Skip to main content
Log in

Depth-detection methods for microgripper based CNT manipulation in a scanning electron microscope

  • Research Paper
  • Published:
Journal of Micro-Nano Mechatronics Aims and scope Submit manuscript

Abstract

Current research work on the development of different depth-detection methods for supporting pick-and-place manipulations of carbon nanotubes (CNTs) in a scanning electron microscope (SEM) is presented. A nanorobot station capable of performing this manipulation task in the SEM’s vacuum chamber has been developed, consisting of two cooperating nanorobots. One robot carries an electrothermal microgripper and also performs the coarse approach between microgripper and CNT. The second robot serves as sample holder and realizes the fine positioning of the CNT sample. For a reliable fine approach between microgripper and CNT as well as an intended future automation of handling tasks, depth-detection methods are required in order to precisely measure and align the z-position of microgripper and CNT. Two different methods for z-position estimation are proposed. The depth from focus method uses the focusing information of SEM images whereas the touchdown sensor concept relies on a bimorph piezo bending actuator. The feasibility of both approaches is shown and first experimental results are discussed. Future work has to show how the proposed methods will increase the efficiency of nanorobotic manipulation and how these methods can advance the automation of nanohandling tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abbott JJ, Nagy Z, Beyeler F, Nelson BJ (2007) Robotics in the small, part I: microrobotics. IEEE Robot Autom Mag 14(2):92–103

    Article  Google Scholar 

  2. Arai F, Motoo K, Kwon PGR, Fukuda T, Ichikawa I, Katsuragi T (2003) Novel touch sensor with piezoelectric thin film for microbial separation. IEEE Int Conf Robot Autom 1:306–311

    Google Scholar 

  3. Asada N, Fujiware H, Matsuyama T (1998) Edge and depth from focus. Int J Comput Vis 26(2):153–163

    Article  Google Scholar 

  4. Belin T, Epron F (2005) Characterization methods of carbon nanotubes: a review. Mater Sci Eng B 119:105–118

    Article  Google Scholar 

  5. Carlson K, Andersen KN, Eichhorn V, Petersen DH, Mølhave K, Bu IYY, Teo KBK, Milne WI, Fatikow S, Bøggild P (2007) A carbon nanofibre scanning probe assembled using an electrothermal microgripper. Nanotechnology 18(34):345501

    Article  Google Scholar 

  6. Cecil J, Powell D, Vasquez D (2006) Assembly and manipulation of micro devices—a state of the art survey. Robot Comput-Integr Manuf 23(5):580–588

    Article  Google Scholar 

  7. Dong L, Nelson BJ (2007) Robotics in the small, part II: nanorobotics. IEEE Robot Autom Mag 14(3):111–121

    Article  Google Scholar 

  8. Ferreira A, Mavroidis C (2006) Virtual reality and haptics for nanorobotics. IEEE Robot Autom Mag 13(3):78–92

    Article  Google Scholar 

  9. Fukuda T, Arai F, Dong L (2003) Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations. Proc IEEE 91(11):1803–1818

    Article  Google Scholar 

  10. Hertel T, Martel R, Avouris P (1998) Manipulation of individual carbon nanotubes and their interaction with surfaces. J Phys Chem B 102:910–915

    Article  Google Scholar 

  11. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58, November

    Article  Google Scholar 

  12. Jähnisch M, Fatikow S (2007) 3D vision feedback for nanohandling monitoring in a scanning electron microscope. Int J Optomechatronics 1(1):4–26

    Article  Google Scholar 

  13. Lim SC, Kim KS, Lee IB, Jeong SY, Cho S, Yoo J-E, Lee YE (2005) Nanomanipulator-assisted fabrication and characterization of carbon nanotubes inside scanning electron microscope. Micron 36:471–476

    Article  Google Scholar 

  14. Mølhave K, Hansen O (2005) Electro-thermally actuated microgrippers with integrated force-feedback. J Micromechanics Microengineering 15:1265–1270

    Article  Google Scholar 

  15. Motoo K, Arai F, Fukuda T, Matsubara M, Kikuta K, Yamaguchi T, Hirano S (2005) Touch sensor for micromanipulation with pipette using lead-free (k,na)(nb,ta)o3 piezoelectric ceramics. J Appl Physi 98:094505

    Article  Google Scholar 

  16. Nakayama Y, Akita S (2003) Nanoengineering of carbon nanotubes for nanotools. New J Phys 5:128.1–128.23

    Article  Google Scholar 

  17. Ohba K, Ortega JCP, Tanie K, Tsuji M, Yamada S (2003) Microscopic vision system with all-in-focus and depth images. Mach Vis Appl 15(2):55–62

    Article  Google Scholar 

  18. Pfeiffer F (1989) Einführung in die mechanik. Teubner Verlag, Stuttgart

    Google Scholar 

  19. Postma HWC, Sellmeijer A, Dekker C (2000) Manipulation and imaging of individual single-walled carbon nanotubes with an atomic force microscope. Adv Mater 12(17):1299–1302

    Article  Google Scholar 

  20. Reimer L (1998) Scanning electron microscopy: physics of image formation and microanalysis. Springer, Berlin

    Google Scholar 

  21. Requicha AAG (2003) Nanorobots, nems, and nanoassembly. Proc IEEE 91(11):1922–1933

    Article  Google Scholar 

  22. Rubio-Sierra FJ, Heckl WM, Stark RW (2005) Nanomanipulation by atomic force microscopy. Adv Eng Mater 7(4):193–196

    Article  Google Scholar 

  23. Sievers T, Fatikow S (2006) Real-time object tracking for the robot-based nanohandling in a scanning electron microscope. J Micromechatron 3(3–4):267–284(18)

    Article  Google Scholar 

  24. Sitti M, Aruk B, Shintani H, Hashimoto H (2003) Scaled teleoperation system for nano-scale interaction and manipulation. Adv Robot 17:275–291

    Article  Google Scholar 

  25. Teo KBK, Lee S-B, Chhowalla M, Semet V, Thien Binh Vu, Groening O, Castignolles M, Loiseau A, Pirio G, Legagneux P, Pribat D, Hasko DG, Ahmed H, Amaratunga GAJ, Milne WI (2003) Plasma enhanced chemical vapour deposition carbon nanotubes/nanofibres—how uniform do they grow? Nanotechnology 14(2):204–211

    Article  Google Scholar 

  26. Williams PA, Papadakis SJ, Falvo MR, Patel AM, Sinclair M, Seeger A, Helser A, Taylor RM II, Washburn S, Superfine R (2002) Controlled placement of an individual carbon nanotube onto a microelectromechanical structure. Appl Phys Lett 80(14):2574–2576

    Article  Google Scholar 

  27. Yu M, Dyer MJ, Skidmore GD, Rohrs HW, Lu X, Ausman KD, Von Ehr JR, Ruoff RS (1999) Three-dimensional manipulation of carbon nanotubes under a scanning electron microscope. Nanotechnology 10:244–252

    Article  Google Scholar 

Download references

Acknowledgment

We would like to thank the Engineering Department at the University of Cambridge, United Kingdom for supporting the gripping experiments by supplying arrays of vertical aligned carbon nanotubes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volkmar Eichhorn.

Additional information

This work was supported in part by the European Community: NANORAC (STRP 013680) and NANOHAND (IP 034274).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eichhorn, V., Fatikow, S., Wich, T. et al. Depth-detection methods for microgripper based CNT manipulation in a scanning electron microscope. J. Micro-Nano Mech. 4, 27–36 (2008). https://doi.org/10.1007/s12213-008-0001-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12213-008-0001-2

Keywords

Navigation