Skip to main content

A Review of Nanomanipulation in Scanning Electron Microscopes

  • Chapter
Nanopositioning Technologies

Abstract

Nanomanipulation under scanning electron microscope (SEM) imaging has enabled the characterization of nanomaterials and nanostructures and the prototyping/assembly of nanoscale devices. In this chapter, techniques for nanorobotic manipulation in SEMs are reviewed. Nanomanipulation platforms, nanomanipulation tools, gas injection systems, imaging techniques for automation, and applications in nanomaterial characterization and nanodevice assembly are discussed. Many micro-tools, changeable toolboxes, and automation techniques are emerging. Nanoscale laboratories built around SEMs are becoming a powerful platform to enable flexible prototyping of nanomaterial-based devices in the nanotechnology, biotechnology, and nanoelectronics sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.M. Eigler, E.K. Schweizer, Positioning single atoms with a scanning tunnelling microscope. Nature 344(6266), 524–526 (1990)

    Article  Google Scholar 

  2. S. Kim, F. Shafiei, D. Ratchford, X. Li, Controlled AFM manipulation of small nanoparticles and assembly of hybrid nanostructures. Nanotechnology 22 (11), 115301 (2011)

    Google Scholar 

  3. U. Mick, M. Weigel-Jech, S. Fatikow, Robotic workstation for AFM-based nanomanipulation inside an SEM, in 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) (2010), pp. 854–859

    Google Scholar 

  4. U. Mick, V. Eichhorn, T. Wortmann, C. Diederichs, S. Fatikow, Combined nanorobotic AFM/SEM system as novel toolbox for automated hybrid analysis and manipulation of nanoscale objects, in 2010 IEEE International Conference on Robotics and Automation (ICRA) (2010), pp. 4088–4093

    Google Scholar 

  5. T. Fukuda, M. Nakajima, P. Liu, M.R. Ahmad, Bringing the nanolaboratory inside electron microscopes. Nanotechnol. Mag. IEEE 2(2), 18–31 (2008)

    Article  Google Scholar 

  6. M. Nakajima, F. Arai, T. Fukuda, In situ measurement of Young’s modulus of carbon nanotubes inside a TEM through a hybrid nanorobotic manipulation system. IEEE Trans. Nanotechnol. 5(3), 243–248 (2006)

    Article  Google Scholar 

  7. T. Fukuda, M. Nakajima, M. Ahmad, Y. Shen, M. Kojima, Micro- and nanomechatronics. IEEE Ind. Electron. Mag. 4(4), 13–22 (2010)

    Article  Google Scholar 

  8. C. Zhou, Z. Gong, B.K. Chen, M. Tan, Y. Sun, Closed-loop controlled nanoprobing inside SEM, in 2014 IEEE 14th International Conference on Nanotechnology (IEEE-NANO) (2014), pp. 45–48

    Google Scholar 

  9. T. Fukuda, M. Nakajima, H. Tajima, Y. Shen, T. Yue, Micro-nanomanipulation system toward biological cell analysis and assembly, in 2012 First International Conference on Innovative Engineering Systems (ICIES) (2012), pp. 31–36

    Google Scholar 

  10. X. Ye, Y. Zhang, C. Ru, J. Luo, S. Xie, Y. Sun, Automated pick-place of silicon nanowires. IEEE Trans. Autom. Sci. Eng. 10(3), 554–561 (2013)

    Article  Google Scholar 

  11. S. Fahlbusch, S. Mazerolle, J.-M. Breguet, A. Steinecker, J. Agnus, R. Pérez, J. Michler, Nanomanipulation in a scanning electron microscope. J. Mater. Process. Technol. 167(2–3), 371–382 (2005)

    Article  Google Scholar 

  12. S. Fatikow, V. Eichhorn, M. Bartenwerfer, F. Krohs, Nanorobotic AFM/SEM/FIB system for processing, manipulation and characterization of nanomaterials, in 2013 IEEE 18th Conference on Emerging Technologies Factory Automation (ETFA) (2013), pp. 1–4

    Google Scholar 

  13. J.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, A.D.R. Jr, C.E. Lyman, C. Fiori, E. Lifshin, Introduction, in Scanning Electron Microscopy and X-Ray Microanalysis, Springer US, 1992, pp. 1–19

    Google Scholar 

  14. “University of Glasgow:: Schools:: School of Geographical and Earth Sciences,” University of Glasgow:: Glasgow, Scotland, UK. [Online]. Available: http://www.gla.ac.uk/schools/ges/research/researchfacilities/isaac/services/scanningelectronmicroscopy/imaging/secondaryelectronseandbackscatteredelectronbse/

  15. J. Portilla, V. Strela, M.J. Wainwright, E.P. Simoncelli, Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Process. 12, 1338–1351 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. S.M. Smith, J.M. Brady, SUSAN—a new approach to low level image processing. Int. J. Comput. Vis. 23(1), 45–78 (1997)

    Article  Google Scholar 

  17. F. Catté, P.-L. Lions, J.-M. Morel, T. Coll, Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29(1), 182–193 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. C. Vogel, M. Oman, Iterative methods for total variation denoising. SIAM J. Sci. Comput. 17(1), 227–238 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. N. Ouarti, B. Sauvet, S. Régnier, High quality real-time video with scanning electron microscope using total variation algorithm on a graphics processing unit. Int. J. Optomechatronics 6(2), 163–178 (2012)

    Article  Google Scholar 

  20. A. Buades, B. Coll, A non-local algorithm for image denoising, in In CVPR (2005), pp. 60–65

    Google Scholar 

  21. F. Goudail, P. Réfrégier, Statistical Image Processing Techniques for Noisy Images (Springer US, Boston, 2004)

    Book  Google Scholar 

  22. Z. Gong, B.K. Chen, J. Liu, Y. Sun, Automated nanoprobing under scanning electron microscopy, in 2013 IEEE International Conference on Robotics and Automation (ICRA) (2013), pp. 1433–1438

    Google Scholar 

  23. T. Tiemerding, C. Diederichs, S. Zimmermann, S. Fatikow, Closing the loop: high-speed visual servoing and control of a commercial nanostage inside the SEM, in 2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO) (2013), pp. 35–39

    Google Scholar 

  24. C. Ru, S. To, Contact detection for nanomanipulation in a scanning electron microscope. Ultramicroscopy 118, 61–66 (2012)

    Article  Google Scholar 

  25. T. Tiemerding, S. Zimmermann, S. Fatikow, Robotic dual probe setup for reliable pick and place processing on the nanoscale using haptic devices, in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014) (2014), pp. 892–897

    Google Scholar 

  26. V. Eichhorn, S. Fatikow, T. Wich, C. Dahmen, T. Sievers, K.N. Andersen, K. Carlson, P. Bøggild, Depth-detection methods for microgripper based CNT manipulation in a scanning electron microscope. J. Micro-Nano Mechatron. 4(1–2), 27–36 (2008)

    Article  Google Scholar 

  27. T. Kasaya, H.T. Miyazaki, S. Saito, K. Koyano, T. Yamaura, T. Sato, Image-based autonomous micromanipulation system for arrangement of spheres in a scanning electron microscope. Rev. Sci. Instrum. 75(6), 2033–2042 (2004)

    Article  Google Scholar 

  28. A. Cvetanovic, A. Cvetanovic, A. Deutschinger, I. Giouroudi, W. Brenner, Design of a novel visual and control system for the prevention of the collision during the micro handling in a SEM chamber. Microelectron. Eng. 87(2), 139–143 (2010)

    Article  Google Scholar 

  29. E. Ribeiro, M. Shah, Computer vision for nanoscale imaging. Mach. Vis. Appl. 17(3), 147–162 (2006)

    Article  Google Scholar 

  30. S. Fatikow, T. Wich, T. Sievers, M. Jähnisch, V. Eichhorn, J. Mircea, H. Hülsen, C. Stolle, Automatic nanohandling station inside a scanning electron microscope. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 222(1), 117–128 (2008)

    Article  Google Scholar 

  31. M. Jähnisch, S. Fatikow, 3D vision feedback for nanohandling monitoring in a scanning electron microscope. Int. J. Optomechatronics 1, 4–26 (2007)

    Article  Google Scholar 

  32. V. Eichhorn, S. Fatikow, T. Wortmann, C. Stolle, C. Edeler, D. Jasper, O. Sardan, P. Boggild, G. Boetsch, C. Canales, R. Clavel, NanoLab: a nanorobotic system for automated pick-and-place handling and characterization of CNTs, in IEEE International Conference on Robotics and Automation, 2009. ICRA ’09 (2009), pp. 1826–1831

    Google Scholar 

  33. V. Eichhorn, S. Fatikow, Ch. Dahmen, Ch. Edeler, C. Stolle, D. Jasper (Presenter), Automated microfactory inside a scanning electron microscope, in Proc. of the 6th International Workshop on Microfactories (IWMF), Evanston, 5–7 October 2008

    Google Scholar 

  34. W. Denk, H. Horstmann, Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol. 2(11), e329 (2004)

    Google Scholar 

  35. B. Andres, U. Koethe, T. Kroeger, M. Helmstaedter, K.L. Briggman, W. Denk, F.A. Hamprecht, 3D segmentation of SBFSEM images of neuropil by a graphical model over supervoxel boundaries. Med. Image Anal. 16(4), 796–805 (2012)

    Article  Google Scholar 

  36. V. Marx, Neurobiology: brain mapping in high resolution. Nature 503(7474), 147–152 (2013)

    Article  Google Scholar 

  37. “Nanotechnology at Zyvex,” Nanotechnology at Zyvex, 2010. [Online]. Available: http://www.zyvex.com/Products/S100_Features.html

  38. J. Zuverza, “NanoBot® Nanomanipulator System from Xidex,” Xidex Nanobot® Nanomanipulator and Nanotechnology Products, 2011. [Online]. Available: http://xidex.com/products/nanobot.html

  39. “Nanomanipulators - OmniProbe 400 - Oxford Instruments,” Home Page - Oxford Instruments, 2015. [Online]. Available: http://www.oxford-instruments.com/products/nanomanipulation-nanofabrication/nanomanipulator/omniprobe-400

  40. B. K. Chen, LifeForce Nanomanipulation System: LF-2000

    Google Scholar 

  41. “Micromanipulator miBotTM BT-11 | Imina Technologies SA,” Imina Technologies SA | High Precision Robots for Microscopes, 2014. [Online]. Available: http://imina.ch/technology

  42. “Kleindiek Nanotechnik: Electron Microscopy,” Kleindiek Nanotechnik, 2015. [Online]. Available: http://www.nanotechnik.com/mm3a-em.html

  43. P. Russel, D. Batchelor, SEM and AFM: complementary techniques for surface investigations. Microsc. Anal. 2001, 9–14 (2001)

    Google Scholar 

  44. “NSOM/SNOM, TERS, Low Temperature AFM & SPM Solutions from Nanonics.” [Online]. Available: http://www.nanonics.co.il/

  45. “Klocke Nanotechnik, Aachen.” [Online]. Available: http://nanomotor.de/index.html

  46. “Hybrid AFM SEM Combination, the DME BRR Microscope,” Manufacturer of Atomic Force Microscopes (AFM), Scanning Tunneling Microscopes (STM), 2013. [Online]. Available: http://www.dme-spm.com/remafm.html

  47. “Test of camera modules, autocollimator, MTF system - TRIOPTICS,” 2015. [Online]. Available: http://www.trioptics.com/

  48. “Atomic force microscope / electronic - attoAFM/SEM - attocube systems AG,” DirectIndustry - The Virtual Industrial Exhibition: sensor - automation - motor - pump - handling - packaging, 2015. [Online]. Available: http://www.directindustry.com/prod/attocube-systems-ag/atomic-force-microscope-electronic-50096-1321683.html

  49. F. Long, C. Wang, M. Lü, F. Zhang, J. Sun, J. Hu, Optimizing single DNA molecules manipulation by AFM. J. Microsc. 243(2), 118–123 (2011)

    Article  Google Scholar 

  50. T. Hertel, R. Martel, P. Avouris, Manipulation of individual carbon nanotubes and their interaction with surfaces. J. Phys. Chem. B 102(6), 910–915 (1998)

    Article  Google Scholar 

  51. G. Li, N. Xi, H. Chen, C. Pomeroy, M. Prokos, ‘Videolized’ atomic force microscopy for interactive nanomanipulation and nanoassembly. IEEE Trans. Nanotechnol. 4(5), 605–615 (2005)

    Article  Google Scholar 

  52. M.R. Ahmad, M. Nakajima, S. Kojima, M. Homma, T. Fukuda, In-situ single cell mechanical characterization of W303 Yeast cells inside Environmental-SEM, in 7th IEEE Conference on Nanotechnology, 2007. IEEE-NANO 2007 (2007), pp. 1022–1027

    Google Scholar 

  53. Y. Shen, M. Nakajima, M. Homma, T. Fukuda, Auto nanomanipulation system for single cell mechanical property characterization inside an environmental SEM, in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2012), pp. 646–651

    Google Scholar 

  54. Y. Shen, M. Nakajima, Z. Yang, S. Kojima, M. Homma, T. Fukuda, Design and characterization of nanoknife with buffering beam for in situ single-cell cutting. Nanotechnology 22(30), 305701 (2011)

    Google Scholar 

  55. V. Thanh, S.A. Chizhik, T. Xuan, N. Trong, V.V. Chikunov, Tuning fork scanning probe microscopes – applications for the nano-analysis of the material surface and local physico-mechanical properties, in Scanning Probe Microscopy-Physical Property Characterization at Nanoscale, ed. by V. Nalladega (InTech, 2012)

    Google Scholar 

  56. F.J. Giessibl, Principles and Applications of the qPlus Sensor, in Noncontact Atomic Force Microscopy, ed. by S. Morita, F.J. Giessibl, R. Wiesendanger (Springer, Berlin, Heidelberg, 2009), pp. 121–142

    Google Scholar 

  57. T. Akiyama, U. Staufer, N. de Rooij, Self-sensing and self-actuating probe based on quartz tuning fork combined with microfabricated cantilever for dynamic mode atomic force microscopy. Appl. Surf. Sci. 210(1–2), 18–21 (2003)

    Article  Google Scholar 

  58. C. Ru, Y. Zhang, Y. Sun, Y. Zhong, X. Sun, D. Hoyle, I. Cotton, Automated four-point probe measurement of nanowires inside a scanning electron microscope. IEEE Trans. Nanotechnol. 10(4), 674–681 (2011)

    Article  Google Scholar 

  59. Z. Gong, B.K. Chen, J. Liu, Y. Sun, Robotic probing of nanostructures inside scanning electron microscopy. IEEE Trans. Robot. 30(3), 758–765 (2014)

    Article  Google Scholar 

  60. L. Dong, B.J. Nelson, Tutorial – robotics in the small part II: nanorobotics. IEEE Robot. Autom. Mag. 14(3), 111–121 (2007)

    Article  MATH  Google Scholar 

  61. T. Fukuda, F. Arai, L. Dong, Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations. Proc. IEEE 91(11), 1803–1818 (2003)

    Article  Google Scholar 

  62. B.K. Chen, Y. Zhang, D.D. Perovic, Y. Sun, MEMS microgrippers with thin gripping tips. J. Micromech. Microeng. 21(10), 105004 (2011)

    Google Scholar 

  63. Y. Peng, T. Cullis, B. Inkson, Bottom-up nanoconstruction by the welding of individual metallic nanoobjects using nanoscale solder. Nano Lett. 9(1), 91–96 (2009)

    Article  Google Scholar 

  64. R.T.R. Kumar, S.U. Hassan, O.S. Sukas, V. Eichhorn, F. Krohs, S. Fatikow, P. Boggild, Nanobits: customizable scanning probe tips. Nanotechnology 20(39), 395703 (2009)

    Google Scholar 

  65. M. Nakajima, T. Kawamoto, M. Kojima, T. Fukuda, Nanotool exchanger system using low-melting metal under environmental SEM, in 2011 International Symposium on Micro-NanoMechatronics and Human Science (MHS), 2011, pp. 69–74

    Google Scholar 

  66. A. Garetto, C. Baur, J. Oster, M. Waiblinger, K. Edinger, Advanced process capabilities for electron beam based photomask repair in a production environment, in Proc. SPIE 7122 (2008), p. 7122k

    Google Scholar 

  67. L. van Kouwen, A. Botman, C.W. Hagen, Focused electron-beam-induced deposition of 3 nm dots in a scanning electron microscope. Nano Lett. 9(5), 2149–2152 (2009)

    Article  Google Scholar 

  68. M. Huth, F. Porrati, C. Schwalb, M. Winhold, R. Sachser, M. Dukic, J. Adams, G. Fantner, Focused electron beam induced deposition: a perspective. Beilstein J. Nanotechnol. 3, 597–619 (2012)

    Article  Google Scholar 

  69. I. Utke, S. Moshkalev, P. Russell, Nanofabrication Using Focused Ion and Electron Beams: Principles and Applications (Oxford University Press, New York, 2012)

    Google Scholar 

  70. V. Scheuer, H. Koops, T. Tschudi, Electron beam decomposition of carbonyls on silicon. Microelectron. Eng. 5(1–4), 423–430 (1986)

    Article  Google Scholar 

  71. S.J. Randolph, J.D. Fowlkes, P.D. Rack, Focused, nanoscale electron-beam-induced deposition and etching. Crit. Rev. Solid State Mater. Sci. 31(3), 55–89 (2006)

    Article  Google Scholar 

  72. “Nanobot Nanomanipulator - Parallel Gas Injection System,” Xidex Nanobot Nanomanipulator and Nanotechnology Products, 2011. [Online]. Available: http://xidex.com/products/parallel-gas-injection-system.html

  73. “Gas Injection Systems: OmniGIS II – Oxford Instruments,” 2015. [Online]. Available: http://www.oxford-instruments.com/products/nanomanipulation-nanofabrication/gas-injection-system/omnigis-ii

  74. “GIS-5: Multi-lines Gas Injection System,” Orsay Physics, 2015. [Online]. Available: http://www.orsayphysics.com/product-gis-5.html

  75. Z. Yang, M. Nakajima, Y. Saito, Y. Ode, T. Fukuda, Isolated high-purity platinum nanowire growth via field emission from a multi-walled carbon nanotube. Appl. Phys. Express 4(3), 035001 (2011)

    Google Scholar 

  76. Z. Yang, M. Nakajima, Y. Ode, T. Fukuda, Tungsten/platinum hybrid nanowire growth via field emission using nanorobotic manipulation. J. Nanotechnol. 2011, e386582 (2011)

    Google Scholar 

  77. Z. Yang, M. Nakajima, Y. Ode, T. Fukuda, Nanoassembly of pH sensor nanoprobe by multiple-metallic nanowires, in 2010 10th IEEE Conference on Nanotechnology (IEEE-NANO) (2010), pp. 352–355

    Google Scholar 

  78. Z. Yang, M. Nakajima, Y. Ode, Z. Zhang, T. Fukuda, Fabrication and evaluation of nano probe pH sensor based on nanorobotic manipulation, in 2010 International Symposium on Micro-NanoMechatronics and Human Science (MHS), 2010, pp. 284–289

    Google Scholar 

  79. Y. Zhu, Q. Qin, F. Xu, F. Fan, Y. Ding, T. Zhang, B.J. Wiley, Z.L. Wang, Size effects on elasticity, yielding, and fracture of silver nanowires: in situ experiments. Phys. Rev. B 85(4), 045443 (2012)

    Google Scholar 

  80. D.J. Bell, L. Dong, B.J. Nelson, M. Golling, L. Zhang, D. Grützmacher, Fabrication and characterization of three-dimensional InGaAs/GaAs nanosprings. Nano Lett. 6(4), 725–729 (2006)

    Article  Google Scholar 

  81. J.-O. Abrahamians, B. Sauvet, J. Polesel-Maris, R. Braive, S. Regnier, A nanorobotic system for in situ stiffness measurements on membranes. IEEE Trans. Robot. 30(1), 119–124 (2014)

    Article  Google Scholar 

  82. A. Castellanos-Gomez, N. Agraït, G. Rubio-Bollinger, Dynamics of quartz tuning fork force sensors used in scanning probe microscopy. Nanotechnology 20(21), 215502 (2009)

    Google Scholar 

  83. M.R. Mikczinski, G. Josefsson, G. Chinga-Carrasco, E.K. Gamstedt, S. Fatikow, Nanorobotic testing to assess the stiffness properties of nanopaper. IEEE Trans. Robot. 30(1), 115–119 (2014)

    Article  Google Scholar 

  84. S. Zimmermann, V. Eichhorn, S. Fatikow, Nanorobotic transfer and characterization of graphene flakes, in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2012), pp. 640–645

    Google Scholar 

  85. S. Zimmermann, T. Tiemerding, T. Li, W. Wang, Y. Wang, S. Fatikow, Automated mechanical characterization of 2-D materials using SEM based visual servoing. Int. J. Optomechatronics 7(4), 283–295 (2013)

    Article  Google Scholar 

  86. A. Lugstein, M. Steinmair, A. Steiger, H. Kosina, E. Bertagnolli, Anomalous piezoresistance effect in ultrastrained silicon nanowires. Nano Lett. 10(8), 3204–3208 (2010)

    Article  Google Scholar 

  87. S. Zimmermann, S.A.G. Barragan, S. Fatikow, Nanorobotic processing of graphene: a platform tailored for rapid prototyping of graphene-based devices. IEEE Nanotechnol. Mag. 8(3), 14–19 (2014)

    Article  Google Scholar 

  88. P. Liu, K. Kantola, T. Fukuda, F. Arai, Nanoassembly of nanostructures by cutting, bending and soldering of carbon nanotubes with electron beam. J. Nanosci. Nanotechnol. 9(5), 3040–3045 (2009)

    Article  Google Scholar 

  89. P. Liu, F. Arai, T. Fukuda, Cutting of carbon nanotubes assisted with oxygen gas inside a scanning electron microscope. Appl. Phys. Lett. 89(11), 113104 (2006)

    Google Scholar 

  90. P. Liu, F. Arai, T. Fukuda, Nanofabrication of carbon nanotubes assisted with oxygen gas, in Sixth IEEE Conference on Nanotechnology, 2006. IEEE-NANO 2006, vol. 2 (2006), pp. 540–543

    Google Scholar 

  91. T.D. Yuzvinsky, A.M. Fennimore, W. Mickelson, C. Esquivias, A. Zettl, Precision cutting of nanotubes with a low-energy electron beam. Appl. Phys. Lett., 86(5), 053109 (2005)

    Google Scholar 

  92. E. Meyer, H.-G. Braun, Micro- and nanomanipulation inside the SEM. J. Phys. Conf. Ser. 126, 012074 (2008)

    Article  Google Scholar 

  93. K. Aoki, H.T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, Y. Aoyagi, Microassembly of semiconductor three-dimensional photonic crystals. Nat. Mater. 2(2), 117–121 (2003)

    Article  Google Scholar 

  94. M.R. Ahmad, M. Nakajima, S. Kojima, M. Homma, T. Fukuda, The effects of cell sizes, environmental conditions, and growth phases on the strength of individual W303 yeast cells inside ESEM. IEEE Trans. Nanobioscience 7(3), 185–193 (2008)

    Article  Google Scholar 

  95. M.R. Ahmad, M. Nakajima, S. Kojima, M. Homma, T. Fukuda, In situ single cell mechanics characterization of yeast cells using nanoneedles inside environmental SEM. IEEE Trans. Nanotechnol. 7(5), 607–616 (2008)

    Article  Google Scholar 

  96. M.R. Ahmad, M. Nakajima, M. Kojima, S. Kojima, M. Homma, T. Fukuda, Nanofork for single cells adhesion measurement via ESEM-nanomanipulator system. IEEE Trans. Nanobioscience 11(1), 70–78 (2012)

    Article  Google Scholar 

  97. Y. Shen, M. Nakajima, S. Kojima, M. Homma, M. Kojima, T. Fukuda, Single cell adhesion force measurement for cell viability identification using an AFM cantilever-based micro putter. Meas. Sci. Technol. 22(11), 115802 (2011)

    Google Scholar 

  98. Y. Shen, M. Nakajima, S. Kojima, M. Homma, T. Fukuda, Study of the time effect on the strength of cell-cell adhesion force by a novel nano-picker. Biochem. Biophys. Res. Commun. 409(2), 160–165 (2011)

    Article  Google Scholar 

  99. M.R. Ahmad, M. Nakajima, M. Kojima, S. Kojima, M. Homma, T. Fukuda, Instantaneous and quantitative single cells viability determination using dual nanoprobe inside ESEM. IEEE Trans. Nanotechnol. 11(2), 298–306 (2012)

    Article  Google Scholar 

  100. T. Hirano, M. Nakajima, M. Kojima, N. Hisamoto, M. Homma, T. Fukuda, Selective nano-injection using nano-probe based on nanomanipulation under hybrid microscope, in 2011 International Symposium on Micro-NanoMechatronics and Human Science (MHS) (2011), pp. 216–221

    Google Scholar 

  101. Y. Zhang, X. Liu, C. Ru, Y.L. Zhang, L. Dong, Y. Sun, Piezoresistivity characterization of synthetic silicon nanowires using a MEMS device. J. Microelectromech. Syst. 20(4), 959–967 (2011)

    Article  Google Scholar 

  102. Y.L. Zhang, J. Li, S. To, Y. Zhang, X. Ye, L. You, Y. Sun, Automated nanomanipulation for nanodevice construction. Nanotechnology 23(6), 065304 (2012)

    Google Scholar 

  103. C. Ru, Y. Zhang, Y. Sun, Y. Zhong, X. Sun, D. Hoyle, I. Cotton, Automated four-point probe measurement of nanowires inside a scanning electron microscope, in 2010 IEEE Conference on Automation Science and Engineering (CASE) (2010), pp. 533–538

    Google Scholar 

  104. B.K. Chen, D. Anchel, Z. Gong, R. Cotton, R. Li, Y. Sun, D.P. Bazett-Jones, Gene organization: nano-dissection and sequencing of DNA at single sub-nuclear structures (Small 16/2014). Small 10(16), 3266–3266 (2014)

    Article  Google Scholar 

  105. Z. Gong, B.K. Chen, J. Liu, C. Zhou, D. Anchel, X. Li, D.P. Bazett-Jones, Y. Sun, Correlative microscopy for nanomanipulation of sub-cellular structures, in 2014 IEEE International Conference on Robotics and Automation (ICRA) (2014), pp. 5209–5214

    Google Scholar 

  106. Z. Gong, B.K. Chen, J. Liu, C. Zhou, D. Anchel, X. Li, J. Ge, D.P. Bazett-Jones, Y. Sun, Fluorescence and SEM correlative microscopy for nanomanipulation of subcellular structures. Light Sci. Appl. 3(11), e224 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Luu, D.K., Shi, C., Sun, Y. (2016). A Review of Nanomanipulation in Scanning Electron Microscopes. In: Ru, C., Liu, X., Sun, Y. (eds) Nanopositioning Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-23853-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23853-1_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23852-4

  • Online ISBN: 978-3-319-23853-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics