Skip to main content

Source of a Tsunami of Seismotectonic Origin

  • Chapter
  • First Online:
Physics of Tsunamis

Abstract

Modern ideas are presented concerning the source of an earthquake and the seismotectonic source of a tsunami. The main physical processes taking place at a tsunami source are described. Estimation is performed of the role of secondary effects: of displacements of the bottom, occurring in its own plane, of the Coriolis force, of density stratification of the water. The Okada formulae are presented and the technique is exposed for calculating coseismic ocean bottom deformations caused by an underwater earthquake. The dependence of the properties of coseismic ocean bottom deformation at the tsunami source upon the earthquake magnitude and depth is analyzed applying the Okada formulae in the case of a rectangular fault. Formulae are presented that relate the maximum values of the ocean bottom deformation amplitude, the displaced volume, and the initial elevation energy to the moment magnitude of the earthquake. From the slip distribution, adopted from the SRCMOD database, the vector fields of coseismic ocean bottom deformations were calculated applying the Okada formulae for the sources of 75 underwater earthquakes that occurred during the period between 1923 and 2013. It was shown that horizontal deformation components of an inclined bottom, as a rule, provide an additional and noticeable contribution to the displaced water volume and to the potential energy of the initial elevation (the tsunami energy). The relationships were analyzed between the ocean bottom deformation amplitude, the displaced volume and the tsunami energy, and the moment magnitude of the earthquake; the respective regression dependences were plotted. The part of the earthquake energy transferred to the tsunami waves was shown to increase with its moment magnitude, but even in the case of catastrophic earthquakes it does not exceed 0.1 %. From HTDB/WLD and GHTD/NGDC data the peculiarities were investigated of the space–time distribution of tsunamis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alekseev, A.S., Gusyakov, V.K.: Numerical modeling of tsunami and seismic surface wave generation by a submarine earthquake. In: Heath, R.A., Creswell, M.M. (eds.) Proceedings of Tsunami Res. Symposium, pp. 243–252. Roy. Soc. New Zealand, Wellington (1976)

    Google Scholar 

  • Alewine, R.W., Jordan, T.H.: Generalized inversion of earthquake static displacement fields. Geophys. J. R. Astron. Soc. 35, 357–380 (1973)

    Google Scholar 

  • Bassin, C., Laske, G., Masters, G.: The current limits of resolution for surface wave tomography in North America, EOS. Trans. Am. Geophys. Un. 81, F897 (2000)

    Google Scholar 

  • Bernatskiy, A.V., Nosov, M.A.: The role of bottom friction in models of nonbreaking tsunami wave runup on the shore. Izv. Atmos. Ocean. Phys. 48(4), 427–431 (2012)

    Article  Google Scholar 

  • Bolshakova, A.V., Nosov, M.A.: Parameters of tsunami source versus earthquake magnitude. Pure Appl. Geophys. 168, 2023–2031 (2011). doi:10.1007/s00024-011-0285-3

    Article  Google Scholar 

  • Bolshakova, A.V., Nosov, M.A., Kolesov, S.V.: The properties of co-seismic deformations of the ocean bottom as indicated by the slip-distribution data in tsunamigenic earthquake sources. Mosc. Univ. Phys. Bull. 70(1), 62–67 (2015)

    Article  Google Scholar 

  • Chinnery, M.A.: The deformation of ground around surface faults. Bull. Seism. Soc. Am. 51, 355–372 (1961)

    Google Scholar 

  • Dotsenko, S.F., Soloviev, S.L.: Mathematical modelling of tsunami excitation processes by slides of the ocean bottom. Tsunami Res. (in Russian), 4, 8–20. Moscow (1990a)

    Google Scholar 

  • Dotsenko, S.F., Soloviev, S.L.: Comparative analysis of tsunami excitation by “piston” and “membrane” bottom slides. Tsunami Res. (in Russian), 4, 21–27 (1990b)

    Google Scholar 

  • Ekström, G., Nettles, M., Dziewonski, A.M.: The global CMT project 2004–2010: centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Int. 200–201, 1–9 (2012). doi:10.1016/j.pepi.2012.04.002

    Google Scholar 

  • Fujii, Y., Satake, K., Sakai, S.I., Shinohara, M., Kanazawa, T.: Tsunami source of the 2011 off the Pacific coast of Tohoku earthquake. Earth Planets Space 63(7), 815–820 (2011)

    Article  Google Scholar 

  • Gusiakov, V.K.: Residual displacements on the surface of an elastic half-space. In: Conditionally Well-Posed Problems of Mathematical Physics in the Interpretation of Geophysical Observations (VTs SO RAN, Novosibirsk, 1978), pp. 23–51 (in Russian)

    Google Scholar 

  • Gusiakov, V.K.: Relationship of tsunami intensity to source earthquake magnitude as retrieved from historical data. Pure Appl. Geophys. 168, 2033–2041 (2011)

    Google Scholar 

  • Gusiakov, V.K.: Strongest tsunamis in the World Ocean and the problem of marine coastal security. Izv. Atmos. Ocean. Phys. 50(5), 435–444 (2014)

    Article  Google Scholar 

  • Handbook for tsunami forecast in the Japan sea. Earthquake and Tsunami observation division, seismological and volcanological department, Japan meteorological agency, 22 pp. (2001)

    Google Scholar 

  • Hatori, T.: Vertical crustal deformation and tsunami energy. Bull. Earthq. Res. Inst. 48, 171–188 (1970)

    Google Scholar 

  • Iida, K.: Magnitude, energy and generation mechanism of tsunamis and a catalogue of earthquakes associated with tsunamis In: Proceedings of Tsunami Meeting Association 10th Pacific Scientific Congress, 1961, I.U.G.G. Monograph vol. 24, pp. 7–18 (1963)

    Google Scholar 

  • Ito, Y., Tsuji, T., Osada, Y., Kido, M., Inazu, D., Hayashi, Y., Tsushima, H., Hino, R., Fujimoto, H.: Frontal wedge deformation near the source region of the 2011 Tohoku-Oki earthquake. Geophys. Res. Lett. 38, L00G05 (2011). doi:10.1029/2011GL048355

    Article  Google Scholar 

  • Ji C (UCSB, Kuril 2006). Rupture process of the 15 November 2006 magnitude 8.3—KURIL island earthquake (Revised), http://earthquake.usgs.gov/earthquakes/eqinthenews/2006/usvcam/finite_fault.php

  • Ji, C., Wald, D.J., Helmberger, D.V.: Source description of the 1999 Hector Mine, California earthquake; part I: wavelet domain inversion theory and resolution analysis. Bull. Seism. Soc. Am. 92(4), 1192–1207 (2002)

    Article  Google Scholar 

  • Jovanovich, D.B.: An inversion method for estimating the source parameters of seismic and aseismic events from static strain data. Geophys. J. Astron. Soc. 43, 347–365 (1975)

    Article  Google Scholar 

  • Kajiura, K.: The leading wave of tsunami. Bull. Earthq. Res. Inst. Tokyo Univ. 41(3), 535–571 (1963)

    Google Scholar 

  • Kajiura, K.: Tsunami energy in relation to parameters of the earthquake fault model. Bull. Earthq. Res. Inst. 56, 415–440 (1981)

    Google Scholar 

  • Kanamori, H.: Mechanism of tsunami earthquakes. Phys. Earth Planet Int. 6, 346–359 (1972)

    Article  Google Scholar 

  • Kanamori, H.: The energy release in great earthquakes. J. Geophys. Res. 82, 2981–2987 (1977)

    Article  Google Scholar 

  • Kanamori, H., Anderson, D.L.: Theoretical basis of some empirical relations in seismology. Bull. Seismol. Soc. Am. 65, 1073–1095 (1975)

    Google Scholar 

  • Kanamori, H., Brodsky, E.E.: The physics of earthquakes. Rep. Prog. Phys. 67, 1429–1496 (2004)

    Article  Google Scholar 

  • Kasahara, K.: Earthquake Mechanics, p. 284. Cambridge University Press, Cambridge (1981)

    Google Scholar 

  • Kim, D.C., Kim, K.O., Pelinovsky, E., Didenkulova, I., Choi, B.H.: Three-dimensional tsunami runup simulation for the port of Koborinai on the Sanriku coast of Japan. J. Coast. Res. 65, 266–271 (2013)

    Article  Google Scholar 

  • Koketsu, K., Yokota, Y., Nishimura, N., Yagi, Y., Miyazaki, S., Satake, K., Fujii, Y., Miyake, H., Sakai, S., Yamanaka, Y., Okada, T.: A unified source model for the 2011 Tohoku earthquake. Earth Planet. Sci. Lett. 310, 480–487 (2011)

    Article  Google Scholar 

  • Kurahashi, S., Irikura, K.: Source model for generating strong ground motions during the 2011 off the Pacific coast of Tohoku earthquake. Earth Planets Space 63, 571–576 (2011)

    Article  Google Scholar 

  • Laverov, N.P., Lobkovsky, L.I., Levin, B.W., Rabinovich, A.B., Kulikov, E.A., Fine, I.V., Thomson, R.E.: The Kuril tsunamis of 15 November 2006, and 13 January 2007: two trans-pacific events. Dokl. Earth Sci. MAIK Nauka/Interperiodica 426(1), 658–664 (2009)

    Google Scholar 

  • Lay, T., Yamazaki, Y., Ammon, C.J., Cheung, K.F., Kanamori, H.: The 2011 Mw 9.0 off the Pacific coast of Tohoku earthquake: comparison of deep-water tsunami signals with finite-fault rupture model predictions. Earth Planets Space 63(7), 797–801 (2011)

    Article  Google Scholar 

  • Levin, B.W.: On the nature of some periodic changes in the Earth’s seismic regime. Vestn. Dal’nevost. Otd. Ross. Akad. Nauk 1, 51–58 (2006)

    Google Scholar 

  • Levin, B.W., Nosov, M.A.: On the possibility of tsunami formation as a result of water discharge into seismic bottom fractures. Izv. Atmos. Ocean. Phys. 44(1), 117–120 (2008)

    Google Scholar 

  • Levin, B.W., Sasorova, E.V.: General regularities in the distribution of seismic events on the Earth and on the Moon. Dokl. Earth Sci. 434(1), 1249–1252 (2010)

    Article  Google Scholar 

  • Levin, B.W., Sasorova, E.V.: Seismicity of the Pacific: Revealing Global Regularities. Yanus-K, Moscow (2012) (in Russian)

    Google Scholar 

  • Levin, B.W., Sasorova, E.V.: Spatiotemporal distributions of tsunami sources and discovered periodicities. Izv. Atmos. Ocean. Phys. 50(5), 485–497 (2014). doi:10.1134/S0001433814050065

    Article  Google Scholar 

  • Li, Y., Raichlen, F.: Non-breaking and breaking solitary wave run-up. J. Fluid Mech. 456, 295–318 (2002)

    Article  Google Scholar 

  • Maruyama, T.: Statical elastic dislocations in an infinite and semi-infinite medium. Bull. Earthq. Res: Inst. Tokyo Univ. 42, 289–368 (1964)

    Google Scholar 

  • Matsu’ura, M., Tanimoto, T.: Quasi-static deformations due to an inclined, rectangular fault in a viscoelastic half-space. J. Phys. Earth 28(1), 103–118 (1980)

    Article  Google Scholar 

  • Mikada, H., Mitsuzawa, K., Matsumoto, H., Watanabe, T., Morita, S., Otsuka, R., Sugioka, H., Baba, T., Araki, E., Suyehiro, K.: New discoveries in dynamics of an M8 earthquake—phenomena and their implications from the 2003 Tokachi-Oki earthquake using a long term monitoring cabled observatory. Tectonophysics 426, 95–105 (2006)

    Article  Google Scholar 

  • Mogi, K.: Global variation of seismic activity. Tectonophysics 57, 43–50 (1979)

    Article  Google Scholar 

  • Newman, A.V., Hayes, G., Wei, Y., Convers, J.: The 25 October 2010 Mentawai tsunami earthquake, from real-time discriminants, finite-fault rupture, and tsunami excitation. Geophys. Res. Lett. 38(5), L01307 (2011)

    Google Scholar 

  • Nosov, M.A., Kolesov, S.V.: Method of specification of the initial conditions for numerical tsunami modeling. Mosc. Univ. Phys. Bull. 64(2), 208–213 (2009)

    Article  Google Scholar 

  • Nosov, M.A., Kolesov, S.V.: Optimal initial conditions for simulation of seismotectonic tsunamis. Pure Appl. Geophys. 168(6–7), 1223–1237 (2011)

    Article  Google Scholar 

  • Nosov, M.A., Nurislamova, G.N.: The potential and vortex traces of a tsunamigenic earthquake in the ocean. Mosc. Univ. Phys. Bull. 67(5), 457–461 (2012)

    Article  Google Scholar 

  • Nosov, M.A., Bolshakova, A.V., Kolesov, S.V.: Displaced water volume, potential energy of initial elevation and tsunami intensity: analysis of recent tsunami events. Pure Appl. Geophys. 171, 3515–3525 (2014)

    Article  Google Scholar 

  • Nosov, M.A., Kolesov, S.V., Levin, B.W.: Contribution of horizontal deformation of the seafloor into tsunami generation near the coast of Japan on 11 March 2011. Dokl. Earth Sci. 441(1), 1537–1542 (2011). SP MAIK Nauka/Interperiodica

    Article  Google Scholar 

  • Nosov, M.A., Kolesov, S.V., Ostroukhova, A.V., Alekseev, A.B., Levin, B.W.: Elastic oscillations of the water layer in a tsunami source. Dokl. Earth Sci. 404(7), 1097–1100 (2005)

    Google Scholar 

  • Nosov, M.A., Nurislamova, G.N., Moshenceva, A.V., Kolesov, S.V.: Residual hydrodynamic fields after tsunami generation by an earthquake. Izv. Atmos. Ocean. Phys. 50(5), 520–531 (2014)

    Article  Google Scholar 

  • Nostro, C., Piersanti, A., Antonioli, A., Spada, G.: Spherical versus flat models of coseismic and postseismic deformations. J. Geophys. Res 104(B6), 13,115–13,134 (1999)

    Article  Google Scholar 

  • Okada, Y.: Surface deformation due to shear and tensile faults in a half-space. Bull. Seism. Soc. Am. 75(4), 1135–1154 (1985)

    Google Scholar 

  • Okada, Y.: Simulated empirical law of coseismic crustal deformation. J. Phys. Earth 43, 697–713 (1995)

    Article  Google Scholar 

  • Okal, E.A.: Seismic parameters controlling far-field tsunami amplitudes: a review. Nat. Hazards 1, 67–96 (1988)

    Article  Google Scholar 

  • Okal, E.A.: Normal mode energetics for far-field tsunamis generated by dislocations and landslides. Pure Appl. Geophys. 160, 2189–2221 (2003)

    Article  Google Scholar 

  • Ozawa, S., Nishimura, T., Suito, H., Kobayashi, T., Tobita, M., Imakiire, T.: Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake. Nature 475(7356), 373–376 (2011)

    Article  Google Scholar 

  • Pavlov, V.M., Gusev, A.A.: On possibility of motion restoring in the deep earthquake source according to bulk wave field in Fraunhofer region. Dokl. Akad. Nauk 255, 828–834 (1980)

    Google Scholar 

  • Pelinovsky, E.N.: Hydrodynamics of Tsunami Waves (in Russian). Institute of Applied Physics, RAS, Nizhnii Novgorod (1996)

    Google Scholar 

  • Poisson, B., Oliveros, C., Pedreros, R.: Is there a best source model of the Sumatra 2004 earthquake for simulating the consecutive tsunami? Geophys. J. Int. 185(3), 1365–1378 (2011)

    Article  Google Scholar 

  • Pollitz, F.F., Bürgmann, R., Banerjee, P.: Geodetic slip model of the 2011M9.0 Tohoku earthquake. Geophys. Res. Lett. 38, L00G08 (2011)

    Google Scholar 

  • Poplavskii, A.A., Zolotukhin, D.E., Khramushin, V.N.: A macroseismic model of a tsunami source and estimation of its efficiency by numerical modeling. J. Volcanol. Seismol. 6(1), 58–64 (2012)

    Article  Google Scholar 

  • Press, F.: Displacements, strains and tilts at tele-seismic distances. J. Geophys. Res. 70, 2395–2412 (1965)

    Article  Google Scholar 

  • Riguzzi, F., Panza, G., Varga, P., Doglioni, C.: Can Earth‘s rotation and tidal despinning drive plate tectonics? Tectonophysics 484, 60–73 (2010)

    Article  Google Scholar 

  • Rhie, J., Dreger, D., Burgmann, R., Romanowicz, B.: Slip of the 2004 Sumatra-Andaman earthquake from joint inversion of long-period global seismic waveforms and GPS static offsets. Bull. Seism. Soc. Am. 97(1A), S115–S127 (2007)

    Article  Google Scholar 

  • Satake, K.: Inversion of tsunami waveforms for the estimation of a fault heterogeneity: method and numerical experiments. J. Phys. Earth 35(3), 241–254 (1987)

    Article  Google Scholar 

  • Satake, K., Imamura, F.: Tsunamis: seismological and disaster prevention studies. J. Phys. Earth 43(3), 259–277 (1995)

    Article  Google Scholar 

  • Satake, K., Tanioka, Y.: Sources of tsunami and tsunamigenic earthquakes in subduction zones. Pure Appl. Geophys. 154, 467–483 (1999)

    Article  Google Scholar 

  • Sato, R.: Theoretical basis on relationships between focal parameters and earthquake magnitude. J. Phys. Earth 27, 353–372 (1979)

    Article  Google Scholar 

  • Savage, J.C., Hastie, L.M.: Surface deformation associated with dip-slip faulting. J. Geophys. Res. 71, 4897–4904 (1966)

    Article  Google Scholar 

  • Shao, G., Li, X., Ji, C., Maeda, T.: Focal mechanism and slip history of the 2011 Mw 9.1 off the Pacific coast of Tohoku earthquake, constrained with teleseismic body and surface waves. Earth Planets Space 63(7), 559–564 (2011)

    Article  Google Scholar 

  • Suzuki, W., Aoi, S., Sekiguchi, H., Kunugi, T.: Rupture process of the 2011 Tohoku-Oki mega-thrust earthquake (M9. 0) inverted from strong-motion data. Geophys. Res. Lett. 38(7) (2011)

    Google Scholar 

  • Tanioka, Y., Satake, K.: Fault parameters of the 1896 Sanriku tsunami earthquake estimated from tsunami numerical modeling. Geophys. Res. Lett. 23(13), 1549–1552 (1996)

    Google Scholar 

  • Ward, S.N.: Relationships of tsunami generation and an earthquake source. J. Phys. Earth 28, 441–474 (1980)

    Article  Google Scholar 

  • Ward, S.N., Barrientos, S.E.: An inversion for slip distribution and fault shape from geodetic observations of the 1983 Borah Peak, Idaho earthquake. J. Geophys. Res. 91, 4909–4919 (1986). doi:10.1029/JB091iB05p04909

    Article  Google Scholar 

  • Watanabe, T., Matsumoto, H., Sugioka, H., Mikada, H., Suyehiro, K., Otsuka, R.: Offshore monitoring system records recent earthquake off Japan’s northernmost island. Eos 85(2) (2004)

    Google Scholar 

  • Wei, S., Graves, R., Helmberger, D., Avouac, J.P., Jiang, J.: Sources of shaking and flooding during the Tohoku-Oki earthquake: a mixture of rupture styles. Earth Planet Sci. Lett. 333–334, 91–100 (2012)

    Article  Google Scholar 

  • Wells, D.L., Coppersmith, K.J.: New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am. 84(4), 974–1002 (1994)

    Google Scholar 

  • Yagi, Y., Fukahata, Y.: Introduction of uncertainty of Green’s function into waveform inversion for seismic source processes. Geophys. J. Int. 186(2), 711–720 (2011)

    Article  Google Scholar 

  • Yamashita, T., Sato, R.: Generation of tsunami by a fault model. J. Phys. Earth 22, 415–440 (1974)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris W. Levin .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Levin, B.W., Nosov, M.A. (2016). Source of a Tsunami of Seismotectonic Origin. In: Physics of Tsunamis. Springer, Cham. https://doi.org/10.1007/978-3-319-24037-4_2

Download citation

Publish with us

Policies and ethics