Skip to main content

Propagation of a Tsunami in the Ocean and Its Interaction with the Coast

  • Chapter
  • First Online:
Physics of Tsunamis

Abstract

Traditional ideas of tsunami propagation in the open ocean are dealt with. The significance is estimated of manifestations of phase and amplitude dispersions. Classical problems are considered, concerning variation of the amplitude of a long wave in a basin with gently varying depth (the Green’s law) and the reflection of a wave from a step and from a rectangular obstacle. Formulae of the ray method are presented in Cartesian and spherical coordinate systems. Phenomena of long-wave refraction and capture by underwater ridges and the shelf are described. Estimation is performed of linear (viscous) and nonlinear (turbulent) dissipation of the energy of long waves. The effect of a wave amplitude being reduced by scattering on bottom irregularities is considered. Approaches to the numerical simulation of tsunami wave propagation are described. Conventionally applied equations of nonlinear long-wave theory, taking into account the Coriolis force and bottom friction, are presented both in Cartesian and spherical coordinate systems. The technique for formulating initial and boundary conditions in the tsunami propagation problem is described. Brief information is given on certain tsunami models (codes), that are actively applied, at present. Features of transoceanic wave propagation are considered, taking advantage of the December 26, 2004 tsunami as an example. The main results, due to investigation of the issues of a tsunami run-up on the shore, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    With a precision up to a numerical coefficient, this quantity is in accordance with the result obtained in the book Pelinovsky (1996).

References

  • Abe, K.: A dislocation model of the 1933 Sanriku earthquake consistent with tsunami waves. J. Phys. Earth 26(4), 381–396 (1978)

    Article  Google Scholar 

  • Abe, K.: Size of great earthquakes of 1837–1974 inferred from tsunami data. J. Geophys. Res. 84, 1561–1568 (1979)

    Article  Google Scholar 

  • Aida, I.: Numerical experiments for the tsunami propagation the 1964 Niigata tsunami and 1968 Tokachi-Oki tsunami. Bull. Earthq. Res. Inst. Univ. Tokyo 47(4), 673–700 (1969)

    Google Scholar 

  • Aida, I.: Numerical computation of a tsunami based on a fault origin model of an earthquake. J. Seism. Soc. Jpn. 27(2), 141–154 (1974)

    Google Scholar 

  • Androsov, A., Behrens, J., Danilov, S.: Tsunami Modelling with Unstructured Grids. Interaction between Tides and Tsunami Waves. Computational Science and High Performance Computing IV. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, pp. 191–206. Springer, Berlin (2011)

    Chapter  Google Scholar 

  • Battjes, J.A.: Surf-zone dynamics. Ann. Rev. Fluid Mech. 20, 257–293 (1988)

    Article  Google Scholar 

  • Berger, M.J., Leveque, R.J.: Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems. SIAM J. Numer. Anal. 35, 2298–2316 (1998)

    Article  Google Scholar 

  • Bernatskiy, A.V., Nosov, M.A.: The role of bottom friction in models of nonbreaking tsunami wave runup on the shore. Izv. - Atmos. Ocean. Phys. 48(4), 427–431 (2012)

    Article  Google Scholar 

  • Bolshakova, A., Inoue, S., Kolesov, S., Matsumoto, H., Nosov, M., Ohmachi, T.: Hydroacoustic effects in the 2003 Tokachi-oki tsunami source. Russ. J. Earth. Sci. 12, ES2005 (2011). doi:10.2205/2011ES000509

    Article  Google Scholar 

  • Briggs, M.J., Synolakis, C.E., Harkins, G.S., Green, D.R.: Laboratory experiments of tsunami runup on a circular island. In Tsunamis: 1992–1994, pp. 569–593. Birkhäuser Basel (1995)

    Google Scholar 

  • Burwell, D., Tolkova, E., Chawla, A.: Diffusion and dispersion characterization of a numerical tsunami model. Ocean Model. 19, 10–30 (2007)

    Article  Google Scholar 

  • Carrier, G.F., Greenspan, H.P.: Water waves of finite amplitude on a sloping beach. J. Fluid Mech. 4, 97–109 (1958)

    Article  Google Scholar 

  • Carrier, G.F., Wu, T.T., Yeh, H.: Tsunami runup and drawdown on a plane beach. J. Fluid Mech. 475, 449–461 (2003)

    Article  Google Scholar 

  • Chan, I.-C., Liu, P.L.-F.: On the runup of long waves on a plane beach. J. Geophys. Res. 117, C08006 (2012)

    Article  Google Scholar 

  • Cherkesov, L.V.: Hydrodynamics of Surface and Internal Waves. Naukova Dumka, Kiev (1976)

    Google Scholar 

  • Choi, B.H., Pelinovsky, E., Kim, K.O., Lee, J.S.: Simulation of the trans-oceanic tsunami propagation due to the 1883 Krakatau volcanic eruption. Nat. Hazards Earth Syst. Sci. 3, 321–332 (2003)

    Article  Google Scholar 

  • Choi, B.H., Kim, D.C., Pelinovsky, E., Woo, S.B.: Three-dimensional simulation of tsunami run-up around conical island. Coast. Eng. 54(8), 618–629 (2007)

    Google Scholar 

  • Choi, B.-H., Pelinovsky, E., Kim, D.C., Didenkulova, I., Woo, S.-B.: Two- and three-dimensional computation of solitary wave runup on non-plane beach. Nonlinear Process. Geophys. 15, 489–502 (2008)

    Article  Google Scholar 

  • Chubarov, L.B., Yu.I., S., Gusiakov, V.K.: Numerical modeling of the 1973 Shikotan (Nemuro-Oki) tsunami. Comput. Fluids 12(2), 123–132 (1984)

    Google Scholar 

  • Didenkulova, I.: New trends in the analytical theory of long sea wave runup. In: Quak, E., Soomere, T. (eds.) Applied Wave Mathematics: Selected Topics in Solids, Fluids, and Mathematical Methods, pp. 265–296. Springer, Berlin (2009)

    Chapter  Google Scholar 

  • Didenkulova, I.: Tsunami runup in narrow bays: the case of Samoa 2009 tsunami. Nat. Hazards. 65(3), 1629–1636 (2013)

    Article  Google Scholar 

  • Didenkulova, I., Pelinovsky, E.: Traveling water waves along a quartic bottom profile. Proc. Est. Acad. Sci. 59(2), 166–171 (2010)

    Article  Google Scholar 

  • Didenkulova, I., Pelinovsky, E.: Runup of tsunami waves in U-shaped bays. Pure Appl. Geophys. 168(6–7), 1239–1249 (2011a)

    Google Scholar 

  • Didenkulova, I., Pelinovsky, E.: Nonlinear wave evolution and runup in an inclined channel of a parabolic cross-section. Phys. Fluids 23(8) (2011b). Article No: 086602

    Google Scholar 

  • Didenkulova, I., Didenkulov, O., Pelinovsky, E.: A note on the uncertainty in tsunami shape for estimation of its run-up heights. J. Ocean Eng. Mar. Energy 1, 199–205 (2015). doi:10.1007/s40722-015-0017-3

    Article  Google Scholar 

  • Didenkulova, I.I., Kurkin, A.A., Pelinovsky, E.N.: Run-up of solitary waves on slopes with different profiles. Izv. RAN, Atmos. Ocean. Phys. 43(3), 419–425 (2007a)

    Google Scholar 

  • Didenkulova, I., Pelinovsky, E., Soomere, T.: Run-up characteristics of tsunami waves of “unknown” shapes. Pure Appl. Geophys. 165(11–12), 2249–2264 (2008)

    Article  Google Scholar 

  • Didenkulova, I., Pelinovsky, E., Soomere, T.: Long surface wave dynamics along a convex bottom. J. Geophys. Res Oceans. 114 (2009). Article No: C07006

    Google Scholar 

  • Didenkulova, I., Pelinovsky, E., Soomere, T., Zahibo, N.: In: Kundu, A. (ed.) Tsunami and Nonlinear Waves, pp. 175–190. Springer, Berlin (2007b)

    Google Scholar 

  • Dobrokhotov, S.Yu., Tirozzi, B.: Localized solutions of one-dimensional nonlinear system of shallow-water equations with velocity c = \(\sqrt{x} \). Usp. Mat. Nauk 65(1), 185–186 (2010)

    Google Scholar 

  • Dotsenko, S.F.: Run-up of a solitary tsunami wave on an sloping shore. Morsk. Gidrofiz. Issled. (4), 11–18 (2005)

    Google Scholar 

  • Fernandez, H., Sriram, V., Schimmels, S., Oumeraci, H.: Extreme wave generation using self correcting method - revisited. Coast. Eng. 93, 15–31 (2014)

    Article  Google Scholar 

  • Fine, I.V., Rabinovich, A.B., Bornhold, B.D., Thomson, R.E., Kulikov, E.A.: The grand banks landslide-generated tsunami of November 18, 1929: preliminary analysis and numerical modeling. Mar. Geol. 215, 45–57 (2005)

    Article  Google Scholar 

  • Fritz, H.M., Borrero, J.C., Synolakis, C.E., Yoo, J.: 2004 Indian Ocean tsunami flow velocity measurements from survivor videos. Geophys. Res. Lett. 33(24), L24605 (2006)

    Article  Google Scholar 

  • Fritz, H.M., Phillips, D.A., Okayasu, A., Shimozono, T., Liu, H., Mohammed, F., Skanavis, V., Synolakis, C.E., Takahashi, T.: The 2011 Japan tsunami current velocity measurements from survivor videos at Kesennuma Bay using LiDAR. Geophys. Res. Lett. 39, L00G23 (2012)

    Article  Google Scholar 

  • Fujii, Y., Satake, K.: Tsunami source of the 2004 Sumatra-Andaman earthquake inferred from tide gauge and satellite data. Bull. Seismol. Soc. Am. 97(1A), S192–S207 (2007)

    Article  Google Scholar 

  • Gonzalez F.I., Bernard S.N., Milbern H.B., et al.: The Pacific tsunami observation program (PacTOP). In: Proceedings of the IUGG/IOC, International Tsunami Symposium, pp. 3–19 (1987)

    Google Scholar 

  • Golubtsova, T.S., Mazova, R.Kh.: Run-Up of Alternating Waves on the Shore, in Oscillations and Waves in the Mechanics of Continuous Media, pp. 30–43. GPI, Gorky (1989)

    Google Scholar 

  • Gusyakov, V.K., Chubarov, L.B.: Numerical simulation of the Shikotan (Nemuro-oki) tsunami of June 17, 1973 (in Russian). Tsunami Evolution from the Source to the Coast Runup, pp. 16–24. Radio i svyaz’, Moscow (1982)

    Google Scholar 

  • Gusyakov, V.K., Chubarov, L.B.: Numerical simulation of tsunami excitation and propagation in the coastal zone. Earth Phys. (in Russian) (1), 53–64 (1987)

    Google Scholar 

  • Grilli, S.T., Harris, J.C., Tajalibakhsh, T., Masterlark, T.L., Kyriakopoulos, C., Kirby, J.T., Shi, F.: Numerical simulation of the 2011 Tohoku tsunami based on a new transient FEM co-seismic source: comparison to far- and near-field observations. Pure Appl. Geophys. 170(6–8), 1333–1359 (2013)

    Article  Google Scholar 

  • Harbitz, C.B., Glimsdal, S., Løvholt, F., Kveldsvik, V., Pedersen, G.K., Jensen, A.: Rockslide tsunamis in complex fjords: from an unstable rock slope at Åkerneset to tsunami risk in western Norway. Coast. Eng. 88, 101–122 (2014)

    Article  Google Scholar 

  • Harig, S., Chaeroni, C., Pranowo, W.S., Behrens, J.: Tsunami simulations on several scales: comparison of approaches with unstructured meshes and nested grids. Ocean Dyn. 58, 429–440 (2008)

    Article  Google Scholar 

  • Hayashi, S., Koshimura, S.: The 2011 Tohoku tsunami flow velocity estimation by the aerial video analysis and numerical modeling. J. Disaster Res. 8(4), 561–572 (2013)

    Article  Google Scholar 

  • Hibberd, S., Peregrine, D.H.: Surf and runup on a beach: a uniform bore. J. Fluid Mech. 95, 323–345 (1979). Part 2

    Article  Google Scholar 

  • Ilgamov M.P., Gilmanov P.N. Non-reflective Boundary Conditions, 240 pp. “Fizmatlit”, Moscow (2003) (in Russian)

    Google Scholar 

  • Imamura, F., Yalciner, A.C., Ozyurt, G.: Tsunami modelling manual (TUNAMI model). Revision due on APRIL, 58 pp. (2006)

    Google Scholar 

  • Imamura, F., Goto, C., Ogawa, Y., Shuto, N.: Numerical method of tsunami simulation with the leap-frog scheme. IUGG/IOC Time Project Manuals (May) (1995)

    Google Scholar 

  • Israeli, M., Orzag, S.A.: Approximation of radiation boundary conditions. J. Comput. Physics. 41, 115–135 (1981)

    Article  Google Scholar 

  • Jacques, V.M., Soloviev, S.L.: Remote registration of weak tsunami-type waves on the shelf of the Kuril islands. DAN SSSR (in Russian) 198(4), 816–817 (1971)

    Google Scholar 

  • James, L.: Waves in Fluids. Cambridge University Press, Cambridge (1978)

    Google Scholar 

  • Kaistrenko, V.M., Pelinovsky, E.N., Simonov, K.V.: Wave runup and transformation in shallow water (in Russian). Meteorol. Hydrol. 10, 68–75 (1985a)

    Google Scholar 

  • Kaistrenko, V.M., Pelinovskii, E.N., Simonov, K.V.: Run-up and transformation of tsunami waves in shallow water. Meteorol. Hydrol. 10, 68–75 (1985b)

    Google Scholar 

  • Kaistrenko, V.M., Mazova, R.Kh., Pelinovsky, E.N., Simonov, K.V.: Analytical theory for tsunami run up on a smooth slope. J. Tsunami Soc. 9(2), 115–127 (1991)

    Google Scholar 

  • Kanoglu, U.: Nonlinear evolution and runup-rundown of long waves over a sloping beach. J. Fluid Mech. 513, 363–372 (2004)

    Article  Google Scholar 

  • Kanoglu, U., Synolakis, C.: Initial value problem solution of nonlinear shallow water-wave equations. Phys. Rev. Lett. 97, 148501 (2006)

    Article  Google Scholar 

  • Kato, T., Terada, Y., Nishimura, H., Nagai, T., Koshimura, S.I.: Tsunami records due to the 2010 Chile earthquake observed by GPS buoys established along the Pacific coast of Japan. Earth, Planets Space 63(6), e5–e8 (2011)

    Article  Google Scholar 

  • Keller, H.B., Levine, D.A., Whitham, G.H.: Motion of a bore over sloping beach. J. Fluid Mech. 7, 302–316 (1960)

    Article  Google Scholar 

  • Kim, S.K., Liu, Ph.L-F, Liggett, J.A.: Boundary integral equation solutions for solitary wave generation, propagation and runup. Coast. Eng. 7, 299–317 (1983)

    Google Scholar 

  • Ko, H.S., Cox, D.T., Riggs, H.R., Naito, C.J.: Hydraulic experiments on impact forces from tsunami-driven debris. J. Waterway, Port Coast. Ocean Eng. (2014)

    Google Scholar 

  • Kosloff, R., Kosloff, D.: Absorbing boundaries for the wave propagation problem. J. Comput. Phys. 63, 363–376 (1986)

    Article  Google Scholar 

  • Kowalik, Z., Knight, W., Logan, T., Whitmore, P.: The tsunami of 26 December, 2004: numerical modeling and energy considerations. Pure Appl. Geophys. 164, 379–393 (2007)

    Article  Google Scholar 

  • Kulikov, E.A., Gonzalez, F.I.: Reconstruction of the shape of a tsunami signal at the source by measurements of hydrostatic pressure oscillations using a remote bottom sensor (in Russian). DAN RF 344(6), 814–818 (1995)

    Google Scholar 

  • Kulikov, E.A., Rabinovich, A.B., Thomson, R.E., Bornhold, B.D.: The landslide tsunami of November 3, 1994. Skagway Harbor. Alaska. J. Geophys. Res. 101(C3), 6609–6615 (1996)

    Article  Google Scholar 

  • Kulikov, E.A., Medvedev, P.P., Lappo, S.S.: Registration from outer space of the December 26, 2004, tsunami in the Indian Ocean (in Russian). DAN RF 401(4), 537–542 (2005)

    Google Scholar 

  • Lamb, H.: Hydrodynamics. Cambridge University Press, Cambridge (1932)

    Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, 2nd English edn. Pergamon Press, New York (1987)

    Google Scholar 

  • LeVeque, R.J., George, D.L., Berger, M.J.: Tsunami modelling with adaptively refined finite volume methods. Acta Numerica. 20, 211–289 (2011)

    Article  Google Scholar 

  • Linton, D., Gupta, R., Cox, D., van de Lindt, J., Oshnack, M.E., Clauson, M.: Evaluation of tsunami loads on wood-frame walls at full scale. J. Struct. Eng. 139(8), 1318–1325 (2013)

    Article  Google Scholar 

  • Liu, P.L.F., Synolakis, C.E., Yeh, H.H.: Report on the international workshop on long-wave run-up. J. Fluid Mech. 229, 675–688 (1991)

    Article  Google Scholar 

  • Liu, P.L.F., Cho, Y.S., Briggs, M.J., Kanoglu, U., Synolakis, C.E.: Runup of solitary waves on a circular island. J. Fluid Mech. 302, 259–285 (1995)

    Google Scholar 

  • Liu P.L.F., Woo S.B., Cho Y.S.: Computer programs for tsunami propagation and inundation. Technical report, Cornell University, 104 pp. (1998)

    Google Scholar 

  • Liu, P.L.-F., Lynett, P., Synolakis, C.E.: Analytical solutions for forced long waves on a sloping beach. J. Fluid Mech. 478, 101–109 (2003)

    Article  Google Scholar 

  • Li, Y., Raichlen, F.: Non-breaking and breaking solitary wave run-up. J. Fluid Mech. 456, 295–318 (2002)

    Article  Google Scholar 

  • Løvholt, F., Pedersen, G., Glimsdal, S.: Coupling of dispersive tsunami propagation and shallow water coastal response. Open Oceanogr. J. 4, 71–82 (2010)

    Google Scholar 

  • Lyatkher, V.M., Militeev, A.N.: Calculation of runup on slope for long gravitational waves (in Russian). Oceanology (1), 37–43 (1974)

    Google Scholar 

  • Lynett, P., Borrero, J., Liu, P.L.-F., Synolakis, C.E.: Field survey and numerical simulations: a review of the 1998 Papua New Guinea tsunami. Pure Appl. Geophys. 160, 2119–2146 (2003)

    Article  Google Scholar 

  • Ma, G., Shi, F., Kirby, J.T.: Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Model. 43–44, 22–35 (2012)

    Article  Google Scholar 

  • Madsen, P.A., Fuhrman, D.R., Schaffer, H.A.: On the solitary wave paradigm for tsunamis. J. Geophys. Res. 113, C12012 (2008)

    Google Scholar 

  • Maeda, T., Furumura, T.: FDM simulation of seismic waves, ocean acoustic waves, and tsunamis based on tsunami-coupled equations of motion. Pure Appl. Geophys. 170(1–2), 109–127 (2013)

    Article  Google Scholar 

  • Marchuk, An.G, Chubarov, L.B., Shokin, Yu.I: Numerical Simulation of Tsunami Waves (in Russian). Nauka, Novosibirsk (1983)

    Google Scholar 

  • Matsuyama, M., Ikeno, M., Sakakiyama, T., Takeda, T.: A study of tsunami wave fission in an undistorted experiment. Pure Appl. Geophys. 164(2–3), 617–631 (2007)

    Article  Google Scholar 

  • Mazova, R.Kh., Pelinovsky, E.N., Soloviev, S.L.: Statistical data on the character of the runup of tsunami waves (in Russian). Oceanology 23(6), 932–937 (1983)

    Google Scholar 

  • Milburn, H.B., Nakamura, A.I., González, F.I.: Real-time tsunami reporting from the deep ocean. In: Proceedings of the Oceans 96 MTS/IEEE Conference, 23–26 September 1996, Fort Lauderdale, FL, pp. 390–394 (1996)

    Google Scholar 

  • Mofjeld, H.O., Titov V.V., González, F.I., Newman, J.C.: Analytic theory of tsunami wave scattering in the open ocean with application to the North Pacific. NOAA Technical Memorandum OAR PMEL-116. PMEL, Seattle, Wash (2000)

    Google Scholar 

  • Murty, T.S.: Storm surges. Meteorological ocean tides. Department of Fisheries and Oceans, Bulletin 212, Ottawa (1984)

    Google Scholar 

  • Nakoulima, O., Zahibo, N., Pelinovsky, E., Talipova, T., Kurkin, A.: Solitary wave dynamics in shallow water above periodic bottom. Chaos 15(3), 037107 (2005)

    Article  Google Scholar 

  • Nekrasov, A.V.: On the reflection of tidal waves from the shelf zone (in Russian). Oceanology 13(2), 210–215 (1973)

    Google Scholar 

  • Nicolsky, D.J., Suleimani, E.N., Hansen, R.A.: Validation and verification of a numerical model for tsunami propagation and runup. Pure Appl. Geophys. 168(6–7), 1199–1222 (2011)

    Article  Google Scholar 

  • Nistor, I., Palermo, D., Nouri, Y., Murty, T., Saatcioglu, M.: Tsunami-induced forces on structures. Handbook of Coastal and Ocean Engineering, pp. 261–286. World Scientific, Singapore (2009)

    Chapter  Google Scholar 

  • Nosov, M.A., Kolesov, S.V.: Elastic oscillations of water column in the 2003 Tokachi-Oki tsunami source: in-situ measurements and 3-D numerical modelling. Nat. Hazards Earth Syst. Sci. 7, 243–249 (2007)

    Article  Google Scholar 

  • Nosov, M.A., Moshenceva, A.V., Kolesov, S.V.: Horizontal motions of water in the vicinity of a tsunami source. Pure Appl. Geophys. 170(9–10), 1647–1660 (2013). doi:10.1007/s00024-012-0605-2

    Article  Google Scholar 

  • Okal, E.A., Piatanesi, A., Heinrich, P.: Tsunami detection by satellite altimetry. J. Geophys. Res. 104, 599–615 (1999)

    Article  Google Scholar 

  • Ohmachi, T., Tsukiyama, H., Matsumoto, H.: Simulation of tsunami induced by dynamic displacement of seabed due to seismic faulting. Bull. Seismol. Soc. Am. 91(6), 1898–1909 (2001)

    Article  Google Scholar 

  • Park, H., Cox, D.T., Lynett, P.J., Wiebe, D.M., Shin, S.: Tsunami inundation modeling in constructed environments: a physical and numerical comparison of free-surface elevation, velocity, and momentum flux. Coast. Eng. 79, 9–21 (2013)

    Article  Google Scholar 

  • Pedersen, G., Gjevik, B.: Run-up of solitary waves. J. Fluid Mech. 135, 283–290 (1983)

    Article  Google Scholar 

  • Pelinovsky, E.N.: Nonlinear Dynamics of Tsunami Waves (in Russian). Institute of Applied Physics, USSR AS.Gorky (1982)

    Google Scholar 

  • Pelinovsky, E.: Nonlinear hyperbolic equations and run-up of huge sea waves. Appl. Anal. 57, 63–84 (1995)

    Article  Google Scholar 

  • Pelinovsky, E.N.: Hydrodynamics of Tsunami Waves (in Russian). Institute of Applied Physics, RAS, Nizhnii Novgorod (1996)

    Google Scholar 

  • Pelinovsky, E., Mazova, R.: Exact analytical solutions of nonlinear problems of tsunami wave run-up on slopes with different profiles. Nat. Hazards 6, 227–249 (1992)

    Article  Google Scholar 

  • Pelinovsky, E.N., Stepanyants, Yu., Talipova, T.: Nonlinear dispersion model of sea waves in the coastal zone. J. Korean Soc. Coast. Ocean Eng. 5(4), 307–317 (1993)

    Google Scholar 

  • Piatanesi, A., Tinti, S., Bortolucci, E.: Finite-element simulations of the 28 December 1908 Messina straits (Southern Italy) tsunami. Phys. Chem. Earth (A) 24, 145–150 (1999)

    Article  Google Scholar 

  • Popinet, S.: Adaptive modelling of long-distance wave propagation and fine-scale flooding during the Tohoku tsunami. Nat. Hazards Earth Syst. Sci. 12, 1213–1227 (2012)

    Article  Google Scholar 

  • Rabinovich, A.B., Eblé, M.C.: Deep-ocean measurements of tsunami waves. Pure Appl. Geophys. 1–32 (2015)

    Google Scholar 

  • Riggs, H.R., Cox, D.T., Naito, C.J., Kobayashi, M.H., Aghl, P.P., Ko, H.S., Khowitar, E.: Experimental and analytical study of water-driven debris impact forces on structures. J. Offshore Mech. Arctic Eng. 136(4), 041603 (2014)

    Article  Google Scholar 

  • Roeber, V., Cheung, K.F.: Boussinesq-type model for energetic breaking waves in fringing reef environments. Coast. Eng. 70, 1–20 (2012)

    Article  Google Scholar 

  • Rossetto, T., Allsop, W., Charvet, I., Robinson, D.I.: Physical modelling of tsunami using a new pneumatic wave generator. Coast. Eng. 58(6), 517–527 (2011)

    Article  Google Scholar 

  • Satake, K.: Effects of bathymetry on tsunami propagation: application of ray tracing to tsunamis. PAGEOPH 126, 27–36 (1988)

    Article  Google Scholar 

  • Schimmels, S., Sriram, V., Didenkulova, I., Fernandez, H.: On the generation of tsunami in a large scale wave flume. In: Lynett P.J. (ed.) Proceedings of 34th International Conference on Coastal Engineering, Seoul, Korea, pp. 1–10, 15–20 June 2014

    Google Scholar 

  • Sielecki, A., Wurtele, M.: The numerical integration of the nonlinear shallow water equations with sloping boundaries. J. Comput. Phys. 6, 219–236 (1970)

    Article  Google Scholar 

  • Shen, M.C., Meyer, R.E.: Climb of a bor on a beach. Part 3. Run-up. J. Fluid Mech. 16, 113–125 (1963)

    Article  Google Scholar 

  • Shermeneva, M.A., Shugan, I.V.: Calculating the wave runup on a low-sloping beach using a high-order Boussinesq model. Tech. Phys. Lett. 32(1), 64–66 (2006)

    Article  Google Scholar 

  • Shi, F., Kirby, J.T., Harris, J.C., Geiman, J.D., Grilli, S.T.: A high-order adaptive time-stepping TVD solver for boussinesq modeling of breaking waves and coastal inundation. Ocean Model. 43–44, 36–51 (2012)

    Article  Google Scholar 

  • Shokin, Yu.I., Babailov, V.V., Beisel, S.A., Chubarov, L.B., Eletsky, S.V., Fedotova, Z.I., Gusyakov, V.K.: Mathematical modeling in application to regional tsunami warning systems operations. Computational Science and High Performance Computing III. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, pp. 52–68. Springer, Berlin (2008)

    Google Scholar 

  • Spielvogel, L.Q.: Single-wave runup on sloping beaches. J. Fluid Mech. 74, 685–694 (1975)

    Article  Google Scholar 

  • Stoker, J.J.: Water Waves. Interscience Publishers, New York (1957)

    Google Scholar 

  • Sugawara, D., Goto, K., Jaffe, B.E.: Numerical models of tsunami sediment transport-current understanding and future directions. Mar. Geol. 352, 295–320 (2014)

    Article  Google Scholar 

  • Synolakis, C.E.: The runup of solitary waves. J. Fluid Mech. 185, 523–545 (1987)

    Article  Google Scholar 

  • Synolakis, C.E., Deb, M.K., Skjelbreia, J.E.: The anomalous behavior of the run-up of cnoidal waves. Phys. Fluids. 31(1), 3–5 (1988)

    Article  Google Scholar 

  • Synolakis, C.E., Fritz, M.H., Borrero, C.J.: Far field surveys of the Indian Ocean tsunami: Sri Lanka, Maldives and Somalia. In: Papadopoulos, G.A. (ed.) 22nd International Tsunami Symposium, Chania, Crete island, Greece, pp. 57–64, 27–29 June, 2005

    Google Scholar 

  • Tadepalli, S., Synolakis, C.E.: The runup of N-waves on sloping beaches. Proc. R. Soc. Lond. A. 445, 99–112 (1994)

    Article  Google Scholar 

  • Tang, L., Titov, V.V., Bernard, E., Wei, Y., Chamberlin, C., Newman, J.C., Mofjeld, H., Arcas, D., Eble, M., Moore, C., Uslu, B., Pells, C., Spillane, M.C., Wright, L.M., Gica, E.: Direct energy estimation of the 2011 Japan tsunami using deep-ocean pressure measurements. J. Geophys. Res. 117, C08008 (2012)

    Google Scholar 

  • Tinti, S., Bortolucci, E., Chiavettieri, C.: Tsunami excitation by submarine slides in shallow water approximation. Pure Appl. Geophys. 158(4), 759–797 (2001)

    Article  Google Scholar 

  • Tinti, S., Tonini, R.: Analytical evolution of tsunamis induced by near-shore earthquakes on a constant-slope ocean. J. Fluid Mech. 535, 33–64 (2005)

    Article  Google Scholar 

  • Titov, V.V., Synolakis, C.E.: Modelling of breaking and nonbreaking long wave evolution and runup using VTCS-2. J. Waterways Ports Coast. Ocean Eng. 121(6), 308–316 (1995)

    Article  Google Scholar 

  • Titov, V.V., Gonzalez, F.I., Mofjeld, H.O., Venturato, A.J.: NOAA time Seattle tsunami mapping project: procedures, data sources, and products. NOAA Technical Memorandum OAR PMEL-124, 21 pp. (2003)

    Google Scholar 

  • Titov, V.V., Gonzalez, F.I., Bernard, E.N., et al.: Real-time tsunami forecasting: challenges and solutions. Nat. Hazards (Special Issue) 35(1), 41–58 (2005). U.S. National Tsunami Hazard Mitigation Program

    Google Scholar 

  • Voltsinger, N.E., Klevanny, K.A., Pelinovsky, E.N.: Longwave Dynamics of Coastal Zone (in Russian). Gidrometeoizdat, Leningrad (1989)

    Google Scholar 

  • Walters, R.A.: Design considerations for a finite element coastal ocean model. Ocean Model. 15, 90–100 (2006)

    Article  Google Scholar 

  • Watada, S., Kusumoto, S., Satake, K.: Traveltime delay and initial phase reversal of distant tsunamis coupled with the self-gravitating elastic earth. J. Geophys. Res. Solid Earth 119, 4287–4310 (2014)

    Article  Google Scholar 

  • Wei, Y., Bernard, E., Tang, L., Weiss, R., Titov, V., Moore, C., Spillane, M., Hopkins, M., Kanoglu, U.: Real-time experimental forecast of the Peruvian tsunami of August 2007 for U.S. coastlines. Geophys. Res. Lett. 35, L04609 (2008)

    Google Scholar 

  • Yamazaki, Y., Kowalik, Z., Cheung, K.F.: Depth-integrated, non-hydrostatic model for wave breaking and run-up. Int. J. Numer. Methods Fluids. 61, 473–497 (2009)

    Article  Google Scholar 

  • Yeh, H., Liu, Ph., Briggs, M., Synolakis, C.: Propagation and amplification of tsunamis at coastal boundaries. Lett. Nat. 372, 353–355 (1994)

    Google Scholar 

  • Yeh, H., Liu, Ph.L-F, Synolakis, C.: Long-Wave Runup. World Scientific, Singapore (1996) 403 pp

    Google Scholar 

  • Zaytsev, A.I., Chernov, A.G., Yalciner, A.C., Pelinovsky, E.N., Kurkin, A.A.: MANUAL Tsunami Simulation/Visualization Code NAMI DANCE versions 4.9, February 2010

    Google Scholar 

  • Zhang, Y.J., Baptista, A.M.: An efficient and robust tsunami model on unstructured grids. part i: inundation benchmarks. Pure Appl. Geophys. 165, 2229–2248 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris W. Levin .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Levin, B.W., Nosov, M.A. (2016). Propagation of a Tsunami in the Ocean and Its Interaction with the Coast. In: Physics of Tsunamis. Springer, Cham. https://doi.org/10.1007/978-3-319-24037-4_6

Download citation

Publish with us

Policies and ethics