Skip to main content
Log in

Optimal Initial Conditions for Simulation of Seismotectonic Tsunamis

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Numerical simulation of seismotectonic tsunamis usually starts with specification of the initial elevation of the water surface in the tsunami source. The initial elevation is traditionally set equal to the vertical residual bottom deformation resulting from earthquakes. We discuss the imperfectness of the traditional approach and suggest an improved practical method of calculating the initial elevation from the solution of the 3D problem in the framework of potential theory. The method takes into account horizontal and vertical components of bottom deformation and bathymetry in the source area. Within the assumption of instant tsunami generation the suggested method represents the optimal way to specify the initial condition in the tsunami propagation problem. The tsunamis in the Central Kuril Islands on 15 November 2006 and 13 January 2007 are taken as examples to demonstrate the efficiency of the new method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aida, I. (1969), Numerical experiments for tsunami caused by moving deformation of the sea bottom, Bull. Earthq. Res. Inst. Tokyo Univ., 47, 849–862.

  • Alexeev, A.S., and Gusyakov, V.K. (1976), Numerical Modeling of Tsunami and Seismic Surface Waves Generation by Submarine Earthquake, Tsunami Research Symposium Bulletin Royal Society New Zealand, 15, 243–251.

  • Bassin, C., Laske, G. and Masters, G. (2000), The Current Limits of Resolution for Surface Wave Tomography in North America, EOS Trans AGU, 81, F897.

  • Bellotti, G., Cecioni, C., Girolamo, P. (2008), Simulation of small-amplitude frequency-dispersive transient waves by means of the mild-slope equation, Coastal Engineering, 55, 447–458.

  • Dotsenko, S. F. (1996), The excitation of tsunamis in oscillations of a floor area, Izvestiya Akademii Nauk Fizika Atmosfery i Okeana, 32 (2), 264–270.

  • Dotsenko, S. F., Soloviev, S. L. (1995), On the role of residual shifts of ocean-bottom in tsunami generation underwater earthquakes, Okeanologiya, 35 (1), 25–31.

  • Dutykh, D., Dias, F. (2007), Water waves generated by a moving bottom, Tsunami and nonlinear waves, Springer (Geo. Sc.), 63–94.

  • Dutykh, D., Dias, F. (2009), Tsunami generation by dynamic displacement of sea bed due to dip-slip faulting, Mathematics and Computers in Simulation, 80, 837–848.

  • Dutykh, D., Dias, F., Kervella, Y. (2006), Linear theory of wave generation by a moving bottom, C. R. Acad. Sci. Paris, Ser. I, 343, 499–504.

  • Fujii, Y. and Satake, K. (2008), Tsunami Sources of the November 2006 and January 2007 Great Kuril Earthquakes, Bulletin of the Seismological Society of America, 98(3), 1559–1571.

  • Gisler, G. R. (2008), Tsunami simulations, Annu. Rev. Fluid Mech. 40, 71–90.

  • Hammack, J. L. (1973), A note on tsunamis: their generation and propagation in an ocean of uniform depth. J. Fluid Mech., 60, 769–799.

  • Hwang, L. S., and Divoki, D. J. (1970), Tsunami Generation, J. Geophys. Res. 75, 6802–6817.

  • Iwasaki, S. (1982), Experimental study of a tsunami generated by a horizontal motion of a sloping bottom. Bulletin of the Earthquake Research Institute, University of Tokyo, 57, 239–262.

  • Kajiura, K. (1963), The leading wave of a tsunami, Bulletin of the Earthquake Research Institute, University of Tokyo, 41(3), 535–571.

  • Kajiura, K. (1970), Tsunami source, energy and directivity of wave radiation, Bulletin of the Earthquake Research Institute, University of Tokyo, 48 (5), 835–869.

  • Kervella, Y., Dutykh, D., Dias, F. (2007), Comparison between three-dimensional linear and nonlinear tsunami generation models, Theoretical and Computational Fluid Dynamics, 21, 245–269.

  • Kostitsyna, O. V., Nosov, M. A., Shelkovnikov, N.K. (1992), A study of nonlinearity in the process of tsunami generation by sea floor motion. Moscow Univ. Phys. Bull., 47(4), 83–86.

  • Kowalik, Z., Knight, W., Logan, T., and Whitmore, P. (2005), Numerical modelling of the global tsunami: Indonesian tsunami of December 26 2004, Science of Tsunami Hazard, 23(1), 40–56.

  • Lamb, H., Hydrodynamics, 6th ed. (New York: Dover 1945).

  • Landau, L.D., and Lifshitz, E. M. Fluid Mechanics, V.6 of Course of Theoretical Physics, 2 nd English edition. Revised. (Pergamon Press, Oxford-New York-Beijing-Frankfurt-San Paulo-Sydney-Tokyo-Toronto 1987).

  • Levin, B.W., and Nosov, M.A., Physics of Tsunamis (Springer 2008).

  • Levin, B.W., Kaistrenko, V.M., Rybin, A.V., Nosov, M.A., Pinegina, T.K., Razzhigaeva, N.G., Sasorova, E.V., (…), Fitzhugh, B. (2008), Manifestations of the tsunami on November 15, 2006, on the central Kuril Islands and results of the runup heights modeling, Doklady Earth Sciences, 419 (1), 335–338.

  • Lobkovsky, L.I., Rabinovich, A.B., Kulikov, E.A., Ivashchenko, A.I., Fine, I.V., Thomson, R.E., Ivelskaya, T.N., Bogdanov, G.S. (2009), The Kuril Earthquakes and tsunamis of November 15, 2006, and January 13, 2007: Observations, analysis, and numerical modeling, Oceanology, 49 (2), 166–181.

  • MacInnes, B.T., Bourgeois, J., Pinegina, T.K., Kravchunovskaya, E. (2009a), Tsunami geomorphology: erosion and deposition from the 15 November 2006 Kuril Island tsunami, Geology, 37, 995–998.

  • MacInnes, B.T., Pinegina, T.K., Bourgeois, J., Razhigaeva, N.G., Kaistrenko, V.M., Kravchunovskaya, E.A. (2009b), Field survey and geological effects of the 15 November 2006 Kuril tsunami in the middle Kuril Islands, Pure and Applied Geophysics, 166 (1–2), 9–36.

  • Marchuk, An. G., Chubarov, L. B., Shokin, Yu. I., Numerical modelling of tsunami waves (LA-Tr-85-40 USA- Los Alamos National Laboratory, Univ. of California 1985).

  • Mei, C.C., The applied dynamics of ocean surface and waves (World Scientific 1983).

  • Nosov, M. A. (1992), Generation of tsunami by oscillations of a sea floor section, Moscow Univ. Phys. Bull. 47(1), 110–112.

  • Nosov, M. A. (1996), A comparative study of tsunami excited by piston-type and traveling-wave bottom motion, Volcanol. Seismol. 17, 693–698.

  • Nosov, M. A. (1998), On the directivity of dispersive tsunami waves excited by piston-type and traveling-wave sea-floor motion, Volcanol. Seismol., 19, 837–844.

  • Nosov, M. A. and Kolesov, S. V. (2005), Nonlinear tsunami generation mechanism in compressible ocean, Vestnik Moskovskogo Universita, Ser. 3 Fizika Astronomiya, (3), 51–54.

  • Nosov, M. A., Kolesov, S. V., and Denisova, A.V. (2008), Contribution of nonlinearity in tsunami generated by submarine earthquake, Advances in Geosciences, 14, 141–146.

  • Nosov, M. A., Shelkovnikov, N. K. (1995), Tsunami generation by traveling sea-floor shoves, Moscow Univ. Phys. Bull., 50 (4), 88–92.

  • Nosov, M. A., Shelkovnikov, N. K. (1996), On directivity of radiation of dispersing tsunami waves by asymmetric sources, Moscow University Physics Bulletin, 51 (3), 77–82.

  • Nosov, M. A., Shelkovnikov, N. K. (1997), The excitation of dispersive tsunami waves by piston and membrane floor motions, Izvestiya, Atmos. Ocean. Phys. 33 (1), 133–139.

  • Nosov, M.A. (1999), Tsunami Generation in Compressible Ocean, Phys. Chem. Earth (B), 24(5), 437–441.

  • Nosov, M.A. and Kolesov, S.V. (2007), Elastic oscillations of water column in the 2003 Tokachi-oki tsunami source: in situ measurements and 3-D numerical modeling, Natural Hazards and Earth System. Sciences, 7, 243–249.

  • Nosov, M.A., and Kolesov, S.V. (2009), Method of Specification of the Initial Conditions for Numerical Tsunami Modeling, Moscow University Physics Bulletin, 64(2), 208–213.

  • Novikova, L. E., and Ostrovsky, L. A. (1982), On an acoustic mechanism of tsunami wave generation, Oceanology. 22(5), 693–697.

  • Okada, Y. (1985), Surface deformation due to shear and tensile faults in a half-space, Bulletin of the Seismological Society of America, 75(4) 1135–1154.

  • Pod’yapolsky, G. S. (1978), Tsunami excitation by an earthquake, Methods for calculating tsunami rise and propagation (in Russian), 30–87, Nauka, Moscow.

  • Rabinovich, A.B., Lobkovsky, L.I., Fine, I.V., Thomson, R. E., Ivelskaya, T. N., and Kulikov, E. A. (2008), Near-source observations and modeling of the Kuril Islands tsunamis of 15 November 2006 and 13 January 2007, Advances in Geosciences, 14, 105–116.

  • Saito, T., and Furumura, T (2009), Three-dimensional tsunami generation simulation due to sea-bottom deformation and its interpretation based on the linear theory, Geophys. J. Int., 178, 877–888.

  • Takahashi, R. (1934), A model experiment on the mechanism of seismic sea wave generation, Part 1, Bull. Earthq. Res. Inst. Tokyo Univ., 1, 152–181.

  • Takahasi, R. (1963), On some model experiment on tsunami generation, Intern. Union Geodesy and Geophys. Monogr., 24, 235–248.

  • Tanioka, Y., and Satake, K. (1996), Tsunami generation by horizontal displacement of ocean bottom, Geophys. Res. Lett., 23(8), 861–864.

  • Tanioka, Y., and Seno, T. (2001), Sediment effect on tsunami generation of the 1896 Sanriku tsunami earthquake, Geophysical Research Letters, 28(17), 3389–3392.

  • Tanioka, Y., Hasegawa, Y., Kuwayama, T. (2008), Tsunami waveform analyses of the 2006 underthrust and 2007 outer-rise Kurile earthquakes, Advances in Geosciences. 14, 129–134.

  • Tinti, S., Pagnoni, G., and Piatanesi, A. (2003), Simulation of tsunamis induced by volcanic activity in the Gulf of Naples (Italy), Natural Hazards and Earth System Sciences, 3, 311–320.

  • Titov, V.V., and Gonzalez, F.I. (1997), Implementation and testing of the Method of Splitting Tsunami (MOST) model, NOAA Technical Memorandum ERL PMEL-112.

  • Tolstoy, I., and Clay, C. S., Ocean acousticstheory and experiment in underwater sound, 2nd ed. (American Institute of Physics, New York 1987).

  • Voit, S. S., Lebedev, A. N., Sebekin, B. I. (1981), On a formation of a directed tsunami wave in the generation domain, Izvestiya Akademii Nauk SSSR Fizika Atmosfery i Okeana, 17 (3), 296–304.

  • Yamazaki, Y., Wei, Y., Cheungw, K.F., and Curtis, G.D. (2006), Forecast of Tsunamis from the JapanKurilKamchatka Source Region, Natural Hazards, 38, 411–435, doi:10.1007/s11069-005-2075-7.

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research, projects 07-05-00414 and 10-05-00562. We are grateful to USGS for providing the Finite Fault data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail A. Nosov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nosov, M.A., Kolesov, S.V. Optimal Initial Conditions for Simulation of Seismotectonic Tsunamis. Pure Appl. Geophys. 168, 1223–1237 (2011). https://doi.org/10.1007/s00024-010-0226-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-010-0226-6

Keywords

Navigation