Skip to main content

Phospholemman: A Brief Overview

  • Chapter
  • First Online:
Regulation of Membrane Na+-K+ ATPase

Abstract

Na+/K+-ATPase (NKA) plays the key role in maintaining Na+ and K+ gradients in cells, which is essential for regulation of cell volume and membrane potential. PLM (aka FXYD1) interacts with NKA and Na+/Ca2+ exchanger (NCX) and modulates their activities in tissue specific and physiological state specific manner. Protein kinase A (PKA) and protein kinase C (PKC) targets different pools of PLM associated with NKA and NCX, thereby regulating their activities. Additionally, some signal transducers such as phosphatases, phosphodiesterases and nitric oxide play important roles in modulating functions of PLM, especially under phosphorylated conditions, toward the activities of NKA and NCX. Understanding the above phenomenon is of significance in developing novel therapeutics for recovery of patients suffering from a variety of pathophysiological conditions, especially cardiovascular and neural diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Presti CF, Jones LR, Lindermann JP (1985) Isoproterenol-induced phosphorylation of a 15kDa sarcolemmal protein in intact myocardium. J Biol Chem 260:3860–3867

    CAS  PubMed  Google Scholar 

  2. Chen LS, Lo CF, Numann R et al (1997) Characterization of the human and rat phospholemman (PLM) cDNAs and localization of the human PLM gene to chromosome 19q13.1. Genomics 41:435–443

    Article  CAS  PubMed  Google Scholar 

  3. Bell JR, Lloyd DL, Curl CL et al (2009) Cell volume control in phospholemman (PLM) knockout mice: do cardiac myocytes demonstrate a regulatory volume decrease and is this influenced by deletion of PLM. Exp Physiol 94:330–343

    Article  CAS  PubMed  Google Scholar 

  4. Cheung JY, Wang JF, Zhang XQ et al (2010) Phospholemman: a novel cardiac stress protein. Clin Transl Sci 3:189–196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Mulia MM, Morales HP, Moran J (2000) Volume sensitive efflux in taurine in HEK293 cells overexpressing phospholemman. Biochim Biophys Acta 1496:52–260

    Article  Google Scholar 

  6. Davis CE, Patel MK, Miller JR et al (2004) Effects of phospholemman expression on swelling activated ion currents and volume regulation in embryonic kidney cells. Neurochem Res 29:177–187

    Article  CAS  PubMed  Google Scholar 

  7. Sweadner KJ, Rael E (2000) The FXYD gene family of small ion transport regulators or channels: cDNA sequence, protein signature sequence, and expression. Genomics 68:41–56

    Article  CAS  PubMed  Google Scholar 

  8. Crambert G, Geering K (2003) FXYD proteins: new tissue specific regulators of the ubiquitous Na/K-ATPase. Sci STKE 166:RE1

    Google Scholar 

  9. Cornelius F, Mahmmoud YA (2003) Functional modulation of the sodium pump: the regulatory proteins “Fixit”. News Physiol Sci 18:119–124

    CAS  PubMed  Google Scholar 

  10. Garty H, Karlish SJ (2006) Role of FXYD proteins in ion transport. Annu Rev Physiol 68:431–459

    Google Scholar 

  11. Teriete P, Franzin CM, Choi J et al (2007) Structure of the Na+/K+-ATPase regulatory protein FXYD in micelles. Biochemistry 46:6774–6783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Jia LG, Donnet C, Bogaev RC et al (2005) Hypertrophy increased ejection fraction and reduced Na+/K+-ATPase activity in phospholemman deficient mice. Am J Physiol 288:H1982–H1988

    CAS  Google Scholar 

  13. Bell JR, Kennington E, Fuller W (2008) Characterization of the phospholemman knockout mouse heart: depressed left ventricular function with increased Na-K-ATPase activity. Am J Physiol 294:H613–H621

    CAS  Google Scholar 

  14. Despa J, Han F, Ginsberg LS et al (2005) Phospholemman phosphorylation mediates the beta adrenergic effects on Na/K pump function in cardiac myocytes. Circ Res 97:252–259

    Article  CAS  PubMed  Google Scholar 

  15. Wang X, Gao G, Gao K et al (2010) Phospholemman modulates the gating of cardiac L-type calcium channels. Biophys J 98:1149–1159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Lansbery KL, Burcea LC, Mendenhall ML et al (2006) Cytoplasmic targeting signals mediate delivery of phospholemman to the plasma membrane. Am J Physiol 290:C1275–C1286

    Google Scholar 

  17. Yang JH, Saucerman JJ (2012) Phospholemman is a negative feed forward regulator of Ca2+ in β-adrenergic signalling, accelerating β-adrenergic inotropy. J Mol Cell Cardiol 52:1048–1053

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Palmer CJ, Scott BT, Jones LR (1991) Purification and complete sequence determination of the major plasma membrane substrate for cAMP dependent protein kinase and protein kinase C in myocardium. J Biol Chem 266:11126–11130

    CAS  PubMed  Google Scholar 

  19. Walaas SI, Czernik AJ, Olstad OK et al (1994) Protein kinase C and cyclic AMP-dependent protein kinase phosphorylate phospholemman, an insulin and adrenaline-regulated membrane phosphoprotein, at specific sites in the carboxy terminal domain. Biochem J 304:635–640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Fuller W, Eaton P, Bell JR et al (2004) Ischemia-induced phosphorylation of phospholemman directly activates rat cardiac Na+/K+-ATPase. FASEB J 18:197–199

    CAS  PubMed  Google Scholar 

  21. Mason RMG, Shah AM (1998) Cardiac dysfunction in sepsis: new theories and clinical implications. Intensive Care Med 24:286–295

    Article  Google Scholar 

  22. Bibert S, Roy S, Schaer D et al (2008) Phosphorylation of phospholemman (FXYD1) by protein kinase A and protein kinase C modulates distinct Na+/K+-ATPase isozymes. J Biol Chem 283:476–486

    Article  CAS  PubMed  Google Scholar 

  23. Dey K, Roy S, Ghosh B et al (2012) Role of protein kinase C in phospholemman-mediated regulation of α2β1 isozyme of Na/K-ATPase in caveolae of pulmonary artery smooth muscle cells. Biochimie 94:991–1000

    Google Scholar 

  24. McDonough A, Zhang Y, Shin V et al (1996) Subcellular distribution of Na pump isoform subunits in mammalian cardiac myocytes. Am J Physiol 270:C1221–C1227

    CAS  PubMed  Google Scholar 

  25. James PF, Grupp IL, Grupp G et al (1999) Identification of a specific role for the Na+, K+-ATPase alpha 2 isoform as a regulator of calcium in the heart. Mol Cell 3:555–563

    Article  CAS  PubMed  Google Scholar 

  26. Despa S, Bers DM (2007) Functional analysis of Na+/K+-ATPase isoform distribution in rat ventricular myocytes. Am J Physiol Cell Physiol 293:C321–C327

    Article  CAS  PubMed  Google Scholar 

  27. Zhang XQ, Wang JF, Carl LL et al (2009) Phospholemman regulates cardiac Na+/Ca2+ exchanger by interacting with the exchanger’s proximal linker domain. Am J Physiol 296:C911–C921

    Article  CAS  Google Scholar 

  28. Nicoll DA, Ottolia M, Lu L (1999) A new topological model of the cardiac sarcolemmal Na+/Ca2+ exchanger. J Biol Chem 274:910–917

    Article  CAS  PubMed  Google Scholar 

  29. Phillipson KD, Nicoll DA (2000) Sodium-calcium exchange: a molecular perspective. Annu Rev Physiol 62:111–133

    Article  Google Scholar 

  30. Iwamoto T, Uehara A, Imanaga I et al (2000) The Na+/Ca2+ exchanger NCX1 has oppositely oriented re-entrant loop domains that contain conserved aspartic acids whose mutation alters its apparent Ca affinity. J Biol Chem 275:38571–38580

    Article  CAS  PubMed  Google Scholar 

  31. Paviovic D, Fuller W, Shattock MJ (2007) The intracellular region of FXYD1 is sufficient to regulate cardiac Na/K-ATPase. FASEB J 21:1531–1546

    Google Scholar 

  32. Wang J, Zhang XQ, Ahlers BA (2006) Cytoplasmic tail of phospholemman interacts with the intracellular loop of the cardiac Na+/Ca2+ exchanger. J Biol Chem 281:32004–32014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Ahlers BA, Zhang XQ, Moorman JR et al (2005) Identification of an endogenous inhibitor of the cardiac Na+/Ca2+ exchanger, phospholemman. J Biol Chem 280:19875–19882

    Article  CAS  PubMed  Google Scholar 

  34. Zhang XQ, Ahlers BA, Tucker AL (2006) Phospholemman inhibition of the cardiac Na+/Ca2+ exchanger. Role of phosphorylation. J Biol Chem 281:7784–7792

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Silverman BZ, Fuller W, Eaton P et al (2005) Serine 68 phosphorylation of phospholemman: acute isoform specific activation of cardiac Na+/K+-ATPase. Cardiovasc Res 65:93–103

    Article  CAS  PubMed  Google Scholar 

  36. Wypijewski KJ, Howie J, Reilly L et al (2013) A separate pool of cardiac phospholemman that does not regulate or associate with the sodium pump. Multimers of phospholemman in ventricular muscle. J Biol Chem 288:13808–13820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Zhang XQ, Qureshi A, Song J et al (2003) Phospholemman modulates Na+/Ca2+ exchange in adult rat cardiac myocytes. Am J Physiol 284:H225–H233

    CAS  Google Scholar 

  38. Fuller W, Howie J, McLatchie LM et al (2009) FXYD1 phosphorylation in vitro in adult rat cardiac myocytes: Threonine 69 is a novel substrate for protein kinase C. Am J Physiol 296:C1346–C1355

    Article  CAS  Google Scholar 

  39. Cheung JY, Rothblum LI, Moorman JR et al (2007) Regulation of cardiac Na+/Ca2+ exchanger by phospholemman. Ann N Y Acad Sci 1099:119–134

    Article  CAS  PubMed  Google Scholar 

  40. El-Armouche A, Wittkopper K, Fuller W et al (2011) Phospholemman dependent regulation of the cardiac Na+/K+ATPase activity is modulated by inhibitor-1 sensitive type 1 phosphatase. FASEB J 25:4467–4475

    Article  CAS  PubMed  Google Scholar 

  41. Boguslavsky A, Pavlovic D, Aughton K et al (2014) Cardiac hypertrophy in mice expressing unphosphorylated phospholemman. Cardiovasc Res 104:72–82

    Article  Google Scholar 

  42. Oliver CJ, Shenolikar S (1998) Physiologic importance of protein phosphatase inhibitor. Front Biosci 3:D961–D972

    Google Scholar 

  43. Carr AN, Schmidt AJ, Suzuki Y et al (2002) Type 1 phosphatase, a negative regulator of cardiac function. Mol Cell Biol 22:4124–4135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Nicolaon P, Hajjar RJ, Kranias EG (2009) Role of protein phosphastase-1 inhibitor-1 in cardiac physiology and pathophysiology. J Mol Cell Cardiol 47:365–378

    Article  Google Scholar 

  45. Das A, Xi L, Kukreja RC (2008) Protein kinase G dependent cardioprotective mechanism of phosphodiesterase V inhibitor involves phosphorylation of ERK and GSK3. J Biol Chem 283:29572–29585

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Madhani M, Hall AR, Cuello F et al (2010) Phospholemman Ser69 phosphorylation contributes to sildenafil-induced cardioprotection against reperfusion injury. Am J Physiol 299:H827–H836

    CAS  Google Scholar 

  47. Su J, Scholz PM, Weiss HR (2005) Differential effects of cGMP produced by soluble and particulate guanylate cyclise on mouse ventricular myocytes. Exp Biol Med 230:242–250

    CAS  Google Scholar 

  48. Pavlovic D, Hal AR, Kennington EJ et al (2013) Nitric oxide regulates cardiac intracellular Na+ and Ca2+ by modulating Na/K-ATPase via PKCε and phospholemman-dependent mechanism. J Mol Cell Cardiol 61:164–171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. William M, Vien J, Hamilton E et al (2005) The nitric oxide donor sodium nitroprusside stimulates the Na/K pump in isolated rabbit cardiac myocytes. J Physiol 565:815–825

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Villa-Petroff MG, Younes A, Egan J et al (1999) Activation of distinct cAMP dependent and cGMP independent pathways by nitric oxide in cardiac myocytes. Circ Res 84:1020–1031

    Article  Google Scholar 

  51. Ellis DZ, Nathanson JA, Sweadner KJ (2000) Carbachol inhibits Na+/K+-ATPase activity in choroid plexus via stimulation of NO/cGMP pathway. Am J Physiol 279:C1685–C1693

    CAS  Google Scholar 

  52. Dey K, Rahaman SM, Chakraborti T et al (2013) Role of phospholemman and the 70kDa inhibitor protein in regulating Na+/K+-ATPase activity in pulmonary artery smooth muscle cells under U46619 stimulation. FEBS Lett 587:3535–3540

    Article  CAS  PubMed  Google Scholar 

  53. Bossuyt J, Despa S, Han F et al (2009) Isoform specificity of the Na+/K+-ATPase association and regulation by phospholemman. J Biol Chem 284:26749–26757

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Pavlovic D, Fuller W, Shattock MJ (2007) The intracellular region of FXYD1 is sufficient to regulate cardiac Na+/K+-ATPase. FASEB J 21:1539–1546

    Article  CAS  PubMed  Google Scholar 

  55. Despa S, Tucker AL, Bers DM (2008) Phospholemman-mediated activation of Na+/K+-ATPase limits [Na+]i and inotropic state during β-adrenergic stimulation in mouse ventricular myocytes. Circulation 117:1849–1855

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Wang H, Haas M, Liang M et al (2004) Ouabain assembles signalling cascades through the caveolar Na+/K+-ATPase. J Biol Chem 279:17250–17259

    Article  CAS  PubMed  Google Scholar 

  57. Linder ME, Deschenes RJ (2007) Palmitoylation: policing protein stability and traffic. Nat Rev Mol Cell Biol 8:74–84

    Article  CAS  PubMed  Google Scholar 

  58. Tulloch LB, Howie J, Wypijewski KJ et al (2011) The inhibitory effect of phospholemman on the sodium pump requires its palmitoylation. J Biol Chem 286:36020–36031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Ren J, Wen L, Gao X et al (2012) CSS-Palm 2.0: an updated software for palmitoylation sites prediction. Protein Eng Des Sel 21:639–644

    Article  Google Scholar 

  60. Khafaga M, Bossuyt J, Mamikonian L et al (2012) Na/K-ATPase E960 and phospholemman F28 are critical for their functional interaction. Proc Natl Acad Sci U S A 109:20756–20761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Bibert S, Liu CC, Figtree GA et al (2011) FXYD proteins reverse inhibition of Na+/K+ pump mediated by glutathionylation of its β-subunit. J Biol Chem 286:18562–18572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Chang JT, Lowery LA, Sive H (2012) Multiple roles for the Na+/K+-ATPase subunits, ATPα1 and Fxyd1, during brain ventricle development. Dev Biol 368:312–322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Feschenko MS, Donnet C, Wentzel RK et al (2003) Phospholemman, a single span membrane protein is an accessory protein of Na/K-ATPase in cerebellum and choroid plexus. J Neurosci 23:2161–2169

    CAS  PubMed  Google Scholar 

  64. Ng YC, Nagrajan M, Jew KN, Mace LC et al (2003) Exercise training differentially modifies age-associated alteration in expression of Na/K-ATPase subunit isoforms in rat skeletal muscles. Am J Physiol 285:R733–R740

    CAS  Google Scholar 

  65. Reis J, Zhang L, Cala S et al (2005) Expression of phospholemman and its association with Na+/K+-ATPase in skeletal muscle: Effects of ageing and exercise training. J Appl Physiol 99:1508–1515

    Article  CAS  PubMed  Google Scholar 

  66. Benziane B, Widegren U, Pirkmajor S et al (2011) Effect of exercise and training on phospholemman in human skeletal muscle. Am J Physiol 301:E456–E466

    CAS  Google Scholar 

  67. Macnight ADC, Leaf A (1997) Regulation of cell volume. Physiol Rev 57:510–573

    Google Scholar 

  68. Zhang XQ, Moorman JR, Ahlers BA et al (2006) Phospholemman overexpression inhibits Na+/K+-ATPase in adult rat cardiac myocytes: relevance to decreased Na+ pump activity in post infarction myocytes. J Appl Physiol 100:212–220

    Article  CAS  PubMed  Google Scholar 

  69. Wetzel RL, Sweadner KJ (2003) Phospholemman expression in extraglomerular mesangium and afferent arteriole of the juxtaglomerular apparatus. Am J Physiol 285:F121–F129

    CAS  Google Scholar 

  70. Juel C (2009) Na+/K+-ATPase in rat skeletal muscle: muscle fibre specific differences in exercise induced changes in ion affinity and maximal activity. Am J Physiol 296:L125–L132

    Google Scholar 

  71. Thomassen M, Murphy RM, Bangsbo J (2013) Fibre type-specific change in FXYD1 phosphorylation during acute intense exercise in human. J Physiol 59:1523–1533

    Article  Google Scholar 

  72. Bossuyt J, Ai X, Moorman JR et al (2005) Expression and phosphorylation of the Na+ pump regulatory subunit phospholemman in heart failure. Circ Res 97:558–565

    Article  CAS  PubMed  Google Scholar 

  73. Watts AG, Watts GS, Emanuel JR et al (1991) Cell specific expression of mRNAs encoded Na+/K+-ATPase α and β subunits isoforms within the rat central nervous system. Proc Natl Acad Sci U S A 88:7425–7429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Fuller W, Tulloch LB, Shattock MJ et al (2013) Regulation of the cardiac sodium pump. Cell Mol Life Sci 70:1357–1380

    Article  CAS  PubMed  Google Scholar 

  75. Shattock MJ (2009) Phospholemman: its role in normal cardiac physiology and potential as a druggable target in diseases. Curr Opin Pharmacol 9:160–166

    Article  CAS  PubMed  Google Scholar 

  76. Cheung JY, Zhang XQ, Song J et al (2013) In: Annunziato L (ed) Coordinated regulation of cardiac Na+/Ca2+ exchanger and Na+/K+-ATPase by phospholemman (FXYD1). Sodium calcium exchange: a growing spectrum of pathological implications, vol 961, Advances in experimental medicine and biology. Springer Science+ Business Media, New York

    Google Scholar 

  77. Pavlovic D, Fuller W, Shattock MJ (2013) Novel regulation of cardiac Na+ pump via phospholemman. J Mol Cell Cardiol 61:83–93

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Financial assistance from the Council of Scientific and Industrial Research (CSIR), Govt. of India and the DST-PURSE programme of the University of Kalyani (West Bengal, India) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajal Chakraborti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chakraborti, S., Dey, K., Alam, M.N., Mandal, A., Sarkar, J., Chakraborti, T. (2016). Phospholemman: A Brief Overview. In: Chakraborti, S., Dhalla, N. (eds) Regulation of Membrane Na+-K+ ATPase. Advances in Biochemistry in Health and Disease, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-24750-2_14

Download citation

Publish with us

Policies and ethics