Skip to main content

Epigenetic Regulation of the GnRH and Kiss1 Genes

  • Chapter
  • First Online:
Epigenetics and Neuroendocrinology

Part of the book series: Epigenetics and Human Health ((EHH))

  • 1030 Accesses

Abstract

This chapter focuses on epigenetic regulation of the GnRH and Kiss1 genes in the context of neuronal development, puberty onset, and reproductive function. Diverse epigenetic phenomena including the formation of chromatin loops, activation of bivalent domains, maintenance of “stable” histone modifications, and DNA methylation, active demethylation, and hydroxymethylation dynamics are covered. When possible, particular effort is made to focus on how these phenomena may be related to each other and which enzymes or binding factors are involved in these processes. In highlighting similar epigenetic mechanisms between these distinct peptidergic neuronal populations, we hope to impress upon the reader the potential relationships between those mechanisms and the development of hypothalamic peptidergic neurons in general. While this chapter does not cover relationships between peptidergic systems and psychiatric conditions, it does cover epigenetic mechanisms related to puberty. Because puberty represents a developmental period when neuropsychiatric diseases commonly present, understanding the epigenetic processes operating in the hypothalamus during that window could be instrumental to deciphering the onset, exacerbation, or resolution of neuropsychiatric diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alçin E, Sahu A, Ramaswamy S et al (2013) Ovarian regulation of kisspeptin neurones in the arcuate nucleus of the rhesus monkey (macaca mulatta). J Neuroendocrinol 5:488–496

    Article  CAS  Google Scholar 

  • Azuara V, Perry P, Sauer S et al (2006) Chromatin signatures of pluripotent cell lines. Nat Cell Biol 8:532–538

    Article  CAS  PubMed  Google Scholar 

  • Banks GC, Deterding LJ, Tomer KB, Archer TK (2001) Hormone-mediated dephosphorylation of specific histone H1 isoforms. J Biol Chem 276:36467–36473

    Article  CAS  PubMed  Google Scholar 

  • Bernstein BE, Mikkelsen TS, Xie X et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    Article  CAS  PubMed  Google Scholar 

  • Bestor TH, Ingram VM (1983) Two DNA methyltransferases from murine erythroleukemia cells: purification, sequence specificity, and mode of interaction with DNA. Proc Natl Acad Sci U S A 80:5559–5563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bestor T, Laudano A, Mattaliano R, Ingram V (1988) Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol 203:971–983

    Article  CAS  PubMed  Google Scholar 

  • Branco MR, Ficz G, Reik W (2012) Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat Rev Genet 13:7–13

    CAS  Google Scholar 

  • Carey BW, Finley LW, Cross JR et al (2015) Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518(7539):413–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark ME, Mellon PL (1995) The POU homeodomain transcription factor Oct-1 is essential for activity of the gonadotropin-releasing hormone neuron-specific enhancer. Mol Cell Biol 15:6169–6177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarkson J, Herbison AE (2006) Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone neurons. Endocrinology 147:5817–5825

    Article  CAS  PubMed  Google Scholar 

  • Clarkson J, Boon WC, Simpson ER, Herbison AE (2009) Postnatal development of an estradiol-kisspeptin positive feedback mechanism implicated in puberty onset. Endocrinology 150(7):3214–3220

    Google Scholar 

  • Constantin S, Caraty A, Wray S, Duittoz AH (2009) Development of gonadotropin-releasing hormone-1 secretion in mouse nasal explants. Endocrinology 150:3221–3227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Anglemont de Tassigny X, Colledge WH (2010) The role of kisspeptin signaling in reproduction. Physiology 25(4):207–217

    Article  PubMed  CAS  Google Scholar 

  • D’Anglemont de Tassigny X, Fagg LA et al (2007) Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene. Proc Natl Acad Sci USA 104:10714–10719

    Google Scholar 

  • Dawlaty MM, Ganz K, Powell BE et al (2011) Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development. Cell Stem Cell 9:166–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawlaty MM, Breiling A, Le T et al (2013) Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. Dev Cell 24:310–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Roux N, Genin E, Carel JC, Matsuda F et al (2003) Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci U S A 100:10972–10976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25:1010–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deplus R, Delatte B, Schwinn MK et al (2013) TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. EMBO J 32:645–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desroziers E, Droguerre M, Bentsen AH et al (2012) Embryonic development of kisspeptin neurones in rat. J Neuroendocrinol 24(10):1284–1295

    Article  CAS  PubMed  Google Scholar 

  • Dhillo WS, Chaudhri OB, Thompson EL et al (2007) Kisspeptin-54 stimulates gonadotropin release most potently during the preovulatory phase of the menstrual cycle in women. J Clin Endocrinol Metab 92:3958–3966

    Article  CAS  PubMed  Google Scholar 

  • Dubois SL, Acosta-Martínez M, DeJoseph MR et al (2015) Positive, but not negative feedback actions of estradiol in adult female mice require estrogen receptor α in kisspeptin neurons. Endocrinology 156(3):1111–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Majdoubi M, Sahu A, Ramaswamy S, Plant TM (2000) Neuropeptide Y: a hypothalamic brake restraining the onset of puberty in primates. Proc Natl Acad Sci U S A 97:6179–6184

    Article  PubMed  PubMed Central  Google Scholar 

  • Fueshko S, Wray S (1994) LHRH cells migrate on peripherin fibers in embryonic olfactory explant cultures: an in vitro model for neurophilic neuronal migration. Dev Biol 166:331–348

    Article  CAS  PubMed  Google Scholar 

  • Funes S, Hedrick JA, Vassileva G et al (2003) The KiSS-1 receptor GPR54 is essential for the development of the murine reproductive system. Biochem Biophys Res Commun 312:1357–1363

    Article  CAS  PubMed  Google Scholar 

  • Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196:261–282

    Article  CAS  PubMed  Google Scholar 

  • Gill JC, Kwong C, Clark E et al (2012a) A role for the histone demethylase LSD1 in controlling the timing of pubertal onset. Endocr Soc 33, OR12–1

    Google Scholar 

  • Gill JC, Navarro VM, Kwong C et al (2012b) Increased neurokinin B (Tac2) expression in the mouse arcuate nucleus is an early marker of pubertal onset with differential sensitivity to sex steroid-negative feedback than Kiss1. Endocrinology 153:4883–4893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glaser S, Schaft J, Lubitz S, Vintersten K et al (2006) Multiple epigenetic maintenance factors implicated by the loss of Mll2 in mouse development. Development 133:1423–1432

    Article  CAS  PubMed  Google Scholar 

  • Gottsch ML, Cunningham MJ, Smith JT et al (2004) A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology 145:4073–4077

    Article  CAS  PubMed  Google Scholar 

  • Guerriero KA, Keen KL, Millar RP, Terasawa E (2012) Developmental changes in GnRH release in response to kisspeptin agonist and antagonist in female rhesus monkeys (Macaca mulatta): implication for the mechanism of puberty. Endocrinology 153:825–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo JU, Su Y, Shin JH et al (2014) Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat Neurosci 17(2):215–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn MA, Qiu R, Wu X et al (2013) Dynamics of 5-hydroxymethylcytosine and chromatin marks in mammalian neurogenesis. Cell Rep 3:291–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermann A, Goyal R, Jeltsch A (2004) The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. J Biol Chem 279:48350–48359

    Article  CAS  PubMed  Google Scholar 

  • Homma T, Sakakibara M, Yamada S et al (2009) Significance of neonatal testicular sex steroids to defeminize anteroventral periventricular kisspeptin neurons and the GnRH/LH surge system in male rats. Biol Reprod 81:1216–1225

    Article  CAS  PubMed  Google Scholar 

  • Hrabovszky E, Ciofi P, Vida B et al (2010) The kisspeptin system of the human hypothalamus: sexual dimorphism and relationship with gonadotropin-releasing hormone and neurokinin B neurons. Eur J Neurosci 31:1984–1998

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Nativio R, Murrell A (2013) Induced DNA demethylation can reshape chromatin topology at the IGF2-H19 locus. Nucleic Acids Res 41(10):5290–5302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer AK, Brayman MJ, Mellon PL (2010) Dynamic chromatin modifications control GnRH gene expression during neuronal differentiation and protein kinase C signal transduction. Mol Endocrinol 25:460–473

    Article  CAS  Google Scholar 

  • Kauffman AS, Gottsch ML, Roa J (2007) Sexual differentiation of Kiss1 gene expression in the brain of the rat. Endocrinology 148:1774–1783

    Article  CAS  PubMed  Google Scholar 

  • Kepa JK, Wang C, Neeley CI et al (1992) Structure of the rat gonadotropin releasing hormone (rGnRH) gene promoter and functional analysis in hypothalamic cells. Nucleic Acids Res 20:1393–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kepa JK, Jacobsen BM, Boen EA et al (1996a) Direct binding of progesterone receptor to nonconsensus DNA sequences represses rat GnRH. Mol Cell Endocrinol 117:27–3910

    Article  CAS  PubMed  Google Scholar 

  • Kepa JK, Spaulding AJ, Jacobsen BM et al (1996b) Structure of the distal human gonadotropin releasing hormone (hGnrh) gene promoter and functional analysis in Gt1-7 neuronal cells. Nucleic Acids Res 24:3614–3620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Semaan SJ, Clifton DK et al (2011) Regulation of Kiss1 expression by sex steroids in the amygdala of the rat and mouse. Endocrinology 152:2020–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirilov M, Clarkson J, Liu X, Roa J et al (2013) Dependence of fertility on kisspeptin-Gpr54 signaling at the GnRH neuron. Nat Commun 4:2492

    Article  PubMed  CAS  Google Scholar 

  • Kolodkin MH, Auger AP (2011) Sex difference in the expression of DNA methyltransferase 3a in the rat amygdala during development. J Neuroendocrinol 23:577–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurian JR (2015) Tet2 enables elevated GnRH neuron activity and maintains activating histone modifications within the GnRH gene. In: Abstracts for the Endocrine Society annual meeting, San Diego

    Google Scholar 

  • Kurian JR, Keen KL, Terasawa E (2010a) Epigenetic changes coincide with in vitro primate GnRH neuronal maturation. Endocrinology 151:5359–5368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurian JR, Olesen KM, Auger AP (2010b) Sex differences in epigenetic regulation of the estrogen receptor-alpha promoter within the developing preoptic area. Endocrinology 151:2297–2305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurian JR, Kapke JA, Terasawa E (2011) Epigenetic contribution to GnRH neuronal development in male pubertal development. In: Abstracts for the Society for Neuroscience meeting, Washington, Number 500.03

    Google Scholar 

  • Kurian JR, Terasawa E, Levine JE (2014) Ten eleven translocase 2 (Tet2) drives GnRH gene expression and enables the typical progression through puberty. In: Abstracts for the Endocrine Society annual meeting, Chicago

    Google Scholar 

  • Lapatto R, Pallais JC, Zhang D et al (2007) Kiss1−/− mice exhibit more variable hypogonadism than Gpr54−/− mice. Endocrinology 148:4927–4936

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Miele ME, Hicks DJ et al (1996) KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst 88(23):1731–1737

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Lau AT, Jeong CH et al (2010) Histone XH2AX is required for Xenopus anterior neural development: critical role of threonine 16 phosphorylation. J Biol Chem 285:29525–29534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926

    Article  CAS  PubMed  Google Scholar 

  • Lomniczi A, Loche A, Castellano JM et al (2013) Epigenetic control of female puberty. Nat Neurosci 16:281–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuda KI, Mori H, Nugent BM et al (2011) Histone deacetylation during brain development is essential for permanent masculinization of sexual behavior. Endocrinology 152:2760–2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurer JA, Wray S (1997) Luteinizing hormone-releasing hormone (LHRH) neurons maintained in hypothalamic slice explant cultures exhibit a rapid LHRH mRNA turnover rate. J Neurosci 17:9481–9491

    CAS  PubMed  Google Scholar 

  • Mehlmann LM (2005) Stops and starts in mammalian oocytes: recent advances in understanding the regulation of meiotic arrest and oocyte maturation. Reproduction 30:791–799

    Article  CAS  Google Scholar 

  • Mellon PL, Windle JJ, Goldsmith PC et al (1990) Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis. Neuron 5:1–10

    Article  CAS  PubMed  Google Scholar 

  • Messager S, Chatzidaki EE, Ma D, Hendrick AG et al (2005) Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc Natl Acad Sci U S A 102:1761–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metzger E, Wissmann M, Yin N, Müller JM et al (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437:436–439

    CAS  PubMed  Google Scholar 

  • Moore JP Jr, Wray S (2000) Luteinizing hormone-releasing hormone biosynthesis and secretion in embryonic LHRH neurons. Endocrinology 141:4486–4495

    Article  CAS  PubMed  Google Scholar 

  • Murray EK, Varnum MM, Fernandez JL et al (2011) Effects of neonatal treatment with valproic acid on vasopressin immunoreactivity and olfactory behaviour in mice. Neuroendocrinol 10:906–914

    Article  CAS  Google Scholar 

  • Navarro VM, Castellano JM, Fernandez-Fernandez R et al (2005a) Effects of KiSS-1 peptide, the natural ligand of GPR54, on follicle-stimulating hormone secretion in the rat. Endocrinology 146:1689–1697

    Article  CAS  PubMed  Google Scholar 

  • Navarro VM, Castellano JM, Fernandez-Fernandez R et al (2005b) Characterization of the potent luteinizing hormone-releasing activity of KiSS-1 peptide, the natural ligand of GPR54. Endocrinology 146:156–163

    Article  CAS  PubMed  Google Scholar 

  • Okano M, Xie S, Li E (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 19:219–220

    Article  CAS  PubMed  Google Scholar 

  • Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    Article  CAS  PubMed  Google Scholar 

  • Ong CT, Corces VG (2014) CTCF: an architectural protein bridging genome topology and function. Nat Rev Genet 15(4):234–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan G, Tian S, Nie J et al (2007) Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell 1:299–312

    Article  CAS  PubMed  Google Scholar 

  • Pasini D, Bracken AP, Hansen JB et al (2007) The polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol Cell Biol 27:3769–3779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phoenix CH, Goy RW, Gerall AA, Young WC (1959) Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology 65:369–382

    Article  CAS  PubMed  Google Scholar 

  • Poling MC, Kauffman AS (2013) Organizational and activational effects of sex steroids on kisspeptin neuron development. Front Neuroendocrinol 34(1):3–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quanbeck C, Sherwood NM, Millar RP, Terasawa E (1997) Two populations of luteinizing hormone-releasing hormone neurons in the forebrain of the rhesus macaque during embryonic development. J Comp Neurol 380:293–30910

    Article  CAS  PubMed  Google Scholar 

  • Radovick S, Wray S, Lee E, Nicols DK et al (1991) Migratory arrest of gonadotropin-releasing hormone neurons in transgenic mice. Proc Natl Acad Sci U S A 88:3402–3406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramaswamy S, Guerriero KA, Gibbs RB, Plant TM (2008) Structural interactions between kisspeptin and GnRH neurons in the mediobasal hypothalamus of the male rhesus monkey (Macaca mulatta) as revealed by double immunofluorescence and confocal microscopy. Endocrinology 149:4387–4395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsahoye BH, Biniszkiewicz D, Lyko F et al (2000) Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci USA 97(10):5237–5242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rometo AM, Krajewski SJ, Voytko ML, Rance NE (2007) Hypertrophy and increased kisspeptin gene expression in the hypothalamic infundibular nucleus of postmenopausal women and ovariectomized monkeys. J Clin Endocrinol Metab 92:2744–2750

    Article  CAS  PubMed  Google Scholar 

  • Ronnekleiv OK, Resko JA (1990) Ontogeny of gonadotropin-releasing hormone-containing neurons in early fetal development of rhesus macaques. Endocrinology 126:498–51110

    Article  CAS  PubMed  Google Scholar 

  • Schermelleh L, Spada F, Easwaran HP et al (2005) Trapped in action: direct visualization of DNA methyltransferase activity in living cells. Nat Methods 2:751–756

    Article  CAS  PubMed  Google Scholar 

  • Schulz KM, Sisk CL (2006) Pubertal hormones, the adolescent brain, and the maturation of social behaviors: lessons from the Syrian hamster. Mol Cell Endocrinol 254–255:120–126

    Article  PubMed  CAS  Google Scholar 

  • Schulz KM, Molenda-Figueira HA, Sisk CL (2009) Back to the future: the organizational-activational hypothesis adapted to puberty and adolescence. Horm Behav 55(5):597–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz JM, Nugent BM, McCarthy MM (2010) Developmental and hormone-induced epigenetic changes to estrogen and progesterone receptor genes in brain are dynamic across the life span. Endocrinology 151:4871–4881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semaan SJ, Kauffman AS (2010) Sexual differentiation and development of forebrain reproductive circuits. Curr Opin Neurobiol 20:424–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semaan SJ, Kauffman AS (2015) Daily successive changes in reproductive gene expression and neuronal activation in the brains of pubertal female mice. Mol Cell Endocrinol 401:84–97

    Article  CAS  PubMed  Google Scholar 

  • Semaan SJ, Murray EK, Poling MC et al (2010) BAX-dependent and BAX-independent regulation of Kiss1 neuron development in mice. Endocrinology 151:5807–5817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semaan SJ, Dhamija S, Kim J et al (2012) Assessment of epigenetic contributions to sexually-dimorphic Kiss1 expression in the anteroventral periventricular nucleus of mice. Endocrinology 153:1875–1886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seminara SB, Messager S, Chatzidaki EE et al (2003) The GPR54 gene as a regulator of puberty. N Engl J Med 349:1614–1627

    Article  CAS  PubMed  Google Scholar 

  • Shahab M, Mastronardi C, Seminara SB et al (2005) Increased hypothalamic GPR54 signaling: a potential mechanism for initiation of puberty in primates. Proc Natl Acad Sci U S A 102:2129–2134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen X, Liu Y, Hsu YJ et al (2008) EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol Cell 32:491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simerly RB (1998) Organization and regulation of sexually dimorphic neuroendocrine pathways. Behav Brain Res 92(2):195–203

    Article  CAS  PubMed  Google Scholar 

  • Simerly RB (2002) Wired for reproduction: organization and development of sexually dimorphic circuits in the mammalian forebrain. Annu Rev Neurosci 25:507–536

    Article  CAS  PubMed  Google Scholar 

  • Smith JT (2008) Kisspeptin signalling in the brain: steroid regulation in the rodent and ewe. Brain Res Rev 57:288–298

    Article  CAS  PubMed  Google Scholar 

  • Smith JT, Cunningham MJ, Rissman EF et al (2005a) Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology 146:3686–3692

    Article  CAS  PubMed  Google Scholar 

  • Smith JT, Dungan HM, Stoll EA et al (2005b) Differential regulation of KiSS-1 mRNA expression by sex steroids in the brain of the male mouse. Endocrinology 146:2976–2984

    Article  CAS  PubMed  Google Scholar 

  • Smith JT, Shahab M, Pereira A et al (2010) Hypothalamic expression of KISS1 and gonadotropin inhibitory hormone genes during the menstrual cycle of a non-human primate. Biol Reprod 83:568–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stresemann C, Lyko F (2008) Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer 123:8–13

    Article  CAS  PubMed  Google Scholar 

  • Suberbielle E, Sanchez PE, Kravitz AV et al (2013) Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β. Nat Neurosci 16:613–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svedruzic ZM (2008) Mammalian cytosine DNA methyltransferase Dnmt1: enzymatic mechanism, novel mechanism-based inhibitors, and RNA-directed DNA methylation. Curr Med Chem 15:92–106

    Article  CAS  PubMed  Google Scholar 

  • Terasawa E, Quanbeck CD, Schulz CA et al (1993) A primary cell culture system of luteinizing hormone releasing hormone (LHRH) neurons derived from fetal olfactory placode in the rhesus monkey. Endocrinology 133:2379–2390

    CAS  PubMed  Google Scholar 

  • Terasawa E, Keen KL, Mogi K, Claude P (1999) Pulsatile release of luteinizing hormone-releasing hormone (LHRH) in cultured LHRH neurons derived from the embryonic olfactory placode of the rhesus monkey. Endocrinology 140:1432–1441

    CAS  PubMed  Google Scholar 

  • Terasawa E, Busser BW, Luchansky LL et al (2001) Presence of luteinizing hormone-releasing hormone fragments in the rhesus monkey forebrain. J Comp Neurol 439:491–50410

    Article  CAS  PubMed  Google Scholar 

  • Tomikawa J, Uenoyama Y, Ozawa M et al (2012) Epigenetic regulation of Kiss1 gene expression mediating estrogen-positive feedback action in the mouse brain. Proc Natl Acad Sci U S A 109:1294–1301

    Article  Google Scholar 

  • Topaloglu AK, Tello JA, Kotan LD et al (2012) Inactivating KISS1 mutation and hypogonadotropic hypogonadism. N Engl J Med 366:629–635

    Article  CAS  PubMed  Google Scholar 

  • Whyte DB, Lawson MA, Belsham DD et al (1995) A neuron-specific enhancer targets expression of the gonadotropin-releasing hormone gene to hypothalamic neurosecretory neurons. Mol Endocrinol 9:467–477

    CAS  PubMed  Google Scholar 

  • Wu SC, Zhang Y (2010) Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 11:607–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yagi H, Deguchi K, Aono A et al (1998) Growth disturbance in fetal liver hematopoiesis of Mll-mutant mice. Blood 92:108–117

    CAS  PubMed  Google Scholar 

  • Yamaguchi S, Hong K, Liu R et al (2012) Tet1 controls meiosis by regulating meiotic gene expression. Nature 492:443–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Lin H, Xu H et al (2014) TET-catalyzed 5-methylcytosine hydroxylation is dynamically regulated by metabolites. Cell Res 24(8):1017–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeo SH, Clarkson J, Herbison AE (2014) Kisspeptin-gpr54 signaling at the GnRH neuron is necessary for negative feedback regulation of luteinizing hormone secretion in female mice. Neuroendocrinology 100(2–3):191–197

    Article  CAS  PubMed  Google Scholar 

  • Yu BD, Hess JL, Horning SE et al (1995) Altered Hox expression and segmental identity in Mll-mutant mice. Nature 378:505–508

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph R. Kurian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kurian, J.R. (2016). Epigenetic Regulation of the GnRH and Kiss1 Genes. In: Spengler, D., Binder, E. (eds) Epigenetics and Neuroendocrinology. Epigenetics and Human Health. Springer, Cham. https://doi.org/10.1007/978-3-319-24493-8_11

Download citation

Publish with us

Policies and ethics