Skip to main content

Epigenetic Regulation of the GnRH and Kiss1 Genes: Developmental Perspectives

  • Chapter
  • First Online:
Developmental Neuroendocrinology

Part of the book series: Masterclass in Neuroendocrinology ((MANEURO,volume 9))

  • 582 Accesses

Abstract

Gonadotropin-releasing hormone (GnRH) and kisspeptin neurons are indispensable for reproductive function. This chapter focuses on the epigenetic regulation of the GnRH and kisspeptin (Kiss1) genes in the context of neuronal development, puberty onset, and maintenance of adult reproductive function. Proper function of GnRH and kisspeptin neurons in the hypothalamus requires coordinated embryonic and postnatal maturation. Recent studies indicate that diverse epigenetic phenomena including the formation of chromatin loops, activation of bivalent domains, maintenance of “stable” histone modifications, and DNA methylation, active demethylation, and hydroxymethylation are all involved in epigenetic regulation of these neurons. This chapter focuses on how these epigenetic regulation components interact with each other and which enzymes or binding factors are involved in specific stages of neuronal development or aging. By emphasizing similar epigenetic mechanisms operating within these two peptidergic neuronal populations, we highlight likely targets for future investigations of environmental influences over puberty timing and progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alcin E, Sahu A, Ramaswamy S, Hutz ED, Keen KL, Terasawa E, Bethea CL, Plant TM (2013) Ovarian regulation of kisspeptin neurones in the arcuate nucleus of the rhesus monkey (Macaca mulatta). J Neuroendocrinol 5:488–496

    Article  CAS  Google Scholar 

  • Arai Y, Gorski RA (1968) Critical exposure time for androgenization of the developing hypothalamus in the female rat. Endocrinology 82:1010–1014

    Google Scholar 

  • Arnold AP, Gorski RA (1984) Gonadal steroid induction of structural sex differences in the central nervous system. Annu Rev Neurosci 7:413–442

    Article  CAS  PubMed  Google Scholar 

  • Azuara V, Perry P, Sauer S, Spivakov M, Jørgensen HF, John RM, Gouti M, Casanova M, Warnes G, Merkenschlager M, Fisher AG (2006) Chromatin signatures of pluripotent cell lines. Nat Cell Biol 8:532–538

    Article  CAS  PubMed  Google Scholar 

  • Banks GC, Deterding LJ, Tomer KB, Archer TK (2001) Hormone-mediated dephosphorylation of specific histone H1 isoforms. J Biol Chem 276:36467–36473

    Article  CAS  PubMed  Google Scholar 

  • Belsham DD, Mellon PL (2000) Transcription factors Oct-1 and C/EBPbeta (CCAAT/enhancer-binding protein-beta) are involved in the glutamate/nitric oxide/cyclic-guanosine 5'-monophosphate-mediated repression of mediated repression of gonadotropin-releasing hormone gene expression. Mol Endocrinol 14:212–228

    CAS  PubMed  Google Scholar 

  • Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    Article  CAS  PubMed  Google Scholar 

  • Bestor TH, Ingram VM (1983) Two DNA methyltransferases from murine erythroleukemia cells: purification, sequence specificity, and mode of interaction with DNA. Proc Natl Acad Sci U S A 80:5559–5563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bestor T, Laudano A, Mattaliano R, Ingram V (1988) Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol 203:971–983

    Article  CAS  PubMed  Google Scholar 

  • Branco MR, Ficz G, Reik W (2012) Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat Rev Genet 13:7–13

    Article  CAS  Google Scholar 

  • Carey BW, Finley LW, Cross JR, Allis CD, Thompson CB (2015) Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518(7539):413–416

    Article  CAS  PubMed  Google Scholar 

  • Cheng G, Coolen LM, Padmanabhan V, Goodman RL, Lehman MN (2010) The kisspeptin/neurokinin B/dynorphin (KNDy) cell population of the arcuate nucleus: sex differences and effects of prenatal testosterone in sheep. Endocrinology 151:301–311

    Article  CAS  PubMed  Google Scholar 

  • Clark ME, Mellon PL (1995) The POU homeodomain transcription factor Oct-1 is essential for activity of the gonadotropin-releasing hormone neuron-specific enhancer. Mol Cell Biol 15:6169–6177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarkson J, Herbison AE (2006) Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone neurons. Endocrinology 147:5817–5825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarkson J, Boon WC, Simpson ER, Herbison AE (2009) Postnatal development of an estradiol-kisspeptin positive feedback mechanism implicated in puberty onset. Endocrinology 150:3214–3220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Constantin S, Caraty A, Wray S, Duittoz AH (2009) Development of gonadotropin-releasing hormone-1 secretion in mouse nasal explants. Endocrinology 150:3221–3227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • d’Anglemont de Tassigny X, Colledge WH (2010) The role of kisspeptin signaling in reproduction. Physiology 25:207–217

    Article  PubMed  CAS  Google Scholar 

  • d’Anglemont de Tassigny X, Fagg LA, Dixon JP, Day K, Leitch HG, Hendrick AG, Zahn D, Franceschini I, Caraty A, Carlton MB, Aparicio SA, Colledge WH (2007) Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene. Proc Natl Acad Sci U S A 104:10714–10719

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dawlaty MM, Ganz K, Powell BE, Hu YC, Markoulaki S, Cheng AW, Gao Q, Kim J, Choi SW, Page DC, Jaenisch R (2011) Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development. Cell Stem Cell 9:166–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawlaty MM, Breiling A, Le T, Raddatz G, Barrasa MI, Cheng AW, Gao Q, Powell BE, Li Z, Xu M, Faull KF, Lyko F, Jaenisch R (2013) Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. Dev Cell 24:310–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E (2003) Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci U S A 100:10972–10976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25:1010–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deplus R, Delatte B, Schwinn MK, Defrance M, Méndez J, Murphy N, Dawson MA, Volkmar M, Putmans P, Calonne E, Shih AH, Levine RL, Bernard O, Mercher T, Solary E, Urh M, Daniels DL, Fuks F (2013) TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. EMBO J 32:645–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desroziers E, Droguerre M, Bentsen AH, Robert V, Mikkelsen JD, Caraty A, Tillet Y, Duittoz A, Franceschini I (2012a) Embryonic development of kisspeptin neurones in rat. J Neuroendocrinol 24:1284–1295

    Article  CAS  PubMed  Google Scholar 

  • Desroziers E, Mikkelsen JD, Duittoz A, Franceschini I (2012b) Kisspeptin-immunoreactivity changes in a sex- and hypothalamic-region-specific manner across rat postnatal development. J Neuroendocrinol 24:1154–1165

    Article  CAS  PubMed  Google Scholar 

  • Dhillo WS, Chaudhri OB, Thompson EL, Murphy KG, Patterson M, Ramachandran R, Nijher GK, Amber V, Kokkinos A, Donaldson M, Ghatei MA, Bloom SR (2007) Kisspeptin-54 stimulates gonadotropin release most potently during the preovulatory phase of the menstrual cycle in women. J Clin Endocrinol Metab 92:3958–3966

    Article  CAS  PubMed  Google Scholar 

  • Döhler KD, Hancke JL, Srivastava SS, Hofmann C, Shryne JE, Gorski RA (1984) Participation of estrogens in female sexual differentiation of the brain; neuroanatomical, neuroendocrine and behavioral evidence. Prog Brain Res 61:99–117

    Article  PubMed  Google Scholar 

  • Dubois SL, Acosta-Martínez M, DeJoseph MR, Wolfe A, Radovick S, Boehm U, Urban JH, Levine JE (2015) Positive, but not negative feedback actions of estradiol in adult female mice require estrogen receptor α in kisspeptin neurons. Endocrinology 156:1111–1120

    Article  CAS  PubMed  Google Scholar 

  • El Majdoubi M, Sahu A, Ramaswamy S, Plant TM (2000) Neuropeptide Y: a hypothalamic brake restraining the onset of puberty in primates. Proc Natl Acad Sci U S A 97:6179–6184

    Article  PubMed  PubMed Central  Google Scholar 

  • Franceschini I, Lomet D, Cateau M, Delsol G, Tillet Y, Caraty A (2006) Kisspeptin immunoreactive cells of the ovine preoptic area and arcuate nucleus co-express estrogen receptor alpha. Neurosci Lett 401:225–230

    Article  CAS  PubMed  Google Scholar 

  • Fueshko S, Wray S (1994) LHRH cells migrate on peripherin fibers in embryonic olfactory explant cultures: an in vitro model for neurophilic neuronal migration. Dev Biol 166:331–348

    Article  CAS  PubMed  Google Scholar 

  • Funes S, Hedrick JA, Vassileva G, Markowitz L, Abbondanzo S, Golovko A, Yang S, Monsma FJ, Gustafson EL (2003) The KiSS-1 receptor GPR54 is essential for the development of the murine reproductive system. Biochem Biophys Res Commun 312:1357–1363

    Article  CAS  PubMed  Google Scholar 

  • Gan L, Ni PY, Ge Y, Xiao YF, Sun CY, Deng L, Zhang W, Wu SS, Liu Y, Jiang W, Xin HB (2012) Histone deacetylases regulate gonadotropin-releasing hormone I gene expression via modulating Otx2-driven transcriptional activity. PLoS One 7:e39770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia JP, Guerriero KA, Keen KL, Kenealy BP, Seminara SB, Terasawa E (2017) Kisspeptin and neurokinin B signaling network underlies the pubertal increase in GnRH release in female rhesus monkeys. Endocrinology 158:3269–3280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia JP, Keen KL, Kenealy BP, Seminara SB, Terasawa E (2018) Role of kisspeptin and neurokinin B signaling in male rhesus monkey puberty. Endocrinology 159:3048–3060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196:261–282

    Article  CAS  PubMed  Google Scholar 

  • Gill JC, Navarro VM, Kwong C, Noel SD, Martin C, Xu S, Clifton DK, Carroll RS, Steiner RA, Kaiser UB (2012a) Increased neurokinin B (Tac2) expression in the mouse arcuate nucleus is an early marker of pubertal onset with differential sensitivity to sex steroid-negative feedback than Kiss1. Endocrinology 153:4883–4893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill J, Kwong C, Clark E, Carroll RS, Shi YG, Kaiser UB (2012b) A role for the histone demethylase LSD1 in controlling the timing of pubertal onset. In: Abstracts for Endocrine Society Annual Meeting, Huston, TX, No. OR12–3

    Google Scholar 

  • Givens ML, Rave-Harel N, Goonewardena VD, Kurotani R, Berdy SE, Swan CH, Rubenstein JL, Robert B, Mellon PL (2005) Developmental regulation of gonadotropin-releasing hormone gene expression by the MSX and DLX homeodomain protein families. J Biol Chem 280:19156–19165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glaser S, Schaft J, Lubitz S, Vintersten K, van der Hoeven F, Tufteland KR, Aasland R, Anastassiadis K, Ang SL, Stewart AF (2006) Multiple epigenetic maintenance factors implicated by the loss of Mll2 in mouse development. Development 133:1423–1432

    Article  CAS  PubMed  Google Scholar 

  • Goodman RL, Coolen LM, Lehman MN (2014) A role for neurokinin B in pulsatile GnRH secretion in the ewe. Neuroendocrinology 99:18–32

    Article  CAS  PubMed  Google Scholar 

  • Gorski RA (1985) Sexual dimorphisms of the brain. J Anim Sci 61(Suppl 3):38–61

    Article  PubMed  Google Scholar 

  • Gottsch ML, Cunningham MJ, Smith JT, Popa SM, Acohido BV, Crowley WF, Seminara S, Clifton DK, Steiner RA (2004) A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology 145:4073–4077

    Article  CAS  PubMed  Google Scholar 

  • Guerriero KA, Keen KL, Millar RP, Terasawa E (2012) Developmental changes in GnRH release in response to kisspeptin agonist and antagonist in female Rhesus monkeys (Macaca mulatta): implication for the mechanism of puberty. Endocrinology 153:825–836

    Article  CAS  PubMed  Google Scholar 

  • Guo JU, Su Y, Shin JH, Shin J, Li H, Xie B, Zhong C, Hu S, Le T, Fan G, Zhu H, Chang Q, Gao Y, Ming GL, Song H (2014) Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat Neurosci 17:215–222

    Article  CAS  PubMed  Google Scholar 

  • Hahn MA, Qiu R, Wu X, Li AX, Zhang H, Wang J, Jui J, Jin SG, Jiang Y, Pfeifer GP, Lu Q (2013) Dynamics of 5-hydroxymethylcytosine and chromatin marks in mammalian neurogenesis. Cell Rep 3:291–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herbison AE (2016) Control of puberty onset and fertility by gonadotropin-releasing hormone neurons. Nat Rev Endocrinol 12:452–466

    Article  CAS  PubMed  Google Scholar 

  • Hermann A, Goyal R, Jeltsch A (2004) The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. J Biol Chem 279:48350–48359

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann HM, Mellon PL (2018) Regulation of GnRH gene expression. In: Herbison AE, Plant TM (eds) Master class in neuroendocrinology series.The GnRH neuron and its control. Wiley, Hoboken, NJ, pp 95–119

    Google Scholar 

  • Hoffmann GE, Le WW, Franceschini I, Caraty A, Advis JP (2011) Expression of fos and in vivo median eminence release of LHRH identifies an active role for preoptic area kisspeptin neurons in synchronized surges of LH and LHRH in the ewe. Endocrinology 152:214–222

    Article  CAS  Google Scholar 

  • Hoffmann HM, Gong P, Tamrazian A, Mellon PL (2018) Transcriptional interaction between cFOS and the homeodomain-binding transcription factor VAX1 on the GnRH promoter controls Gnrh1 expression levels in a GnRH neuron maturation specific manner. Mol Cell Endocrinol 461:143–154

    Article  CAS  PubMed  Google Scholar 

  • Homma T, Sakakibara M, Yamada S, Kinoshita M, Iwata K, Tomikawa J, Kanazawa T, Matsui H, Takatsu Y, Ohtaki T, Matsumoto H, Uenoyama Y, Maeda K, Tsukamura H (2009) Significance of neonatal testicular sex steroids to defeminize anteroventral periventricular kisspeptin neurons and the GnRH/LH surge system in male rats. Biol Reprod 81:1216–1225

    Article  CAS  PubMed  Google Scholar 

  • Hrabovszky E (2014) Neuroanatomy of the human hypothalamic kisspeptin system. Neuroendocrinology 99:33–48

    Article  CAS  PubMed  Google Scholar 

  • Hrabovszky E, Ciofi P, Vida B, Horvath MC, Keller E, Caraty A, Bloom SR, Ghatei MA, Dhillo WS, Liposits Z, Kallo I (2010) The kisspeptin system of the human hypothalamus: sexual dimorphism and relationship with gonadotropin-releasing hormone and neurokinin B neurons. Eur J Neurosci 31:1984–1998

    Article  CAS  PubMed  Google Scholar 

  • Hrabovszky E, Sipos MT, Molnár CS, Ciofi P, Borsay BÁ, Gergely P, Herczeg L, Bloom SR, Ghatei MA, Dhillo WS, Liposits Z (2012) Low degree of overlap between kisspeptin, neurokinin B, and dynorphin immunoreactivities in the infundibular nucleus of young male human subjects challenges the KNDy neuron concept. Endocrinology 153:4978–4989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito Y, Nativio R, Murrell A (2013) Induced DNA demethylation can reshape chromatin topology at the IGF2-H19 locus. Nucleic Acids Res 41:5290–5302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer AK, Miller NL, Yip K, Tran BH, Mellon PL (2010) Enhancers of GnRH transcription embedded in an upstream gene use homeodomain proteins to specify hypothalamic expression. Mol Endocrinol 24:1949–1964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer AK, Brayman MJ, Mellon PL (2011) Dynamic chromatin modifications control GnRH gene expression during neuronal differentiation and protein kinase C signal transduction. Mol Endocrinol 25:460–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kauffman AS, Gottsch ML, Roa J (2007) Sexual differentiation of Kiss1 gene expression in the brain of the rat. Endocrinology 148:1774–1783

    Article  CAS  PubMed  Google Scholar 

  • Kelley CG, Lavorgna G, Clark ME, Boncinelli E, Mellon PL (2000) The Otx2 homeoprotein regulates expression from the gonadotropin-releasing hormone proximal promoter. Mol Endocrinol 14:1246–1256

    Article  CAS  PubMed  Google Scholar 

  • Kepa JK, Wang C, Neeley CI, Raynolds MV, Gordon DF, Wood WM, Wierman ME (1992) Structure of the rat gonadotropin releasing hormone (rGnRH) gene promoter and functional analysis in hypothalamic cells. Nucleic Acids Res 20:1393–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kepa JK, Spaulding AJ, Jacobsen BM, Fang Z, Xiong X, Radovick S, Wierman ME (1996a) Structure of the distal human gonadotropin releasing hormone (hGnRH) gene promoter and functional analysis in GT1-7 neuronal cells. Nucleic Acids Res 24:3614–3620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kepa JK, Jacobsen BM, Boen EA, Prendergast P, Edwards DP, Takimoto G, Wierman ME (1996b) Direct binding of progesterone receptor to nonconsensus DNA sequences represses rat GnRH. Mol Cell Endocrinol 117:3927–3910

    Article  Google Scholar 

  • Kim HH, Wolfe A, Cohen RN, Eames SC, Johnson AL, Wieland CN, Radovick S (2007) In vivo identification of a 107-base pair promoter element mediating neuron-specific expression of mouse gonadotropin-releasing hormone. Mol Endocrinol 21:457–471

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Semaan SJ, Clifton DK, Steiner RA, Dhamija S, Kauffman AS (2011) Regulation of Kiss1 expression by sex steroids in the amygdala of the rat and mouse. Endocrinology 152:2020–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirilov M, Clarkson J, Liu X, Roa J, Campos P, Porteous R, Schütz G, Herbison AE (2013) Dependence of fertility on kisspeptin-Gpr54 signaling at the GnRH neuron. Nat Commun 4:2492

    Article  PubMed  CAS  Google Scholar 

  • Kolodkin MH, Auger AP (2011) Sex difference in the expression of DNA methyltransferase 3a in the rat amygdala during development. J Neuroendocrinol 23:577–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar D, Freese M, Drexler D, Hermans-Borgmeyer I, Marquardt A, Boehm U (2014) Murine arcuate nucleus kisspeptin neurons communicate with GnRH neurons in utero. J Neurosci 34:3756–3766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurian JR (2016) Epigenetic regulation of the GnRH and Kiss1 genes. In: Binder E (ed) Epigenetics and neuroendocrinology, vol 1. Springer Nature, Switzerland, pp 243–264

    Google Scholar 

  • Kurian JR, Terasawa E (2013) Epigenetic control of gonadotropin releasing hormone neurons. Front Endocrinol (Lausanne) 4:61

    Article  Google Scholar 

  • Kurian JR, Keen KL, Terasawa E (2010a) Epigenetic changes coincide with in vitro primate GnRH neuronal maturation. Endocrinology 151:5359–5368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurian JR, Olesen KM, Auger AP (2010b) Sex differences in epigenetic regulation of the estrogen receptor-alpha promoter within the developing preoptic area. Endocrinology 151:2297–2305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurian JR, Kapke JA, Terasawa E (2011) Epigenetic contribution to GnRH neuronal development in male pubertal development. In: Abstracts for the Society for Neuroscience Annual Meeting, Washington, DC, No. 500.03

    Google Scholar 

  • Kurian JR, Terasawa E, Levine JE (2014) Ten eleven translocase 2 (Tet2) drives GnRH gene expression and enables the typical progression through puberty. In: Abstracts for the Endocrine Society Annual Meeting, Chicago, IL, No.OR03-3

    Google Scholar 

  • Lapatto R, Pallais JC, Zhang D, Chan YM, Mahan A, Cerrato F, Le WW, Hoffman GE, Seminara SB (2007) Kiss1−/− mice exhibit more variable hypogonadism than Gpr54−/− mice. Endocrinology 148:4927–4936

    Article  CAS  PubMed  Google Scholar 

  • Larder R, Mellon PL (2009) Otx2 induction of the gonadotropin-releasing hormone promoter is modulated by direct interactions with Grg co-repressors. J Biol Chem 284:16966–16978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larder R, Kimura I, Meadows J, Clark DD, Mayo S, Mellon PL (2013) Gene dosage of Otx2 is important for fertility in male mice. Mol Cell Endocrinol 377:16–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawson MA, Buhain AR, Jovenal JC, Mellon PL (1998) Multiple factors interacting at the GATA sites of the gonadotropin-releasing hormone neuron-specific enhancer regulate gene expression. Mol Endocrinol 12:364–377

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Miele ME, Hicks DJ, Phillips KK, Trent JM, Weissman BE, Welch DR (1996) KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst 88:1731–1737

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Lau AT, Jeong CH, Shim JH, Kim HG, Kim J, Bode AM, Dong Z (2010) Histone XH2AX is required for Xenopus anterior neural development: critical role of threonine 16 phosphorylation. J Biol Chem 285:29525–29534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926

    Article  CAS  PubMed  Google Scholar 

  • Lomniczi A, Loche A, Castellano JM, Ronnekleiv OK, Bosch M, Kaidar G, Knoll JG, Wright H, Pfeifer GP, Ojeda SR (2013) Epigenetic control of female puberty. Nat Neurosci 16:281–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lomniczi A, Wright H, Castellano JM, Matagne V, Toro CA, Ramaswamy S, Plant TM, Ojeda SR (2015) Epigenetic regulation of puberty via zinc finger protein-mediated transcriptional repression. Nat Commun 6:10195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuda KI, Mori H, Nugent BM, Pfaff DW, McCarthy MM, Kawata M (2011) Histone deacetylation during brain development is essential for permanent masculinization of sexual behavior. Endocrinology 152:2760–2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuda F, Nakatsukasa K, Suetomi Y, Naniwa Y, Ito D, Inoue N, Wakabayashi Y, Okamura H, Maeda KI, Uenoyama Y, Tsukamura H, Ohkura S (2015) The luteinising hormone surge-generating system is functional in male goats as in females: involvement of kisspeptin neurones in the medial preoptic area. J Neuroendocrinol 27:57–65

    Article  CAS  PubMed  Google Scholar 

  • Maurer JA, Wray S (1997) Luteinizing hormone-releasing hormone (LHRH) neurons maintained in hypothalamic slice explant cultures exhibit a rapid LHRH mRNA turnover rate. J Neurosci 17:9481–9491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy MM (1994) Molecular aspects of sexual differentiation of the rodent brain. Psychoneuroendocrinology 19:415–427

    Article  CAS  PubMed  Google Scholar 

  • Mehlmann LM (2005) Stops and starts in mammalian oocytes: recent advances in understanding the regulation of meiotic arrest and oocyte maturation. Reproduction 30:791–799

    Article  CAS  Google Scholar 

  • Mellon PL, Windle JJ, Goldsmith PC, Padula CA, Roberts JL, Weiner RI (1990) Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis. Neuron 5:1–10

    Article  CAS  PubMed  Google Scholar 

  • Messager S, Chatzidaki EE, Ma D, Hendrick AG, Zahn D, Dixon J, Thresher RR, Malinge I, Lomet D, Carlton MB, Colledge WH, Caraty A, Aparicio SA (2005) Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc Natl Acad Sci U S A 102:1761–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Messina A, Langlet F, Chachlaki K, Roa J, Rasika S, Jouy N, Gallet S, Gaytan F, Parkash J, Tena-Sempere M, Giacobini P, Prevot V (2016) A microRNA switch regulates the rise in hypothalamic GnRH production before puberty. Nat Neurosci 19:835–844

    Article  CAS  PubMed  Google Scholar 

  • Metzger E, Wissmann M, Yin N, Müller JM, Schneider R, Peters AH, Günther T, Buettner R, Schüle R (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437:436–439

    Article  CAS  PubMed  Google Scholar 

  • Moore JP Jr, Wray S (2000) Luteinizing hormone-releasing hormone biosynthesis and secretion in embryonic LHRH neurons. Endocrinology 141:4486–4495

    Article  CAS  PubMed  Google Scholar 

  • Murray EK, Varnum MM, Fernandez JL, de Vries GJ, Forger NG (2011) Effects of neonatal treatment with valproic acid on vasopressin immunoreactivity and olfactory behaviour in mice. J Neuroendocrinol 10:906–914

    Article  CAS  Google Scholar 

  • Navarro VM, Castellano JM, Fernández-Fernández R, Tovar S, Roa J, Mayen A, Barreiro ML, Casanueva FF, Aguilar E, Dieguez C, Pinilla L, Tena-Sempere M (2005a) Effects of KiSS-1 peptide, the natural ligand of GPR54, on follicle-stimulating hormone secretion in the rat. Endocrinology 146:1689–1697

    Article  CAS  PubMed  Google Scholar 

  • Navarro VM, Castellano JM, Fernández-Fernández R, Tovar S, Roa J, Mayen A, Nogueiras R, Vazquez MJ, Barreiro ML, Magni P, Aguilar E, Dieguez C, Pinilla L, Tena-Sempere M (2005b) Characterization of the potent luteinizing hormone-releasing activity of KiSS-1 peptide, the natural ligand of GPR54. Endocrinology 146:156–163

    Article  CAS  PubMed  Google Scholar 

  • Novaira HJ, Fadoju D, Diaczok D, Radovick S (2012) Genetic mechanisms mediating kisspeptin regulation of GnRH gene expression. J Neurosci 32:17391–17400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novaira HJ, Sonko ML, Radovick S (2016) Kisspeptin induces dynamic chromatin modifications to control GnRH gene expression. Mol Neurobiol 53:3315–3325

    Article  CAS  PubMed  Google Scholar 

  • Ohkura S, Takase K, Matsuyama S, Mogi K, Ichimaru T, Wakabayashi Y, Uenoyama Y, Mori Y, Steiner RA, Tsukamura H, Maeda KI, Okamura H (2009) Gonadotrophin-releasing hormone pulse generator activity in the hypothalamus of the goat. J Neuroendocrinol 21:813–821

    Article  CAS  PubMed  Google Scholar 

  • Okano M, Xie S, Li E (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 19:219–220

    Article  CAS  PubMed  Google Scholar 

  • Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    Article  CAS  PubMed  Google Scholar 

  • Ong CT, Corces VG (2014) CTCF: an architectural protein bridging genome topology and function. Nat Rev Genet 15:234–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan G, Tian S, Nie J, Yang C, Ruotti V, Wei H, Jonsdottir GA, Stewart R, Thomson JA (2007) Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell 1:299–312

    Article  CAS  PubMed  Google Scholar 

  • Pasini D, Bracken AP, Hansen JB, Capillo M, Helin K (2007) The polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol Cell Biol 27:3769–3779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phoenix CH, Goy RW, Gerall AA, Young WC (1959) Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology 65:369–382

    Article  CAS  PubMed  Google Scholar 

  • Poling MC, Kauffman AS (2013) Organizational and activational effects of sex steroids on kisspeptin neuron development. Front Neuroendocrinol 34:3–17

    Article  CAS  PubMed  Google Scholar 

  • Provenzano C, Pascucci B, Lupari E, Civitareale D (2010) Large scale analysis of transcription factor TTF-1/NKX2.1 target genes in GnRH secreting cell line GT1-7. Mol Cell Endocrinol 323:215–223

    Article  CAS  PubMed  Google Scholar 

  • Puttabyatappa M, Padmanabhan V (2017) Prenatal testosterone programming of insulin resistance in the female sheep. Adv Exp Med Biol 1043:575–596

    Article  CAS  PubMed  Google Scholar 

  • Quanbeck C, Sherwood NM, Millar RP, Terasawa E (1997) Two populations of luteinizing hormone-releasing hormone neurons in the forebrain of the rhesus macaque during embryonic development. J Comp Neurol 380:293–309

    Article  CAS  PubMed  Google Scholar 

  • Radovick S, Wray S, Lee E, Nicols DK, Nakayama Y, Weintraub BD, Westphal H, Cutler GB Jr, Wondisford FE (1991a) Migratory arrest of gonadotropin-releasing hormone neurons in transgenic mice. Proc Natl Acad Sci U S A 88:3402–3406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radovick S, Ticknor CM, Nakayama Y, Notides AC, Rahman A, Weintraub BD, Cutler GB Jr, Wondisford FE (1991b) Evidence for direct estrogen regulation of the human gonadotropin-releasing hormone gene. J Clin Invest 88:1649–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radovick S, Wray S, Muglia L, Westphal H, Olsen B, Smith E, Patriquin E, Wondisford FE (1994) Steroid hormone regulation and tissue-specific expression of the human GnRH gene in cell culture and transgenic animals. Horm Behav 28:520–529

    Article  CAS  PubMed  Google Scholar 

  • Ramaswamy S, Guerriero KA, Gibbs RB, Plant TM (2008) Structural interactions between kisspeptin and GnRH neurons in the mediobasal hypothalamus of the male rhesus monkey (Macaca mulatta) as revealed by double immunofluorescence and confocal microscopy. Endocrinology 149:4387–4395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramaswamy S, Seminara SB, Ali B, Ciofi P, Amin NA, Plant TM (2010) Neurokinin B stimulates GnRH release in the male monkey (Macaca mulatta) and is colocalized with kisspeptin in the arcuate nucleus. Endocrinology 151:4494–4503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramaswamy S, Dwarki K, Ali B, Gibbs RB, Plant TM (2013) The decline in pulsatile GnRH release, as reflected by circulating LH concentrations, during the infant-juvenile transition in the agonadal male rhesus monkey (Macaca mulatta) is associated with a reduction in kisspeptin content of KNDy neurons of the arcuate nucleus in the hypothalamus. Endocrinology 154:1845–1853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R (2000) Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci U S A 97:5237–5242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rave-Harel N, Miller NL, Givens ML, Mellon PL (2005) The Groucho-related gene family regulates the gonadotropin-releasing hormone gene through interaction with the homeodomain proteins MSX1 and OCT1. J Biol Chem 280:30975–30983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rometo AM, Krajewski SJ, Voytko ML, Rance NE (2007) Hypertrophy and increased kisspeptin gene expression in the hypothalamic infundibular nucleus of postmenopausal women and ovariectomized monkeys. J Clin Endocrinol Metab 92:2744–2750

    Article  CAS  PubMed  Google Scholar 

  • Ronnekleiv OK, Resko JA (1990) Ontogeny of gonadotropin-releasing hormone-containing neurons in early fetal development of rhesus macaques. Endocrinology 126:498–511

    Article  CAS  PubMed  Google Scholar 

  • Schermelleh L, Spada F, Easwaran HP, Zolghadr K, Margot JB, Cardoso MC, Leonhardt H (2005) Trapped in action: direct visualization of DNA methyltransferase activity in living cells. Nat Methods 2:751–756

    Article  CAS  PubMed  Google Scholar 

  • Schulz KM, Sisk CL (2006) Pubertal hormones, the adolescent brain, and the maturation of social behaviors: lessons from the Syrian hamster. Mol Cell Endocrinol 254–255:120–126

    Article  PubMed  CAS  Google Scholar 

  • Schulz KM, Molenda-Figueira HA, Sisk CL (2009) Back to the future: the organizational-activational hypothesis adapted to puberty and adolescence. Horm Behav 55:597–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz JM, Nugent BM, McCarthy MM (2010) Developmental and hormone-induced epigenetic changes to estrogen and progesterone receptor genes in brain are dynamic across the life span. Endocrinology 151:4871–4881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semaan SJ, Kauffman AS (2010) Sexual differentiation and development of forebrain reproductive circuits. Curr Opin Neurobiol 20:424–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semaan SJ, Kauffman AS (2015) Daily successive changes in reproductive gene expression and neuronal activation in the brains of pubertal female mice. Mol Cell Endocrinol 401:84–97

    Article  CAS  PubMed  Google Scholar 

  • Semaan SJ, Murray EK, Poling MC, Dhamija S, Forger NG, Kauffman AS (2010) BAX-dependent and BAX-independent regulation of Kiss1 neuron development in mice. Endocrinology 151:5807–5817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semaan SJ, Dhamija S, Kim J, Ku EC, Kauffman AS (2012) Assessment of epigenetic contributions to sexually-dimorphic Kiss1 expression in the anteroventral periventricular nucleus of mice. Endocrinology 153:1875–1886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS Jr, Shagoury JK, Bo-Abbas Y, Kuohung W, Schwinof KM, Hendrick AG, Zahn D, Dixon J, Kaiser UB, Slaugenhaupt SA, Gusella JF, O’Rahilly S, Carlton MB, Crowley WF Jr, Aparicio SA, Colledge WH (2003) The GPR54 gene as a regulator of puberty. N Engl J Med 349:1614–1627

    Article  CAS  PubMed  Google Scholar 

  • Shahab M, Mastronardi C, Seminara SB, Crowley WF, Ojeda SR, Plant TM (2005) Increased hypothalamic GPR54 signaling: a potential mechanism for initiation of puberty in primates. Proc Natl Acad Sci U S A 102:2129–2134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahab M, Lippincott M, Chan YM, Davies A, Merino PM, Plummer L, Mericq V, Seminara S (2018) Discordance in the dependence on kisspeptin signaling in mini puberty vs adolescent puberty: human genetic evidence. J Clin Endocrinol Metab 103:1273–1276

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen X, Liu Y, Hsu YJ, Fujiwara Y, Kim J, Mao X, Yuan GC, Orkin SH (2008) EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol Cell 32:491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simerly RB (1998) Organization and regulation of sexually dimorphic neuroendocrine pathways. Behav Brain Res 92:195–203

    Article  CAS  PubMed  Google Scholar 

  • Simerly RB (2002) Wired for reproduction: organization and development of sexually dimorphic circuits in the mammalian forebrain. Annu Rev Neurosci 25:507–536

    Article  CAS  PubMed  Google Scholar 

  • Smith JT (2008) Kisspeptin signalling in the brain: steroid regulation in the rodent and ewe. Brain Res Rev 57:288–298

    Article  CAS  PubMed  Google Scholar 

  • Smith JT (2013) Sex steroid regulation of kisspeptin circuits. Adv Exp Med Biol 784:275–295

    Article  CAS  PubMed  Google Scholar 

  • Smith JT, Cunningham MJ, Rissman EF, Clifton DK, Steiner RA (2005) Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology 146:3686–3692

    Article  CAS  PubMed  Google Scholar 

  • Smith JT, Li Q, Pereira A, Clarke IJ (2009) Kisspeptin neurons in the ovine arcuate nucleus and preoptic area are involved in the preovulatory luteinizing hormone surge. Endocrinology 150:5530–5538

    Article  CAS  PubMed  Google Scholar 

  • Smith JT, Shahab M, Pereira A, Pau KY, Clarke IJ (2010) Hypothalamic expression of KISS1 and gonadotropin inhibitory hormone genes during the menstrual cycle of a non-human primate. Biol Reprod 83:568–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stresemann C, Lyko F (2008) Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer 123:8–13

    Article  CAS  PubMed  Google Scholar 

  • Suberbielle E, Sanchez PE, Kravitz AV, Wang X, Ho K, Eilertson K, Devidze N, Kreitzer AC, Mucke L (2013) Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β. Nat Neurosci 16:613–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svedruzic ZM (2008) Mammalian cytosine DNA methyltransferase Dnmt1: enzymatic mechanism, novel mechanism-based inhibitors, and RNA-directed DNA methylation. Curr Med Chem 15:92–106

    Article  CAS  PubMed  Google Scholar 

  • Terasawa E (2001) Luteinizing hormone-releasing hormone (LHRH) neurons: mechanism of pulsatile LHRH release. Vitam Horm 63:91–129

    Article  CAS  PubMed  Google Scholar 

  • Terasawa E, Quanbeck CD, Schulz CA, Burich AJ, Luchansky LL, Claude P (1993) A primary cell culture system of luteinizing hormone releasing hormone (LHRH) neurons derived from fetal olfactory placode in the rhesus monkey. Endocrinology 133:2379–2390

    Article  CAS  PubMed  Google Scholar 

  • Terasawa E, Keen KL, Mogi K, Claude P (1999) Pulsatile release of luteinizing hormone-releasing hormone (LHRH) in cultured LHRH neurons derived from the embryonic olfactory placode of the rhesus monkey. Endocrinology 140:1432–1441

    Article  CAS  PubMed  Google Scholar 

  • Terasawa E, Busser BW, Luchansky LL, Sherwood NM, Jennes L, Millar RP, Glucksman MJ, Roberts JL (2001) Presence of luteinizing hormone-releasing hormone fragments in the rhesus monkey forebrain. J Comp Neurol 439:491–504

    Article  CAS  PubMed  Google Scholar 

  • Terasawa E, Garcia JP, Seminara SB, Keen KL (2018) Role of kisspeptin and neurokinin B in puberty in female non-humanprimates. Front Endocrinol (Lausanne) 9:148

    Article  Google Scholar 

  • Tomikawa J, Uenoyama Y, Ozawa M, Fukanuma T, Takase K, Goto T, Abe H, Ieda N, Minabe S, Deura C, Inoue N, Sanbo M, Tomita K, Hirabayashi M, Tanaka S, Imamura T, Okamura H, Maeda K, Tsukamura H (2012) Epigenetic regulation of Kiss1 gene expression mediating estrogen-positive feedback action in the mouse brain. Proc Natl Acad Sci U S A 109:1294–1301

    Article  Google Scholar 

  • Topaloglu AK, Tello JA, Kotan LD, Ozbek MN, Yilmaz MB, Erdogan S, Gurbuz F, Temiz F, Millar RP, Yuksel B (2012) Inactivating KISS1 mutation and hypogonadotropic hypogonadism. N Engl J Med 366:629–635

    Article  CAS  PubMed  Google Scholar 

  • Toro CA, Wright H, Aylwin CF, Ojeda SR, Lomniczi A (2018) Trithorax dependent changes in chromatin landscape at enhancer and promoter regions drive female puberty. Nat Commun 9:57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Uenoyama Y, Tomikawa J, Inoue N, Goto T, Minabe S, Ieda N, Nakamura S, Watanabe Y, Ikegami K, Matsuda F, Ohkura S, Maeda K, Tsukamura H (2016) Molecular and epigenetic mechanism regulating hypothalamic Kiss1 gene expression in mammals. Neuroendocrinology 103:640–649

    Article  CAS  PubMed  Google Scholar 

  • Vargas Trujillo M, Kalil B, Ramaswamy S, Plant TM (2017) Estradiol upregulates kisspeptin expression in the preoptic area of both the male and female Rhesus monkey (Macaca mulatta): implications for the hypothalamic control of ovulation in highly evolved primates. Neuroendocrinology 105:77–89

    Article  CAS  PubMed  Google Scholar 

  • Wallen K (2005) Hormonal influences on sexually differentiated behavior in nonhuman primates. Front Neuroendocrinol 26:7–26

    Article  CAS  PubMed  Google Scholar 

  • Wallen K (2009) The organizational hypothesis: reflections on the 50th anniversary of the publication of Phoenix, Goy, Gerall, and Young (1959). Horm Behav 55:561–565

    Article  PubMed  Google Scholar 

  • Watanabe Y, Uenoyama Y, Suzuki J, Takase K, Suetomi Y, Ohkura S, Inoue N, Maeda KI, Tsukamura H (2014) Oestrogen-induced activation of preoptic kisspeptin neurones may be involved in the luteinising hormone surge in male and female Japanese monkeys. J Neuroendocrinol 26:909–917

    Article  CAS  PubMed  Google Scholar 

  • Whyte DB, Lawson MA, Belsham DD, Eraly SA, Bond CT, Adelman JP, Mellon PL (1995) A neuron-specific enhancer targets expression of the gonadotropin-releasing hormone gene to hypothalamic neurosecretory neurons. Mol Endocrinol 9:467–477

    CAS  PubMed  Google Scholar 

  • Wu SC, Zhang Y (2010) Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 11:607–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie H, Hoffmann HM, Meadows JD, Mayo SL, Trang C, Leming SS, Maruggi C, Davis SW, Larder R, Mellon PL (2015) Homeodomain proteins six3 and six6 regulate gonadotrope-specific genes during pituitary development. Mol Endocrinol 29:842–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yagi H, Deguchi K, Aono A, Tani Y, Kishimoto T, Komori T (1998) Growth disturbance in fetal liver hematopoiesis of Mll-mutant mice. Blood 92:108–117

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi S, Hong K, Liu R, Shen L, Inoue A, Diep D, Zhang K, Zhang Y (2012) Tet1 controls meiosis by regulating meiotic gene expression. Nature 492:443–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Lin H, Xu H, Zhang L, Cheng L, Wen B, Shou J, Guan K, Xiong Y, Ye D (2014) TET-catalyzed 5-methylcytosine hydroxylation is dynamically regulated by metabolites. Cell Res 24:1017–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeo SH, Clarkson J, Herbison AE (2014) Kisspeptin-gpr54 signaling at the GnRH neuron is necessary for negative feedback regulation of luteinizing hormone secretion in female mice. Neuroendocrinology 100:191–197

    Article  CAS  PubMed  Google Scholar 

  • Yu BD, Hess JL, Horning SE, Brown GA, Korsmeyer SJ (1995) Altered Hox expression and segmental identity in Mll-mutant mice. Nature 378:505–508

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors express their sincere appreciation for many current and past postdoctoral research fellows, graduate students, and research specialists including Kim L. Keen, who has contributed to research in the Terasawa laboratory as well as Somaja Louis and Jennifer Li, who contributed to research in the Kurian laboratory. This work was supported by the NIH grants, HD011355, HD015344, and HD077447 for ET, ES020878 for JRK, and OD01106 and RR0061 for the WNPRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ei Terasawa .

Editor information

Editors and Affiliations

Key References

Key References

  • Clark and Mellon (1995). This is the first paper identifying that the homeodomain transcription factor Oct 1 regulates the GnRH gene transcription.

  • Iyer et al. (2011). This is the first paper demonstrating chromatin modifications of GnRH gene expression during neuronal differentiation.

  • Kepa et al. (1996a). This is one of the first works to analyze the structure of GnRH gene promoter.

  • Kurian et al. (2010a). This is the first paper to demonstrate that epigenetic changes occur during GnRH neuronal maturation.

  • Lomniczi et al. (2015). This is a seminal work demonstrating that Zinc finger protein is involved in prepubertal GnRH suppression in non-human primates.

  • Messina et al. (2016). This paper identified that microRNAs regulate GnRH gene expression, which correlates with the timing of puberty.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kurian, J.R., Terasawa, E. (2020). Epigenetic Regulation of the GnRH and Kiss1 Genes: Developmental Perspectives. In: Wray, S., Blackshaw, S. (eds) Developmental Neuroendocrinology. Masterclass in Neuroendocrinology, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-40002-6_9

Download citation

Publish with us

Policies and ethics