Skip to main content
Log in

Cardiac dysfunction in sepsis: new theories and clinical implications

  • Review
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Parrillo JE (1993) Pathogenetic mechanisms of septic shock. N Engl J Med 28:1471–1477

    Article  Google Scholar 

  2. Bone RC (1996) Toward a theory regarding the pathogenesis of the systemic inflammatory response syndrome: what we do and do not know about cytokine regulation. Crit Care Med 24:163–172

    Article  PubMed  CAS  Google Scholar 

  3. Parker MM, Shelhamer JH, Bacharach SL, Green MV, Natanson C, Frederick TM, Damske BA, Parrillo JE (1984) Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 100: 483–490

    PubMed  CAS  Google Scholar 

  4. Ellrodt AG, Riedinger MS, Kimchi A, Berman DS, Maddahi J, Swan HJC, Murata GH (1985) Left ventricular performance in septic shock: reversible segmental and global abnormalities. Am Heart J 110: 402–409

    Article  PubMed  CAS  Google Scholar 

  5. Ognibene FP, Parker MM, Natanson C, Shelhamer JH, Parrillo JE (1988) Depressed left ventricular performance; response to volume infusion in patients with sepsis and septic shock. Chest 93: 903–910

    Article  PubMed  CAS  Google Scholar 

  6. Natanson C, Danner RL, Fink MP, MacVittie TJ, Walker RI, Conklin JJ, Parrillo JE (1988) Cardiovascular performance with Escherichia coli challenges in a canine model of human sepsis. Am J Physiol 254: H558-H569

    PubMed  CAS  Google Scholar 

  7. Parker MM, Suffredini AF, Natanson C, Ognibene FP, Shelhamer JH, Parrillo JE (1989) Responses of left ventricular function in survivors and nonsurvivors of septic shock. J Crit Care 4:19–25

    Article  Google Scholar 

  8. Parker MM, McCarthy KE, Ognibene FP, Parrillo JE (1990) Right ventricular dysfunction of dilatation, similar to left ventricular changes, characterize the cardiac depression of septic shock in humans. Chest 97:126–131

    Article  PubMed  CAS  Google Scholar 

  9. Poelaert J, Declerck C, Vogelaers D, Colardyn F, Visser CA (1997) Left ventricular systolic and diastolic function in septic shock. Intensive Care Med 23: 553–560

    Article  PubMed  CAS  Google Scholar 

  10. Cunnion RE, Schaer GL, Parker MM, Natanson C, Parrillo JE (1986) The coronary circulation in human septic shock. Circulation 73: 637–644

    PubMed  CAS  Google Scholar 

  11. Dhainaut J-F, Huyghebaert M-F, Monsallier JF, Lefevre G, Dall’Ava-Santucci J, Brunet F, Villemont D, Carli A, Raichvarg D (1987) Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock. Circulation 75: 533–541

    PubMed  CAS  Google Scholar 

  12. Van Lambalgen AA, van Kraats AA, Mulder MF, Teerlink T, van den Bos GC (1994) High energy phosphates in heart, liver, and skeletal muscle of endotoxemic rats. Am J Physiol 266: H1581-H1587

    PubMed  Google Scholar 

  13. Hinshaw LB (1996) Sepsis/septic shock: participation of the microcirculation: an abbreviated review. Crit Care Med 24: 1072–1078

    Article  PubMed  CAS  Google Scholar 

  14. Goddard CM, Allard MF, Hogg JC, Walley KR (1996) Myocardial morphometric changes related to decreased contractility after endotoxin. Am J Physiol 270: H1446-H1452

    PubMed  CAS  Google Scholar 

  15. Shah AM, Grocott-Mason RM, Pepper CB, Mebazaa A, Henderson AH, Lewis MJ, Paulus WJ (1996) The cardiac endothelium: cardioactive mediators. Prog Cardiovasc Dis 39: 263–284

    Article  PubMed  CAS  Google Scholar 

  16. Lefer A, Rovetto M (1970) Influence of a myocardial depressant factor on physiologic properties of cardiac muscle. Proc Soc Exp Biol 134: 269–273

    CAS  Google Scholar 

  17. Carli A, Auclair MC, Benassayag C, Nunez E (1981) Evidence for an early lipid soluble cardiodepressant factor in rat serum after a sublethal dose of endotoxin. Circ Shock 8: 301–312

    PubMed  CAS  Google Scholar 

  18. Parrillo JE, Burch C, Shelhamer JH, Parker MM, Natanson C, Schuette W (1985) A circulating myocardial depressant substance in humans with septic shock. J Clin Invest 76:1539–1553

    Article  PubMed  CAS  Google Scholar 

  19. Kumar A, Thota V, Dee L, Olson J, Uretz E, Parrillo JE (1996) Tumour necrosis factor alpha and interleukin 1 beta are responsible for in vitro myocardial cell depression induced by human septic shock serum. J Exp Med 183: 949–958

    Article  PubMed  CAS  Google Scholar 

  20. Suffredini AF, Fromm RE, Parker MM, Brenner M, Kovacs JA, Wesley RA, Parrillo JE (1989) The cardiovascular response of normal humans to the administration of endotoxin. N Engl J Med 321: 280–287

    PubMed  CAS  Google Scholar 

  21. Danner RL, Elin RJ, Hoseini JM, Wesley RA, Reilly JM, Parrillo JE (1988) Endotoxemia in human septic shock. Chest 99:169–175

    Article  Google Scholar 

  22. Granton JT, Goddard CM, Allard MF, van Eeden S, Walley KR (1997) Leukocytes and decreased left ventricular contractility during endotoxaemia in rabbits. Am J Respir Crit Care Med 155:1977–1983

    PubMed  CAS  Google Scholar 

  23. Muller-Werdan U, Pfeifer A, Hubner G, Seliger C, Reithmann C, Rupp H, Werdan K (1997) Partial inhibition of protein synthesis by Pseudomonas exotoxin A deranges catecholamine sensitivity of cultured rat heart myocytes. J Mol Cell Cardiol 29:799–811

    Article  PubMed  CAS  Google Scholar 

  24. Kwiatkowska-Patzer B, Patzer JA, Heller LJ (1993) Pseudomonas aeruginosa exotoxin A enhances automaticity and potentiates hypoxic depression of isolated rat hearts. Proc Soc Exp Biol Med 202:377–383

    PubMed  CAS  Google Scholar 

  25. Finkel MS, Oddis CV, Jacob TD, Watkins SC, Hattler BG, Simmons RL (1992) Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 257: 387–389

    Article  PubMed  CAS  Google Scholar 

  26. Goldhaber JL, Kim KH, Natterson PD, Lawrence T, Yang P, Weiss JN (1996) Effects of TNF-α on [Ca2+]; and contractility in isolated adult rabbit ventricular myocytes. Am J Physiol 271: H1449-H1455

    PubMed  CAS  Google Scholar 

  27. Yokoyama T, Vaca L, Rossen RD, Durante W, Hazarika P, Mann DL (1993) Cellular basis for the negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian heart. J Clin Invest 92:2303–2312

    Article  PubMed  CAS  Google Scholar 

  28. Liu S, Schreur KD (1995) G protein-mediated suppression of L-type Ca current by interleukin-1 ß in cultured rat ventricular myocytes. Am J Physiol 268: C339-C349

    PubMed  CAS  Google Scholar 

  29. Tracey KJ, Beutler B, Lowry SF, Merryweather J, Wolpe S, Milsark IW, Hariri RJ, Fahey TJ, Zentella A, Albert JD, Shires T, Cerami A (1986) Shock and tissue injury induced by recombinant human cachectin. Science 234: 470–474

    Article  PubMed  CAS  Google Scholar 

  30. Natanson C, Eichenholz PW, Danner RL, Eichacker PQ, Hoffman WD, Kuo GC, Banks SM, MacVittie TJ, Parrillo JE (1989) Endotoxin and tumor necrosis factor challenges in dogs simulate the cardiovascular profile of human septic shock. J Exp Med 169: 823–832

    Article  PubMed  CAS  Google Scholar 

  31. Tracey KJ, Fong Y, Hesse DG, Manogue KR, Lee AT, Kuo GC, Lowry SF, Cerami A (1987) Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature 330: 662–664

    Article  PubMed  CAS  Google Scholar 

  32. Kapadia S, Lee J, Torre-Amione G, Birdsall HH, Ma TS, Mann DL (1995) Tumor necrosis factor-alpha gene and protein expression in adult feline myocardium after endotoxin administration. J Clin Invest 96:1042–1052

    Article  PubMed  CAS  Google Scholar 

  33. de Werra I, Jaccard C, Corradin SB, Chiolero R, Yersin B, Gallati H, Assicot M, Bohuon C, Baumgartner J-D, Glausser MP, Heumann D (1997) Cytokines, nitrite/nitrate, soluble tumor necrosis factor receptors, and procalcitonin concentrations: comparisons in patients with septic shock, cardiogenic shock and bacterial pneumonia. Crit Care Med 25: 607–613

    Article  PubMed  Google Scholar 

  34. Habib FM, Springall DR, Davies GJ, Oakley CM, Yacoub MH, Polak JM (1996) Tumor necrosis factor and inducible nitric oxide synthase in dilated cardiomyopathy. Lancet 347:1151–1155

    Article  PubMed  CAS  Google Scholar 

  35. Satoh M, Nakumura M, Tamura G, Makita S, Segawa I, Tashiro A, Satodate R, Hiramori K (1997) Inducible nitric oxide synthase and tumor necrosis factor-alpha in myocardium in human dilated cardiomyopathy. J Am Coll Cardiol 29:716–724

    Article  PubMed  CAS  Google Scholar 

  36. Ferrari R, Bachetti T, Confortini R, Opasich C, Febo O, Corti A, Cassani G, Visioli O (1995) Tumor necrosis factor soluble receptors in patients with various degrees of congestive heart failure. Circulation 92:1479–1486

    PubMed  CAS  Google Scholar 

  37. Diez FL, Nieto ML, Fernandez-Gallardo S, Gijon MA, Crespo MS (1989) Occupancy of platelet receptors for platelet-activating factor in patients with septicaemia. J Clin Invest 83:1733–1740

    Article  Google Scholar 

  38. Kenzora JL, Perez JE, Bergmann SR, Lange LG (1984) Effects of acetyl glyceryl ether of phosphorylcholine (platelet activating factor) on ventricular preload, afterload, and contractility in dogs. J Clin Invest 74:1193–1203

    Article  PubMed  CAS  Google Scholar 

  39. Yamanaka S, Iwao H, Yukimura T, Kim S, Miura K (1993) Effect of the platelet-activating factor antagonist, TCV-309, and the cyclo-oxygenase inhibitor, ibuprofen, on the haemodynamic changes in canine experimental endotoxic shock. Br J Pharmacol 110:1501–1507

    PubMed  CAS  Google Scholar 

  40. Herbertson MJ, Werner HA, Walley KR (1997) Platelet-activating factor antagonism improves ventricular contractility in endotoxaemia. Crit Care Med 25:221–226

    Article  PubMed  CAS  Google Scholar 

  41. Liu SF, Newton R, Evans TW, Barnes PJ (1996) Differential regulation of cyclo-oxygenase-1 and cyclo-oxygenase-2 gene expression by lipopolysaccharide treatment in the rat. Clin Sei 90: 301–306

    CAS  Google Scholar 

  42. Herbertson MJ, Werner HA, Studer W, Russell JA, Walley KR (1996) Decreased left ventricular contractility during porcine endotoxemia is not prevented by ibuprofen. Crit Care Med 24: 815–819

    Article  PubMed  CAS  Google Scholar 

  43. Bernard GR, Wheeler AP, Ibuprofen in Sepsis Study Group (1997) The effects of ibuprofen on the physiology and survival of patients with sepsis. N Engl J Med 336: 912–918

    Article  PubMed  CAS  Google Scholar 

  44. Shah AM, Mebazaa A, Wetzel RC, Lakatta EG (1994) Novel cardiac myofilament desensitizing factor released by endocardial and vascular endothelial cells. Circulation 89: 2492–2497

    PubMed  CAS  Google Scholar 

  45. Pepper CB, Lang D, Lewis MJ, Shah AM (1995) Endothelial inhibition of myofilament calcium response in intact cardiac myocytes. Am J Physiol 269: H1538-H1544

    PubMed  CAS  Google Scholar 

  46. Shah AM, Mebazaa A, Yang Z-K, Cuda G, Lankford EB, Pepper CB, Sollott SJ, Sellers JR, Robotham JL, Lakatta EG (1997) Inhibition of myocardial cross-bridge cycling by hypoxic endothelial cells. A potential mechanism for matching oxygen supply and demand? Circ Res 80: 688–698

    PubMed  CAS  Google Scholar 

  47. Kelly RA, Balligand J-L, Smith TW (1996) Nitric oxide and cardiac contractile function. Circ Res 79: 363–380

    PubMed  CAS  Google Scholar 

  48. Schulz R, Nava E, Moncada S (1992) Induction and potential biological relevance of a Ca2+-independent nitric oxide synthase in the myocardium. Br J Pharmacol 105: 575–580

    PubMed  CAS  Google Scholar 

  49. Balligand J-L, Ungureanu-Longrois D, Simmons WW, Kobzik L, Lowenstein CJ, Lamas S, Kelly RA, Smith TW, Michel T (1995) Induction of NO synthase in rat cardiac microvascular endothelial cells by IL-1 ß and IFN-γ. Am J Physiol 268: H1293-H1303

    PubMed  CAS  Google Scholar 

  50. Grocott-Mason RM, Anning P, Evans HG, Lewis MJ, Shah AM (1994) Modulation of left ventricular relaxation in isolated ejecting guinea pig heart by endogenous nitric oxide. Am J Physiol 267: H1804-H1813

    PubMed  CAS  Google Scholar 

  51. Paulus WJ, Vantrimpont PJ, Shah AM (1994) Acute effects of nitric oxide on left ventricular relaxation and diastolic distensibility in man. Circulation 89: 2070–2078

    PubMed  CAS  Google Scholar 

  52. Paulus WJ, Vantrimpont PJ, Shah AM (1995) Paracrine coronary endothelial control of left ventricular function in humans. Circulation 92:2119–2126

    PubMed  CAS  Google Scholar 

  53. Balligand J-L, Kobzik L, Han X, Kaye DM, Belhassen L, O’Hara DS, Kelly RA, Smith TW, Michel T (1995) Nitric oxide-dependent parasympathetic signaling is due to activation of constitutive endothelial (type III) nitric oxide synthase in cardiac myocytes. J Biol Chem 270:14582–14586

    Article  PubMed  CAS  Google Scholar 

  54. Bartunek J, Shah AM, Vanderheyden M, Paulus WJ (1997) Dobutamine enhances cardiodepressant effects of receptor-mediated coronary endothelial stimulation. Ciruclation 95: 90–96

    Google Scholar 

  55. Prendergast BD, Sagach VF, Shah AM (1997) Endogenous nitric oxide augments the Frank-Starling response in the isolated heart. Circulation 96: 1320–1329

    PubMed  CAS  Google Scholar 

  56. Finkel MS, Oddis CV, Mayer H, Hattler BG, Simmons RL (1995) Nitric oxide synthase inhibitor alters papillary muscle force-frequency relationship. J Pharmacol Exp Ther 272: 945–952

    PubMed  CAS  Google Scholar 

  57. Han X, Shimoni Y, Giles WR (1994) An obligatory role for nitric oxide in autonomic control of mammalian heart rate. J Physiol 476: 309–314

    PubMed  CAS  Google Scholar 

  58. Musialek P, Lei M, Brown HF, Paterson DJ, Casadei B (1997) Nitric oxide can increase heart rate by stimulating the hyperpolarization-activated inward current, If. Circ Res 81: 60–68

    PubMed  CAS  Google Scholar 

  59. Stamler JS, Singel DJ, Loscalzo J (1992) Biochemistry of nitric oxide and its redox-activated forms. Science 258:1898–1902

    Article  PubMed  CAS  Google Scholar 

  60. Shah AM, Spurgeon H, Sollott SJ, Talo A, Lakatta EG (1994) 8-bromo cyclic GMP reduces the myofilament response to calcium in intact cardiac myocytes. Circ Res 74: 970–978

    PubMed  CAS  Google Scholar 

  61. Lincoln TM, Cornwell TL (1993) Intracellular cyclic GMP receptor proteins. FASEB J 7: 328–338

    PubMed  CAS  Google Scholar 

  62. Brady AJB, Poole-Wilson PA, Harding SE, Warren JB (1992) Nitric oxide within cardiac myocytes reduces their contractility in endotoxemia. Am J Physiol 263: H1963-H1966

    PubMed  CAS  Google Scholar 

  63. Luss H, Watkins SC, Freeswick PD, Imro AK, Nussler AK, Billiau TR, Simmons RL, del Nido PJ, McGowen FX Jr (1995) Characterization of inducible nitric oxide synthase expression in endo-toxemic rat cardiac myocytes in vivo and following cytokine exposure in vitro. J Mol Cell Cardiol 27: 2015–2029

    Article  PubMed  CAS  Google Scholar 

  64. Balligand J-L, Ungureanu D, Kelly RA, Kobzik L, Pimentai D, Michel T, Smith TW (1993) Abnormal contractile function due to induction of nitric oxide synthesis in rat cardiac myocytes follows exposure to activated macro-phage-conditioned medium. J Clin Invest 91:2314–2319

    Article  PubMed  CAS  Google Scholar 

  65. Evans HG, Lewis MJ, Shah AM (1993) Interleukin-1 ß modulates mycardial contraction via dexamethasone-sensitive production of nitric oxide. Cardio-vasc Res 27:1486–1490

    Article  CAS  Google Scholar 

  66. Fishman D, Liaudet L, Lazor R, Perret CH, Feihl F (1997) L-canavanine, an inhibitor of inducible nitric oxide synthase, improves venous return in endotoxemic rats. Crit Care Med 25:469–475

    Article  PubMed  CAS  Google Scholar 

  67. MacMicking JD, Nathan C, Horn G, Chartrain N, Fletcher DS, Trumbauer M, Stevens K, Xie Q, Sokol K, Hutchinson N, Chen H, Mudgett JS (1995) Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 81: 641–650

    Article  PubMed  CAS  Google Scholar 

  68. Keller RS, Jones JJ, Kim KF, Myers PR, Adams HR, Parker JL, Rubin LJ (1995) Endotoxin-induced myocardial dysfunction: is there a role for nitric oxide. Shock 4: 338–344

    Article  PubMed  CAS  Google Scholar 

  69. Klabunde RE, Coston AF (1995) Nitric oxide synthase inhibition does not prevent cardiac depression in endotoxic shock. Shock 3: 73–78

    PubMed  CAS  Google Scholar 

  70. Simmons WW, Ungureanu-Longrois D, Smith GK, Smith TW, Kelly RA (1996) Glucocorticoids regulate inducible nitric oxide synthase (NOS2) by inhibiting tetrahydrobiopterin synthesis and l-arginine transport. J Biol Chem 271: 23928–23937

    Article  PubMed  CAS  Google Scholar 

  71. Nathan C (1995) Natural resistance and nitric oxide. Cell 82: 873–876

    Article  PubMed  CAS  Google Scholar 

  72. Oddis CV, Finkel MS (1995) Cytokine-stimulated nitric oxide production inhibits mitochondrial activity in cardiac myocytes. Biochem Biophys Res Comm 213:1002–1009

    Article  PubMed  CAS  Google Scholar 

  73. Xie YW, Shen W, Zhao G, Xu X, Wolin MS, Hintze T (1996) Role of endothelium-derived nitric oxide in the modulation of canine myocardial mitochondrial respiration in vitro. Circ Res 79: 381–387

    PubMed  CAS  Google Scholar 

  74. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sei USA 87: 1620–1624

    Article  CAS  Google Scholar 

  75. Pinsky DJ, Cai B, Yang X, Rodriguez C, Sciacca RR, Cannon PJ (1995) The lethal effects of cytokine-induced nitric oxide on cardiac myocytes are blocked by nitric oxide synthase antagonism or transforming growth factor ß. J Clin Invest 95: 677–685

    Article  PubMed  CAS  Google Scholar 

  76. Ziegler EJ, Fisher CJ, Sprang CL, HA-1A Sepsis Study Group (1991) Treatment of gram-negative bacteremia and septic shock with HA-1A human monoclonal antibody against endotoxin — a randomized, double-blind, placebo-controlled trial. N Engl J Med 324: 429–436

    PubMed  CAS  Google Scholar 

  77. Greenman RL, Schein RM, Martin MA, XOMA Sepsis Study Group (1991) A controlled clinical trial of E5 murine monocloncal IgM antibody to endotoxin in the treatment of gram-negative sepsis. JAMA 266:1097–1102

    Article  PubMed  CAS  Google Scholar 

  78. Exley AR, Cohen J, Buurman W, Owen R, Hanson G, Lumley J, Aulakh JM, Bodmer M, Riddell A, Stephens S, Perry M (1990) Monoclonal antibody to TNF in severe septic shock. Lancet 353: 1275–1277

    Article  Google Scholar 

  79. Vincent JL, Bakker J, Marcecaux G, Schandene L, Kahn RJ, Dupont E (1992) Administration of anti-TNF antibody improves left ventricular function in septic shock patients. Results of a pilot study. Chest 101: 810–815

    Article  PubMed  CAS  Google Scholar 

  80. Reinhart K, Wiegand-Lohnert C, Grimminger F, Kaul M, Withington S, MAK 195F Sepsis Study Group (1996) Assessment of the safety and efficacy of the monoclonal anti-tumor necrosis factor antibody-fragment, MAK 195F, in patients with sepsis and septic shock: a multicenter, randomised, placebo-controlled, dose ranging study. Crit Care Med 24: 733–742

    Article  PubMed  CAS  Google Scholar 

  81. Cohen J, Carlet J, INTERSEPT Study Group (1996) An international multi-center, placebo-controlled trial of monoclonal antibody to human tumor necrosis factor-α in patients with sepsis. Crit Care Med 24:1431–1440

    Article  PubMed  CAS  Google Scholar 

  82. Dhainaut J-F, Tenaillon A, Le Tulzo Y, BN 52021 Sepsis Study Group (1994) Platelet-activating receptor antagonist BN 52021 in the treatment of severe sepsis: a randomised, double-blind, placebo-controlled, multicenter clinical trial. Crit Care Med 22:1720–1728

    Article  PubMed  CAS  Google Scholar 

  83. Fisher CJ, Agosti JM; Opal SM, Soluble TNF Receptor Sepsis Study Group (1996) Treatment of septic shock with the tumor necrosis factor receptor: Fc fusion protein. N Engl J Med 334: 1697–1702

    Article  PubMed  CAS  Google Scholar 

  84. Bone RC, Fisher CJ, Clemmer TP, Methylprednisolone Severe Sepsis Study Group (1987) A controlled clinical trial of high-dose methylprednisolone in the treatment of severe sepsis and septic shock. N Engl J Med 317: 653–658

    PubMed  CAS  Google Scholar 

  85. Lorente JA, Landis L, de Pablo R, Renes E, Liste D (1993) l-arginine pathway in the sepsis syndrome. Crit Care Med 21:1287–1295

    PubMed  CAS  Google Scholar 

  86. Petros A, Lamb G, Leone A, Moncada S, Bennett D, Vallance P (1994) Effects of a nitric oxide synthase inhibitor in humans with septic shock. Cardiovasc Res 28: 34–39

    Article  PubMed  CAS  Google Scholar 

  87. Preiser J-C, Lejeune P, Roman A, Carrier E, Backer DD, Leeman M, Kahn R, Vincent J-L (1995) Methylene blue administration in septic shock: a clinical trial. Crit Care Med 23: 259–264

    Article  PubMed  CAS  Google Scholar 

  88. Kiehl MG, Ostermann H, Meyer J, Kienast J (1997) Nitric oxide synthase inhibition by L-NAME in leukocytopaenic patients with severe septic shock. Intensive Care Med 23: 561–566

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grocott-Mason, R.M., Shah, A.M. Cardiac dysfunction in sepsis: new theories and clinical implications. Intensive Care Med 24, 286–295 (1998). https://doi.org/10.1007/s001340050570

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s001340050570

Keywords

Navigation