2095

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Mateos D, Pedrocchi C, Comín FA (2010) Effects of wetland construction on water quality in a semi-arid catchment degraded by intensive agricultural use. Ecol Eng 36:631–639

    Article  Google Scholar 

  • Moreno-Mateos D, Power ME, Comín FA, Yockteng R (2012) Structural and functional loss in restored wetland ecosystems. PLoS Biol 10, e1001247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moreno-Mateos D, Meli P, Vara-Rodríguez M, Aronson J (in press) Ecosystem response to interventions: lessons from restored and created wetland ecosystems. J Appl Ecol

    Google Scholar 

  • Morzaria-Luna HN, Zedler JB (2007) Does seed availability limit plant establishment during salt marsh restoration? Estuar Coasts 30:12–25

    Article  Google Scholar 

  • Nilsson C, Brown RL, Jansson R, Merritt DM (2010) The role of hydrochory in structuring riparian and wetland vegetation. Biol Rev 85:837–858

    PubMed  Google Scholar 

  • O’Connell JL, Johnson LA et al (2013) Predicting dispersal-limitation in plants: optimizing planting decisions for isolated wetland restoration in agricultural landscapes. Biol Conserv 159:343–354

    Article  Google Scholar 

  • Odum EP (1969) The strategy of ecosystem development. Science 164:262–270

    Article  CAS  PubMed  Google Scholar 

  • Odum EP, Odum HT, Andrews J (1971) Fundamentals of ecology. Saunders, Philadelphia

    Google Scholar 

  • Oertli B, Biggs J et al (2005) Conservation and monitoring of pond biodiversity: introduction. Aquat Conserv Mar Freshw Ecosys 15:535–540

    Article  Google Scholar 

  • Ortega M, Velasco J, Millán A, Guerrero C (2004) An ecological integrity index for littoral wetlands in agricultural catchments of semiarid Mediterranean regions. Environ Manage 33:412–430

    Article  PubMed  Google Scholar 

  • Persson J, Somes NLG, Wong THF (1999) Hydraulics efficiency of constructed wetlands and ponds. Water Sci Technol 40:291–300

    Article  Google Scholar 

  • Rannap R, Lõhmus A, Briggs L (2009) Restoring ponds for amphibians: a success story. Hydrobiologia 634:87–95

    Article  Google Scholar 

  • Resetarits WJ, Binckley CA (2009) Spatial contagion of predation risk affects colonization dynamics in experimental aquatic landscapes. Ecology 90:869–876

    Article  PubMed  Google Scholar 

  • Resetarits WJ, Binckley CA (2014) Species responses of colonising beetles to variation in patch quality, number, and context in experimental aquatic landscapes. Ecol Entomol 39:226–235

    Article  Google Scholar 

  • Rhazi M, Grillas P, Charpentier A, Médail F (2004) Experimental management of Mediterranean temporary pools for conservation of the rare quillwort Isoetes setacea. Biol Conserv 118:675–684

    Article  Google Scholar 

  • Ruhí A (2012) Primary succession in man-made wetlands: biodiversity, structure and dynamics of macrofaunal assemblages. Ph.D. Dis., University of Girona, Catalonia

    Google Scholar 

  • Ruhí A, Boix D et al (2009) Spatial and temporal patterns of pioneer macrofauna in recently created ponds: taxonomic and functional approaches. Hydrobiologia 634:137–151

    Article  Google Scholar 

  • Ruhí A, Herrmann J et al (2011) Change in biological traits and community structure of macroinvertebrates through primary succession in a man-made Swedish wetland. Freshw Sci 31:22–37

    Article  Google Scholar 

  • Ruhí A, Herrmann J et al (2012a) How do early successional patterns in man-made wetlands differ between cold temperate and Mediterranean regions? Limnologica—Ecol Manage Inland Waters 42:328–339

    Article  Google Scholar 

  • Ruhí A, San Sebastian O et al (2012b) Man-made Mediterranean temporary ponds as a tool for amphibian conservation. Ann Limnol 48:81–93

    Article  Google Scholar 

  • Ruhí A, Boix D et al (2013) Nestedness and successional trajectories of macroinvertebrate assemblages in man-made wetlands. Oecologia 171:545–556

    Article  PubMed  Google Scholar 

  • Rustad LE, Campbell JL et al (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562

    Article  Google Scholar 

  • Saunders LL, Kilham SS, Fairchild GW, Verb R (2012) Effects of small‐scale environmental variation on metaphyton condition and community composition. Freshw Biol 57:1884–1895

    Article  Google Scholar 

  • Scheffer M, Hosper SH et al (1993) Alternative equilibria in shallow lakes. Trends Ecol Evol 8:275–279

    Article  CAS  PubMed  Google Scholar 

  • Scher O, Thièry A (2005) Odonata, Amphibia and environmental characteristics in motorway stormwater retention ponds (Southern France). Hydrobiologia 551:237–251

    Article  Google Scholar 

  • Schneider DW (1999) Snowmelt ponds in Wisconsin. In: Batzer DP, Rader RB, Wissinger SA (eds) Invertebrates in freshwater wetlands of North America: ecology and management. Wiley, New York, pp 299–318

    Google Scholar 

  • Scholz M, Harrington R, Carroll P, Mustafa A (2007) The integrated constructed wetlands (ICW) concept. Wetlands 27:337–354

    Article  Google Scholar 

  • Schulz R, Peall SKC (2001) Effectiveness of a constructed wetland for retention of nonpoint-source pesticide pollution in the Lourens River catchment, South Africa. Environ Sci Technol 35:422–426

    Article  CAS  PubMed  Google Scholar 

  • Sharma RC, Rawat JS (2009) Monitoring of aquatic macroinvertebrates as bioindicator for assessing the health of wetlands: a case study in the Central Himalayas, India. Ecol Indicat 9:118–128

    Article  Google Scholar 

  • Shulman RS, Chase JM (2007) Increasing isolation reduces predator: prey species richness ratios in aquatic food webs. Oikos 116:1581–1587

    Article  Google Scholar 

  • Silva JP, Phillips L, Jones W (2007) LIFE and Europe’s wetlands: restoring a vital ecosystem. Public Office European Union, Luxembourg

    Google Scholar 

  • Smith VH, Schindler DW (2009) Eutrophication science: where do we go from here? Trends Ecol Evol 24:201–207

    Article  PubMed  Google Scholar 

  • Smith SV, Renwick WH, Bartley JD, Buddemeier RW (2002) Distribution and significance of small, artificial water bodies across the United States landscape. Sci Total Environ 299:21–36

    Article  CAS  PubMed  Google Scholar 

  • Solimini AG, Ruggiero A, Bernardini V, Carchini G (2003) Temporal pattern of macroinvertebrate diversity and production in a new man made shallow lake. Hydrobiologia 506:373–379

    Article  Google Scholar 

  • Spieles DJ (2005) Vegetation development in created, restored, and enhanced mitigation wetland banks of the United States. Wetlands 25:51–63

    Article  Google Scholar 

  • Spieles DJ, Horn JD (2009) Macroinvertebrate community structure in created wetlands of different successional stage. Aquat Ecosys Health Manage 12:320–329

    Article  CAS  Google Scholar 

  • Spieles DJ, Mitsch WJ (2000) Macroinvertebrate community structure in high- and low-nutrient constructed wetlands. Wetlands 20:716–729

    Article  Google Scholar 

  • Spieles DJ, Mitsch WJ (2003) A model of macroinvertebrate trophic structure and oxygen demand in freshwater wetlands. Ecol Model 161:183–194

    Article  CAS  Google Scholar 

  • Spieles DJ, Coneybeer M, Horn J (2006) Community structure and quality after 10 years in two central Ohio mitigation bank wetlands. Environ Manage 38:837–852

    Article  PubMed  Google Scholar 

  • Stanczak M, Keiper JB (2004) Benthic invertebrates in adjacent created and natural wetlands in northeastern Ohio, USA. Wetlands 24:212–218

    Article  Google Scholar 

  • Stead TK, Schmid‐Araya JM, Hildrew AG (2005) Secondary production of a stream metazoan community: Does the meiofauna make a difference? Limnol Oceanogr 50:398–403

    Article  Google Scholar 

  • Stewart TW, Downing JA (2008) Macroinvertebrate communities and environmental conditions in recently constructed wetlands. Wetlands 28:141–150

    Article  Google Scholar 

  • Stouffer DB, Bascompte J (2011) Compartmentalization increases food-web persistence. Proc Natl Acad Sci U S A 108:3648–3652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sundaravadivel M, Vigneswaran S (2001) Constructed wetlands for wastewater treatment. Crit Rev Environ Sci Technol 31:351–409

    Article  CAS  Google Scholar 

  • Thompson RM, Townsend CR (2005) Food-web topology varies with spatial scale in a patchy environment. Ecology 86:1916–1925

    Article  Google Scholar 

  • Tuttle RW (2008) Farm ponds. In: Trimble SW, Stewart BA, Howell TA (eds) Encyclopedia of water science, 2nd edn. Marcel Dekker, New York, pp 359–362

    Google Scholar 

  • Van de Meutter F, Cottenie K, De Meester L (2008) Exploring differences in macroinvertebrate communities from emergent, floating-leaved and submersed vegetation in shallow ponds. Fund Appl Limnol 173:47–57

    Article  Google Scholar 

  • Verhoeven JTA (2014) Wetlands in Europe: perspectives for restoration of a lost paradise. Ecol Eng 66:6–9

    Article  Google Scholar 

  • Vymazal J (2010) Constructed wetlands for wastewater treatment: five decades of experience. Environ Sci Technol 45:61–69

    Article  PubMed  CAS  Google Scholar 

  • Vymazal J, Greenway M et al (2006) Constructed wetlands for wastewater treatment. In: Verhoeven JTA, Beltman B, Bobbink R, Whigham DF (eds) Wetlands and natural resource management. Springer, New York, pp 69–96

    Chapter  Google Scholar 

  • Walker LR, Del Moral R (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Warfe DM, Barmuta LA (2004) Habitat structural complexity mediates the foraging success of multiple predator species. Oecologia 141:171–178

    Article  PubMed  Google Scholar 

  • Warwick RM, Clarke KR (1995) New ‘biodiversity’ measures reveal a decrease in taxonomic distinctness with increasing stress. Mar Ecol Progr Ser 129:301–305

    Article  Google Scholar 

  • Williams P, Biggs J et al (1999) The Pond book: a guide to the management and creation of ponds. Ponds Conservation Trust, Oxford

    Google Scholar 

  • Williams P, Whitfield M et al (2004) Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol Conserv 115:329–341

    Article  Google Scholar 

  • Wolters M, Garbutt A et al (2008) Restoration of salt-marsh vegetation in relation to site suitability, species pool and dispersal traits. J Appl Ecol 45:904–912

    Article  Google Scholar 

  • Yimer HD, Mengistou S (2010) Water quality parameters and macroinvertebrates index of biotic integrity of the Jimma wetlands, Southwestern Ethiopia. J Wetl Ecol 3:79–99

    Google Scholar 

  • Zedler JB (2004) Compensating for wetland losses in the United States. Ibis 146:92–100

    Article  Google Scholar 

  • Zedler JB, Kercher S (2004) Causes and consequences of invasive plants in wetlands: opportunities, opportunists, and outcomes. Crit Rev Plant Sci 23:431–452

    Article  Google Scholar 

  • Zedler JB, Leach MK (1998) Managing urban wetlands for multiple use: research, restoration, and recreation. Urban Ecosys 2:189–204

    Article  Google Scholar 

  • Zedler JB, West JM (2008) Declining diversity in natural and restored salt marshes: a 30-year study of Tijuana Estuary. Restor Ecol 16:249–262

    Article  Google Scholar 

Download references

Acknowledgements

Albert Ruhi researched CWs and RWs thanks to a FPU doctoral fellowship grant and a mobility grant from the Spanish Ministry of Education (AP2006-00807), and is currently supported by the US National Science Foundation project “WSC-Category 3: Collaborative Research: Water sustainability under near-term climate change: a cross-regional analysis incorporating socioecological feedbacks and adaptations” (award #1204478). We would like to thank Miquel Campos (Consorci de l’Estany, www.consorcidelestany.org) for pictures and Chris Robinson for assistance with GIS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Ruhí .

Editor information

Editors and Affiliations

Appendix

Appendix

Macroinvertebrates reported from five constructed wetlands for wastewater treatment in Ireland (WW; Becerra-Jurado et al. 2009, 2014), in a created wetland for stormwater treatment in Sweden (SW; Ruhí et al. 2011, 2012a), and in three created wetlands for biodiversity enhancement in Catalonia (B1, B2, B3; Ruhí et al. 2013). Taxonomic hierarchy and names after Fauna Europaea (http://www.faunaeur.org)

Phylum

Class

Order

Family

Taxa

WW

SW

B1

B2

B3

Cnidaria

Leptolida

Capitata

Hydridae

Hydra

   

+

 

Annelida

Oligochaeta

Oligochaeta indet.

+

+

   
  

Lumbriculida

Lumbriculidae

Lumbriculidae indet.

   

+

 
  

Tubificida

Enchytraeidae

Enchytraeidae indet.

   

+

+

   

Naididae

Naididae indet.

  

+

  
   

Tubificidae

Tubificidae indet.

  

+

+

+

 

Hirudinea

Arhynchobdellida

Erpobdellidae

Dina

 

+

   
    

Erpobdella

+

+

   
   

Haemopidae

Haemopis

+

    
  

Rhynchobdellida

Glossiphoniidae

Helobdella

+

+

   
    

Hemiclepsis

 

+

   
    

Theromyzon

 

+

   

Platyhelminthes

Turbellaria

Tricladida

Dendrocoelidae

Dendrocoelum

 

+

   
   

Dugesiidae

Dugesia

+

+

   

Mollusca

Gastropoda

Neotaenioglossa

Hydrobiidae

Potamopyrgus

+

    
  

Pulmonata

Gastrodontidae

Zonitoides

+

    
   

Lymnaeidae

Galba

 

+

   
    

Lymnaea

+

    
    

Radix

+

+

   
   

Physidae

Aplexa

+

    
    

Haitia

+

 

+

+

 
    

Physa

 

+

   
   

Planorbidae

Ferrissia

   

+

 
    

Gyraulus

 

+

   
    

Planorbis

+

+

   
 

Bivalvia

Veneroidea

Sphaeriidae

Pisidium

+

+

 

+

 

Arthropoda

Malacostraca

Amphipoda

Gammaridae

Gammarus

+

    
  

Isopoda

Asellidae

Asellus

+

+

   
    

Proasellus

  

+

  
  

Decapoda

Atyidae

Atyaephyra

   

+

 
   

Cambaridae

Procambarus

  

+

+

 
 

Arachnida

Prostigmata

Hydrachnidia indet.

 

+

   
   

Arrenuridae

Arrenurus

   

+

+

   

Hydrachnidae

Hydrachna

   

+

+

   

Hydrodromidae

Hydrodroma

  

+

+

+

   

Hydryphantidae

Hydryphantes

   

+

 
   

Pionidae

Piona

   

+

 
 

Insecta

Ephemeroptera

Baetidae

Cloeon

+

+

+

+

+

    

Centroptilum

 

+

   
   

Caenidae

Caenis

 

+

+

+

+

   

Ephemeridae

Ephemera

   

+

 
   

Leptophlebiidae

Leptophlebia

 

+

   
  

Odonata

Aeshnidae

Aeshnidae indet.

+

    
    

Aeshna

  

+

+

+

    

Anax

  

+

+

+

    

Boyeria

    

+

    

Brachytron

 

+

   
   

Coenagrionidae

Coenagrionidae indet.

+

    
    

Coenagrion

 

+

  

+

    

Ischnura

 

+

+

+

+

   

Lestidae

Lestes

 

+

 

+

 
   

Libellulidae

Libellulidae indet.

     
    

Leucorrhinia

 

+

   
    

Libellula

 

+

  

+

    

Orthetrum

 

+

 

+

+

    

Sympetrum

 

+

+

+

+

  

Heteroptera

Corixidae

Callicorixa

+

+

   
    

Corixa

+

+

 

+

+

    

Cymatia

   

+

 
    

Hesperocorixa

 

+

   
    

Micronecta

  

+

+

 
    

Paracorixa

 

+

+

+

 
    

Sigara

 

+

+

+

+

   

Gerridae

Aquarius

  

+

+

+

    

Gerris

+

+

+

+

+

   

Hydrometridae

Hydrometra

+

   

+

   

Nepidae

Nepa

+

    
    

Ranatra

 

+

  

+

   

Notonectidae

Anisops

  

+

+

+

    

Notonecta

 

+

+

 

+

   

Pleidae

Plea

+

  

+

 
   

Veliidae

Microvelia

  

+

+

 
    

Velia

 

+

   
  

Coleoptera

Curculionidae

Nanophyes

+

    
    

Tanysphyrus

+

    
   

Dryopidae

Dryops

+

    
   

Dytiscidae

Acilius

+

    
    

Agabus

+

+

 

+

+

    

Colymbetes

+

+

   
    

Copelatus

+

    
    

Dytiscus

+

+

   
    

Eretes

  

+

+

+

    

Graptodytes

+

    
    

Hydaticus

+

    
    

Hydroglyphus

  

+

+

+

    

Hydroporus

+

+

   
    

Hygrotus

+

+

  

+

    

Hyphydrus

+

+

   
    

Ilybius

+

+

   
    

Laccophilus

+

+

 

+

+

    

Nebrioporus

 

+

   
    

Porhydrus

+

+

   
    

Rhantus

+

+

+

 

+

    

Scarodytes

 

+

   
    

Stictonectes

+

    
    

Yola

    

+

   

Elmidae

Elmis

+

    
    

Esolus

+

    
   

Gyrinidae

Gyrinus

+

+

+

+

 
   

Haliplidae

Haliplus

+

+

   
   

Helophoridae

Helophorus

+

 

+

+

+

   

Hydraenidae

Aulacochthebius

    

+

    

Hydraena

+

+

   
    

Limnebius

+

    
    

Ochthebius

+

 

+

+

+

   

Hydrophilidae

Anacaena

+

    
    

Berosus

 

+

  

+

    

Cercyon

+

    
    

Coelostoma

+

    
    

Cymbiodita

+

    
    

Enochrus

+

+

+

+

 
    

Helochares

  

+

+

+

    

Hydrobius

+

    
    

Laccobius

+

    
    

Limnoxenus

    

+

   

Hygrobiidae

Hygrobia

+

    
   

Noteridae

Noterus

+

+

 

+

 
   

Scirtidae

Contacyphon

+

    
  

Megaloptera

Sialidae

Sialis

 

+

   
  

Trichoptera

Ecnomidae

Ecnomus

   

+

 
   

Hydropsychidae

Hydropsyche

+

    
   

Leptoceridae

Oecetis

 

+

   
    

Trianodes

 

+

   
   

Limnephilidae

Glyphotaelius

 

+

   
    

Grammotaulius

 

+

   
    

Limnephilus

+

+

   
    

Nemotaulius

 

+

   
   

Phryganeidae

Agrypnia

 

+

   
    

Phryganea

 

+

   
   

Polycentropodidae

Holocentropus

+

+

   
  

Diptera

Ceratopogonidae

Ceratopogonidae indet.

 

+

   
    

Bezzia

  

+

+

+

    

Culicoides

  

+

+

+

   

Chaoboridae

Chaoboridae indet.

 

+

   
    

Chaoborus

+

  

+

+

   

Chironomidae

Chironomidae indet.

+

+

   
    

Ablabesmyia

  

+

+

 
    

Chironomus/Einfeldia

   

+

 
    

Cladopelma

   

+

 
    

Cladotanytarsus

  

+

+

 
    

Corynoneura

   

+

 
    

Cricotopus

  

+

+

+

    

Cryptochironomus

   

+

 
    

Endochironomus

   

+

 
    

Kiefferulus

  

+

+

+

    

Labrundinia

   

+

 
    

Meropelopia

   

+

 
    

Microchironomus

   

+

 
    

Parachironomus

   

+

 
    

Paramerina

   

+

 
    

Paratanytarsus

  

+

+

+

    

Polypedilum

  

+

+

+

    

Procladius

  

+

+

+

    

Psectrocladius

  

+

+

+

    

Tanytarsus

  

+

+

 
   

Culicidae

Culicidae indet.

+

+

   
    

Aedes

  

+

  
    

Anopheles

  

+

+

+

    

Culex

  

+

+

 
   

Dixidae

Dixidae indet.

+

+

   
   

Dolichopodidae

Dolichopodidae indet.

 

+

   
   

Empididae

Empididae indet.

 

+

   
   

Ephydridae

Ephydridae indet.

 

+

   
    

Scatella

  

+

+

 
   

Limoniidae

Limoniidae indet.

+

+

 

+

 
   

Psychodidae

Psychodidae indet.

+

    
   

Ptychopteridae

Ptychopteridae indet.

 

+

   
   

Stratiomyidae

Stratiomyidae indet.

 

+

   
    

Stratiomys

    

+

   

Syrphidae

Syrphidae indet.

 

+

 

+

 
   

Tabanidae

Tabanidae indet.

 

+

   
   

Tipulidae

Tipulidae indet.

 

+

   

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ruhí, A., Fairchild, G.W., Spieles, D.J., Becerra-Jurado, G., Moreno-Mateos, D. (2016). Invertebrates in Created and Restored Wetlands. In: Batzer, D., Boix, D. (eds) Invertebrates in Freshwater Wetlands. Springer, Cham. https://doi.org/10.1007/978-3-319-24978-0_15

Download citation

Publish with us

Policies and ethics