Skip to main content

Dealcoholised Wines and Low-Alcohol Wines

  • Chapter
  • First Online:
Wine Safety, Consumer Preference, and Human Health

Abstract

It is a verifiable fact that in recent years the alcoholic strength of wines has increased significantly, probably due to climate change and also because winemakers are searching full grape maturity. Since high alcohol levels have certain drawbacks, the wine industry has a great interest in developing techniques to reduce the sugar content of the grape juice or the alcohol content in wine. In this regard, several procedures and techniques have been proposed for this purpose. The goals are reducing the alcoholic strength of wines to improve their sensory balance and also obtaining low-alcohol wines and even alcohol-free wines. This text reviews the main strategies and technologies available for reducing the alcoholic strength of wines such as viticultural and microbiological strategies, membrane-based technologies (reverse osmosis, nanofiltration, pervaporation and osmotic distillation), vacuum distillation procedures (spinning cone column) and other procedures (glucose oxidase, supercritical liquid extraction, stripping, freeze concentration and the use of unripe grapes).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguera E, Bes M, Roy A, Camarasa C, Sablayrolles JM. Partial removal of ethanol during fermentation to obtain reduced-alcohol wines. Am J Enol Vitic. 2010;61:53–60.

    CAS  Google Scholar 

  • Andorrà I, Berradre M, Mas A, Esteve-Zarzoso B, Guillamón JM. Effect of mixed culture fermentations on yeast populations and aroma profile. LWT Food Sci Technol. 2012;49:8–13.

    Article  Google Scholar 

  • Anfang N, Brajkovich M, Goddard MR. Co-fermentation with Pichia kluyveri increases varietal thiol concentrations in Sauvignon Blanc. Aust J Grape Wine Res. 2009;15:1–8.

    Article  CAS  Google Scholar 

  • Azzolini BT, Emanuele F, Fabio V, Paola MF. Effects of Torulaspora delbrueckii and Saccharomyces cerevisiae mixed cultures on fermentation and aroma of amarone wine. Eur Food Res Technol. 2012;235:303–13.

    Article  CAS  Google Scholar 

  • Bauer FF, Dequin S, Pretorius IS, Schoeman H, Wolfaardt G, Schroeder MB, Grossmann MK. The assessment of the environmental impact of genetically modified wine yeast strains. Bull OIV. 2004;881–882:514–28.

    Google Scholar 

  • Bauer FF, Rossouw D, Franken J. Finding novel carbon sinks in S. cerevisiae. In: Teissedre PL, editor. Alcohol reduction in wine. Oenoviti International Network. Merignac: Vigne et Vin Publications Internationales; 2013. p. 38–46.

    Google Scholar 

  • Belisario-Sánchez YY, Taboada-Rodríguez A, Marín-Iniesta F, López-Gómez A. Dealcoholized wines by spinning cone column distillation: phenolic compounds and antioxidant activity measured by the 1,1-diphenyl-2-picrylhydrazyl method. J Agric Food Chem. 2009;57:6770–8.

    Article  Google Scholar 

  • Beltran G, Torija MJ, Novo M, Ferrer N, Poblet M, Guillamón JM, Rozes N, Mas A. Analysis of yeast populations during alcoholic fermentation: a six year follow-up study. Syst Appl Microbiol. 2002;25:287–93.

    Article  CAS  Google Scholar 

  • Bely M, Stoeckle P, Masneuf-Pomarède I, Dubourdieu D. Impact of mixed Torulaspora delbrueckiiSaccharomyces cerevisiae culture on high-sugar fermentation. Int J Food Microbiol. 2008;122:312–20.

    Article  CAS  Google Scholar 

  • Bely M, Renault P, da Silva T, Masneuf-Pomarède I, Albertin W, Moine V, Coulon J, Sicard D, de Vienne D, Marullo P. Non-conventional yeasts and alcohol levels reduction. In: Teissedre PL, editor. Alcohol reduction in wine. Oenoviti International Network. Merignac: Vigne et Vin Publications Internationales; 2013. p. 33–7.

    Google Scholar 

  • Bes M, Aguera E, Athes V, Cadiere A, Cottereau P, Dequin S, Mikolajczak M, Roy A, Sablayrolles JM, Souchon I, Samson A, Escudier JL. Les différentes stratégies microbiologiques et technologiques de production de vin à teneur réduite en alcool. Rev Oenol. 2010;135:9–11.

    Google Scholar 

  • Bisson LF. Stuck and sluggish fermentations. Am J Enol Vitic. 1999;50:107–19.

    CAS  Google Scholar 

  • Bisson LF, Butzke CE. Diagnosis and rectification of stuck and sluggish fermentations. Am J Enol Vitic. 2000;51:168–77.

    CAS  Google Scholar 

  • Brüschke HEA. Removal of ethanol from aqueous streams by pervaporation. Desalination. 1990;77:323–30.

    Article  Google Scholar 

  • Cadière A, Aguera E, Caillé S, Ortiz-Julien A, Dequin S. Pilot-scale evaluation the enological traits of a novel, aromatic wine yeast strain obtained by adaptive evolution. Food Microbiol. 2012;32:332–7.

    Article  Google Scholar 

  • Canals R, Llaudy MC, Canals JM, Zamora F. Influence of the elimination and addition of seeds on the color, phenolic composition and astringency of red wine. Eur Food Res Technol. 2008;226:1183–90.

    Article  CAS  Google Scholar 

  • Capucho I, San Romao MV. Effect of ethanol and fatty acids on malolactic activity of Leuconostoc oenos. Appl Microbiol Biotechnol. 1994;42:391–5.

    CAS  Google Scholar 

  • Catarino M, Mendes A, Madeira LM, Ferreira A. Alcohol removal from beer by reverse osmosis. Sep Sci Technol. 2007;42:3011–27.

    Article  CAS  Google Scholar 

  • Catarino M, Ferreira A, Mendes A. Study and optimization of aroma recovery from beer by pervaporation. J Memb Sci. 2009;341:51–9.

    Article  CAS  Google Scholar 

  • Chorti E, Guidoni S, Ferrandino A, Novello V. Effect of different cluster sunlight exposure levels on ripening and anthocyanin accumulation in Nebbiolo grapes. Am J Enol Vitic. 2010;61:23–30.

    CAS  Google Scholar 

  • Ciani M, Maccarelli F. Oenological properties of Non-Saccharomyces yeasts associated with wine-making. World J Microbiol Biotechnol. 1997;14:199–203.

    Article  Google Scholar 

  • Clingeleffer PR. Viticultural practices to moderate wine alcohol content. In: Proceedings ASVO Seminar: Towards best practice through innovation in winery processing, Tanunda (SA), Australia, 17 Oct 2007. p. 37–9.

    Google Scholar 

  • Constantí M, Reguant C, Poblet M, Zamora F, Mas A, Guillamón J. Molecular analysis of yeast population dynamis: effect of sulphur dioxide and the inoculum in must fermentation. Int J Food Microbiol. 1998;41:169–75.

    Article  Google Scholar 

  • Contreras A, Hidalgo C, Henschke PA, Chambers PJ, Curtin C, Valera C. Evaluation of non-Saccharomyces yeasts for the reduction of alcohol content in wine. Appl Environ Microbiol. 2014;80:1670–8.

    Article  CAS  Google Scholar 

  • Costantini A, García-Moruno E, Moreno-Arribas MV. Biochemical transformations produced by malolactic fermentation. In: Moreno-Arribas MV, Polo MC, editors. Wine chemistry and biochemistry. New York: Springer; 2009. p. 27–57.

    Chapter  Google Scholar 

  • d’Hauteville F. Consumer acceptance of low alcohol wines. Int J Wine Market. 1994;6:35–48.

    Article  Google Scholar 

  • de Barros-Lopes M, Eglinton JM, Henschke PA, Hoj PB, Pretorius IS. The connection between yeast and alcohol production in wine: managing the double edged sword of bottled sunshine. Aust N Z Wine Ind J. 2003;18:27–31.

    Google Scholar 

  • Diban N, Athes V, Bes M, Souchon I. Ethanol and aroma compounds transfer study for partial dealcoholization of wine using membrane contactor. J Memb Sci. 2008;311:136–46.

    Article  CAS  Google Scholar 

  • Diban N, Arruti A, Barceló A, Puxeu M, Urtiaga A, Ortiz I. Membrane dealcoholization of different wine varieties reducing aroma losses. Modeling and experimental validation. Innov Food Sci Emerg Technol. 2013;20:259–68.

    Article  CAS  Google Scholar 

  • Duchêne E, Schneider C. Grapevine and climatic changes: a glance at the situation in Alsace. Agron Sustain Dev. 2005;25:93–9.

    Article  Google Scholar 

  • Duchêne E, Dumas V, Jaegli N, Merdinoglu D. Deciphering the ability of different grapevine genotypes to accumulate sugar in berries. Aust J Grape Wine Res. 2012;18:319–28.

    Article  Google Scholar 

  • Ehsani M, Fernández MR, Biosca JA, Julien A, Dequin S. Engineering of 2,3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae. Appl Environ Microbiol. 2009;75:3196–205.

    Article  CAS  Google Scholar 

  • Evans P. Profitability and health our two immediate priorities. WineVitic J. 2013;28:10.

    Google Scholar 

  • Fedrizzi B, Nicolis E, Camin F, Bocca E, Carbognin C, Scholz M, Barbieri P, Finato F, Ferrarini R. Stable isotope ratios and aroma profile changes induced due to innovative wine dealcoholisation approaches. Food Bioprocess Technol. 2014;7:62–70.

    Article  CAS  Google Scholar 

  • Fernández O, Sánchez S, Rodríguez L, Lissarrague JR. Effects of different irrigation strategies on berry and wine composition on Cabernet sauvignon grapevines grown in Madrid (Spain). Ciência e Técnica Vitivinícola, Volume 28, Proceedings 18th International Symposium GiESCO, Porto 7–11 July 2013. p. 112–7.

    Google Scholar 

  • Ferrarini R, Versari A, Galassi S. A preliminary comparison between nanofiltration and reverse osmosis membranes for grape juice treatment. J Food Eng. 2001;50:113–6.

    Article  Google Scholar 

  • Fischer U, Noble AC. The effect of ethanol, catechin concentration, and pH on sourness and bitterness of wine. Am J Enol Vitic. 2004;45:6–10.

    Google Scholar 

  • Fleet G. Wine yeasts for the future. FEMS Yeast Res. 2008;8:979–95.

    Article  CAS  Google Scholar 

  • Fleet GH, Heard GM. Yeast-growth during fermentation. In: Fleet GH, editor. Wine microbiology and biotechnology. Reading: Harwood Academic; 1993. p. 27–54.

    Google Scholar 

  • Gil M, Estévez S, Kontoudakis N, Fort F, Canals JM, Zamora F. Influence of partial dealcoholization by reverse osmosis on red wine composition and sensory characteristics. Eur Food Res Technol. 2013a;237:481–8.

    Article  CAS  Google Scholar 

  • Gil M, Kontoudakis N, Estévez S, González-Royo E, Esteruelas M, Fort F, Canals JM, Zamora F. Non microbiological strategies to reduce alcohol in wines. In: Teissedre PL, editor. Alcohol reduction in wine. Oenoviti International Network. Merignac: Vigne et Vin Publications Internationales; 2013b. p. 25–8.

    Google Scholar 

  • Giovani G, Rosi I, Bertuccioli M. Quantification and characterization of cell wall polysaccharides released by non-Saccharomyces yeast strains during alcoholic fermentation. Int J Food Microbiol. 2012;160:113–8.

    Article  CAS  Google Scholar 

  • Godden P, Muhlack R. Trends in the composition of Australian wine. Aust N Z Grapegrow Winemak. 2010;558:47–61.

    Google Scholar 

  • Gonçalves F, Ribeiro R, Neves L, Lemperle T, Lança M, Ricardo da Silva J, Laureano O. Alcohol reduction in wine by nanofiltration. Some comparisons with reverse osmosis technique. In: Teissedre PL, editor. Alcohol reduction in wine. Oenoviti International Network. Merignac: Vigne et Vin Publications Internationales; 2013. p. 64–7.

    Google Scholar 

  • González-Royo E, Pascual O, Kontoudakis N, Esteruela M, Esteve-Zarzoso B, Mas A, Joan Canals JM, Zamora F. Influence of sequential inoculation with Torulaspora delbrueckii and Saccharomyces cerevisiae in foaming properties of base wine. 37th Word Congress of Vine and Wine, OIV, Mendoza Argentina, 2014; 9–14 Nov 2014.

    Google Scholar 

  • Gray C. History of the spinning cone column. In: Juice Technology Workshop. Special Report. Geneva: New York State Agricultural Experiment Station. 1993; 67:31–7.

    Google Scholar 

  • Grønbæk M. The positive and negative health effects of alcohol- and the public health implications. J Intern Med. 2009;265:407–20.

    Article  Google Scholar 

  • Guth H, Sies A. Flavour of wines: towards an understanding by reconstitution experiments and an analysis of ethanol’s effect on odour activity of key compounds. Proceedings of Eleventh Australian Wine Industry Technical Conference. AWITCInc, Glen Osmond, Adelaide, South Australia, Australia; 2001.

    Google Scholar 

  • Han DH, Lee CH. The effects of GA3, CPPU and ABA applications on the quality of Kyoho (Vitis vinifera L. × V. labrusca L.). Grape Acta Hort. 2004;653:193–7.

    Article  CAS  Google Scholar 

  • Harbertson JF, Keller M. Rootstock effects on deficit-irrigated winegrapes in a dry climate: grape and wine composition. Am J Enol Vitic. 2012;63:40–8.

    Article  CAS  Google Scholar 

  • Heux S, Sablayrolles JM, Cachon R, Dequin S. Engineering S. cerevisiae wine yeast that exhibit reduced ethanol production during fermentation under controlled microoxygenation conditions. Appl Environ Microbiol. 2006;72:5822–8.

    Article  CAS  Google Scholar 

  • Jackson DI, Lombard PB. Environmental and management practices affecting grape composition and wine quality—a review. Am J Enol Vitic. 1993;44:409–29.

    CAS  Google Scholar 

  • Jakab G, Csikasz-Krizsics A, Hartman B, Werner J, Kozma P. Vineyards adaptation and varieties: the effect of varieties, clones and rootstocks on must sugar content. In: Teissedre PL, editor. Alcohol reduction in wine. Oenoviti International Network. Merignac: Vigne et Vin Publications Internationales; 2013. p. 9–13.

    Google Scholar 

  • Jolly NP, Augustyn OPH, Pretorius IS. The role and use of non-Saccharomyces yeasts in wine production. S Afr J Enol Vitic. 2006;27:15–38.

    CAS  Google Scholar 

  • Jolly NP, Varela C, Osmond G, Pretorius IS. Role of non-Saccharomyces yeasts in wine production. Wines Vines. 2014;95(7):52–6.

    Google Scholar 

  • Jones GV, White MA, Cooper OR. Climate change and global wine quality. Clim Change. 2005;73:319–43.

    Article  Google Scholar 

  • Karlsson HOE, Trägårdh G. Applications of pervaporation in food processing. Trends Food Sci Technol. 1996;7:78–83.

    Article  CAS  Google Scholar 

  • Karlsson HOE, Loureiro S, Trägårdh G. Aroma compound recovery with pervaporation—temperature effects during pervaporation of a muscat wine. J Food Eng. 1995;26:177–91.

    Article  Google Scholar 

  • Kliewer WM, Dokoozlian NK. Leaf area/crop weight ratios of grapevines: influence on fruit composition and wine quality. Am J Enol Vitic. 2005;56:170–81.

    Google Scholar 

  • Kontoudakis N, Esteruelas M, Fort F, Canals JM, Zamora F. Comparison of methods for estimating phenolic maturity in grapes: correlation between predicted and obtained parameters. Anal Chim Acta. 2010;660:127–33.

    Article  CAS  Google Scholar 

  • Kontoudakis N, Esteruelas M, Fort F, Canals JM, De Freitas V, Zamora F. Influence of the heterogeneity of grape phenolic maturity on wine composition and quality. Food Chem. 2011a;124:767–74.

    Article  CAS  Google Scholar 

  • Kontoudakis N, Esteruelas M, Fort F, Canals JM, Zamora F. Use of unripe grapes harvested during cluster thinning as a method for reducing alcohol content and pH of wine. Aust J Grape Wine Res. 2011b;17:230–8.

    Article  CAS  Google Scholar 

  • Kutyna DR, Varela C, Henschke PA, Chambers PJ, Stanley GA. Microbiological approaches to lowering ethanol concentration in wine. Trends Food Sci Technol. 2010;21:293–302.

    Article  CAS  Google Scholar 

  • Kutyna DR, Varela C, Stanley GA, Borneman AR, Henschke PA, Chambers PJ. Adaptive evolution of Saccharomyces cerevisiae to generate strains with enhanced glycerol production. Appl Microbiol Biotechnol. 2012;93:1175–84.

    Article  CAS  Google Scholar 

  • Labanda J, Vichi S, Llorens J, López-Tamames E. Membrane separation technology for the reduction of alcoholic degree of a white model wine. LWT Food Sci Technol. 2009;42:1390–5.

    Article  CAS  Google Scholar 

  • Le Berre E, Atanasova B, Langlois D, Etiévant P, Thomas-Danguin T. Impact of ethanol on the perception of wine odorant mixtures. Food Qual Prefer. 2007;18:901–8.

    Article  Google Scholar 

  • Lonvaud-Funel A, Joyeux A, Desens C. Inhibition of malolactic fermentation of wines by products of yeast metabolism. J Sci Food Agric. 1988;44:183–91.

    Article  CAS  Google Scholar 

  • Malherbe DF, Du Toit M, Cordero Otero RR, Van Rensburg P, Pretorius IS. Expression of the Aspergillus niger glucose oxidase gene in Saccharomyces cerevisiae and its potential applications in wine production. Appl Microbiol Biotechnol. 2003;61:502–11.

    Article  CAS  Google Scholar 

  • Martin S, Pangborn RM. Taste interaction of ethyl alcohol with sweet, salty, sour and bitter compounds. J Sci Food Agric. 1970;21:653–5.

    Article  CAS  Google Scholar 

  • Massot A, Mietton-Peuchot M, Peuchot C, Milisic V. Nanofiltration and reverse osmosis in winemaking. Desalination. 2008;231:283–9.

    Article  CAS  Google Scholar 

  • McBryde C, Gardner J, de Barros-Lopes M, Jiranek V. Generation of novel yeast strains by adaptive evolution. Am J Enol Vitic. 2006;57:423–30.

    CAS  Google Scholar 

  • Meier PM. The reverse osmosis process for wine dealcoholization. Aust N Z Grapegrow Winemak. 1992;348:9–10.

    Google Scholar 

  • Meillon S, Urbano C, Guillot G, Schlich P. Acceptability of partially dealcoholized wines-measuring the impact of sensory and information cues on overall liking in real-life settings. Food Qual Prefer. 2010a;21:763–73.

    Article  Google Scholar 

  • Meillon S, Viala D, Medel M, Urbano C, Guillot G, Schlich P. Impact of partial alcohol reduction in Syrah wine on perceived complexity and temporality of sensations and link with preference. Food Qual Prefer. 2010b;21:732–40.

    Article  Google Scholar 

  • Meillon S, Urbano C, Schlich P. Impact of alcohol reduction on the sensory perception of wine and their acceptability by consumers. In: Teissedre PL, editor. Alcohol reduction in wine. Oenoviti International Network. Merignac: Vigne et Vin Publications Internationales; 2013. p. 105–8.

    Google Scholar 

  • Michnick S, Roustan JL, Remiz F, Barre P, Dequin S. Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase. Yeast. 1997;13:783–93.

    Article  CAS  Google Scholar 

  • Mira de Orduña R. Climate change associated on grape and wine quality and production. Food Res Int. 2010;43:1844–55.

    Article  Google Scholar 

  • Novello V, de Palma L. Viticultural strategy to reduce alcohol levels in wine. In: Teissedre PL, editor. Alcohol reduction in wine. Oenoviti International Network. Merignac: Vigne et Vin Publications Internationales; 2013. p. 3–8.

    Google Scholar 

  • OIV-International Organisation of Vine & Wine. Resolution OIV-ECO 432/2012; 2012.

    Google Scholar 

  • OIV-International Organisation of Vine & Wine. Resolution OIV-ECO 433/2012; 2012.

    Google Scholar 

  • OIV-International Organisation of Vine & Wine. Resolution OIV-OENO 394A/2012; 2012.

    Google Scholar 

  • OIV-International Organisation of Vine & Wine. Resolution OIV-OENO 394B/2012; 2012.

    Google Scholar 

  • OIV-International Organisation of Vine & Wine. Resolution OIV-OENO 466/2012; 2012.

    Google Scholar 

  • Palliotti A, Silvestroni O, Leoni F, Cini R, Poni S. Effect of late mechanized leaf removal to delay grape ripening on Sangiovese vines. Acta Hort. 2013;978:301–7.

    Article  Google Scholar 

  • Pati S, La Notte D, Clodoveo ML, Cicco G, Esti M. Reverse osmosis and nanofiltration membranes for the improvement of must quality. Eur Food Res Technol. 2014;239:595–602.

    Article  CAS  Google Scholar 

  • Pickering GJ. Low- and reduced-alcohol wine (a review). J Wine Res. 2000;2:129–44.

    Article  Google Scholar 

  • Pickering GJ, Heatherbell DA, Barnes MF. Optimising glucose conversion in the production of reduced alcohol wine using glucose oxidase. Food Res Int. 1998;31:685–92.

    Article  CAS  Google Scholar 

  • Pickering GJ, Heatherbell DA, Barnes MF. The production of reduced-alcohol wine using glucose oxidase treated juice. Part I. Composition. Am J Enol Vitic. 1999;50:291–8.

    CAS  Google Scholar 

  • Pilipovik MV, Riverol C. Assessing dealcoholisation systems based on reverse osmosis. J Food Eng. 2005;69:437–41.

    Article  Google Scholar 

  • Prince RGH, Desho SY, Langrish TAG. Spinning cone column capacity and mass-transfer performance. Inst Chem Eng Symp Ser. 1997;142:769–81.

    CAS  Google Scholar 

  • Pyle L. Processed foods with natural flavour: the use of novel recovery technology. Nutr Food Sci. 1994;1:12–4.

    Article  Google Scholar 

  • Quirós M, Rojas V, Gonzalez R, Morales P. Selection of non-Saccharomyces yeast strains for reducing alcohol levels in wine by sugar respiration. Int J Food Microbiol. 2014;181:85–91.

    Article  Google Scholar 

  • Robinson AL, Ebeler SE, Heymann H, Boss PK, Solomon PS, Trengove RD. Interactions between wine volatile compounds and grape and wine matrix components influence aroma compound headspace partitioning. J Agric Food Chem. 2009;57:10313–22.

    Article  CAS  Google Scholar 

  • Ruf JC. OIV rules and implications concerning reduction of alcohol levels. In: Teissedre PL, editor. Alcohol reduction in wine. Oenoviti International Network. Merignac: Vigne et Vin Publications Internationales; 2013. p. 49–52.

    Google Scholar 

  • Ruiz-Rodriguez A, Fornari T, Hernández EJ, Señorans FJ, Reglero G. Thermodynamic modeling of dealcoholization of beverages using supercritical CO2: application to wine samples. J Supercrit Fluids. 2010;52:183–8.

    Article  CAS  Google Scholar 

  • Saha B, Torley P, Blackmann JW, Schmidtke LM. Review of processing technology to reduce alcohol levels in wines. In: Teissedre PL, editor. Alcohol reduction in wine. Oenoviti International Network. Merignac: Vigne et Vin Publications Internationales; 2013. p. 78–86.

    Google Scholar 

  • Saliba AJ, Ovington LA, Moran CC. Consumer demand for low-alcohol wine in an Australian sample. Int J Wine Res. 2013;5:1–8.

    Article  Google Scholar 

  • Schmidtke LM, Blackman JW, Agboola SO. Production technologies for reduced alcoholic wines. J Food Sci. 2012;77:R25–41.

    Article  CAS  Google Scholar 

  • Schultz HR, Jones GV. Climate induced historic and future changes in viticulture. J Wine Res. 2010;21:137–45.

    Article  Google Scholar 

  • Stasi A, Bimbo F, Viscecchia R, Seccia A. Italian consumers’ preferences regarding dealcoholized wine, information and price. Wine Econ Pol. 2014;3:54–61.

    Article  Google Scholar 

  • Stassi A, Philippe D, Melandri F. Alcohol reduction by osmotic distillation: system and result. In: Teissedre PL, editor. Alcohol reduction in wine. Oenoviti International Network. Merignac: Vigne et Vin Publications Internationales; 2013. p. 68–77.

    Google Scholar 

  • Stoll M, Lafontaine M, Schultz HR. Possibilities to reduce the velocity of berry maturation through various leaf area to fruit ratio modifications in Vitis vinifera L. Riesling Prog Agric Vitic. 2010;127:68–71.

    Google Scholar 

  • Takács L, Vatai G, Korány K. Production of alcohol free wine by pervaporation. J Food Eng. 2007;78:118–25.

    Article  Google Scholar 

  • Tan S, Li L, Xiao Z, Wu Y, Zhang Z. Pervaporation of alcoholic beverages—the coupling effects between ethanol and aroma compounds. J. Membrane Sci. 2005;264:129–136.

    Google Scholar 

  • Tilloy V, Cadière A, Ehsani M, Dequin S. Microbiological strategies to reduce alcohol levels in wines. In: Teissedre PL, editor. Alcohol reduction in wine. Oenoviti International Network. Merignac: Vigne et Vin Publications Internationales; 2013. p. 29–32.

    Google Scholar 

  • Tilloy V, Ortiz-Julien A, Dequin S. Reduction of ethanol yield and improvement of glycerol formation by adaptive evolution of the wine yeast Saccharomyces cerevisiae under hyperosmotic conditions. Appl Environ Microbiol. 2014;80:2623–32.

    Article  Google Scholar 

  • Tittmann S, Stöber V, Bischoff-Schaefer M, Stoll M. Application of anti-transpirant under greenhouse conditions of grapevines (Vitis vinifera cv. Riesling and cv. Müller-Thurgau) reduce photosynthesis. Ciência e Técnica Vitivinícola, Volume 28, Proceedings 18th International Symposium GiESCO, Porto, 7–11 July 2013. p. 276–82.

    Google Scholar 

  • Varavuth S, Jiraratananon R, Atchariyawut S. Experimental study on dealcoholization of wine by osmotic distillation process. Sep Purif Technol. 2009;66:313–21.

    Article  CAS  Google Scholar 

  • Wilkinson K, Jiranek V. Wine of reduced alcohol content: consumer and society demand vs industry willingness and ability to deliver. In: Teissedre PL, editor. Alcohol reduction in wine. Oenoviti International Network. Merignac: Vigne et Vin Publications Internationales; 2013. p. 98–104.

    Google Scholar 

  • Wright AJ, Pyle DL. An investigation into the use of the spinning cone column for in situ ethanol removal from a yeast broth. Process Biochem. 1996;31:651–8.

    Article  CAS  Google Scholar 

  • Zamora F. Biochemistry of alcoholic fermentation. In: Moreno-Arribas MV, Polo MC, editors. Wine chemistry and biochemistry. New York: Springer; 2009. p. 3–26.

    Chapter  Google Scholar 

  • Zamora F. Adapting red winemaking to climate change conditions. J Int Sci Vigne Vin, Spécial Laccave. 2014; 71–6.

    Google Scholar 

Download references

Acknowledgements

I would like to thank CICYT (AGL2011-29708-C02-01) and CDTI (Project CENIT Demeter) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Zamora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zamora, F. (2016). Dealcoholised Wines and Low-Alcohol Wines. In: Moreno-Arribas, M., Bartolomé Suáldea, B. (eds) Wine Safety, Consumer Preference, and Human Health. Springer, Cham. https://doi.org/10.1007/978-3-319-24514-0_8

Download citation

Publish with us

Policies and ethics