Skip to main content

Homogenization Strategies for Fiber Curtains and Bundles in Air Flows

  • Conference paper
  • First Online:
Progress in Industrial Mathematics at ECMI 2014 (ECMI 2014)

Part of the book series: Mathematics in Industry ((TECMI,volume 22))

Included in the following conference series:

  • 1153 Accesses

Abstract

In non-woven manufacturing thousands of slender fibers are swirled by air flows before they lay down to form a web. The fiber-fluid interactions have a crucial influence on the quality of the final product. For the purpose of an efficient and fast computation of the multi-scale, two-way coupled interaction problem, we investigate classical homogenization strategies and a new continuum approach for very long fibers suspended in a fluid flow. We compare the results with Direct Numerical Simulation (DNS) and Immersed Boundary Methods for academic examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allaire, G.: Continuity of the Darcy’s law in the low-volume fraction limit. Ann. Scuola Norm. Sup. Pisa 18(4), 475–499 (1991)

    MathSciNet  MATH  Google Scholar 

  2. Allaire, G.: Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. Part I + II. Arch. Rational Mech. Anal. 113, 209–298 (1991)

    Google Scholar 

  3. Andric, J.: Numerical modeling of air-fiber flows. Ph.D. thesis, Chalmers University of Technology, Göteborg (2014)

    Google Scholar 

  4. Arne, W., Marheineke, N., Meister, A., Wegener, R.: Numerical analysis of Cosserat rod and string models for viscous jets in rotational spinning processes. Math. Models Methods Appl. Sci. 20(10), 1941–1965 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arne, W., Marheineke, N., Schnebele, J., Wegener, R.: Fluid-fiber-interactions in rotational spinning process of glass wool manufacturing. J. Math. Ind. 1(2), 1–26 (2011)

    MATH  Google Scholar 

  6. Brinkman, H.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A1, 27–34 (1947)

    MATH  Google Scholar 

  7. Cibis, T.: Homogenisierungsstrategien für Filament-Strömungs-Wechselwirkungen. Ph.D. thesis, FAU Erlangen-Nürnberg, Erlangen (2015)

    Google Scholar 

  8. Cibis, T., Marheineke, N., Wegener, R.: Asymptotic modeling framework for fiber-flow interactions in a two-way coupling. In: Fontes, M., et al. (eds.) Progress in Industrial Mathematics at ECMI 2012, pp. 109–117. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  9. Cioranescu, D., Murat, F.: A strange term coming from nowhere. In: Cherkaev, A., Kohn, R. (eds.) Topics in the Mathematical Modelling of Composite Materials, pp. 45–93. Birkhäuser, Boston (1997)

    Chapter  Google Scholar 

  10. Drummond, J., Tahir, M.: Laminar viscous flow through regular arrays of parallel solid cylinders. Int. J. Multiphase Flow 10, 515–540 (1983)

    Article  MATH  Google Scholar 

  11. Durlofsky, L., Brady, J.: Analysis of the Brinkman equation as a model for flow in porous media. Phys. Fluids 30(11), 3329–3341 (1987)

    Article  MATH  Google Scholar 

  12. Hämäläinen, J., Lindström, S.B., Hämäläinen, T., Niskanen, H.: Papermaking fibre-suspension flow simulations at multiple scales. J. Eng. Math. 71(1), 55–79 (2011)

    Article  MATH  Google Scholar 

  13. Hornung, U.: Homogenization and Porous Media. Springer, New York (1997)

    Book  MATH  Google Scholar 

  14. Klar, A., Marheineke, N., Wegener, R.: Hierarchy of mathematical models for production processes of technical textiles. Z. Ang. Math. Mech. 89(12), 941–961 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Koch, D., Ladd, A.: Moderate Reynolds number flows through periodic and random arrays of aligned cylinders. J. Fluid Mech. 349, 31–66 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Marheineke, N., Wegener, R.: Modeling and application of a stochastic drag for fibers in turbulent flows. Int. J. Multiphase Flow 37, 136–148 (2011)

    Article  Google Scholar 

  17. Marheineke, N., Liljo, J., Mohring, J., Schnebele, J., Wegener, R.: Multiphysics and multimethods problem of rotational glass fiber melt-spinning. Int. J. Num. Anal. Mod. B 3(3), 330–344 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Mark, A.: A novel immersed-boundary method for multiple moving and interacting bodies. Ph.D. thesis, Chalmers University of Technology, Göteborg (2007)

    Google Scholar 

  19. Nield, D.: The Beavers-Joseph boundary condition and related matters: a historical and critical note. Transp. Porous Media 78(3), 537–540 (2009)

    Article  MathSciNet  Google Scholar 

  20. Nield, D., Bejan, A.: Convection in Porous Media. Springer, New York (1992)

    Book  MATH  Google Scholar 

  21. Peskin, C.: The immersed boundary method. Acta Numer. 11, 1–39 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rubin, M.: Cosserat Theories: Shells, Rods and Points. Solid Mechanics and Its Applications. Springer, Dordrecht (2000)

    Book  MATH  Google Scholar 

  23. Sangani, A., Acrivos, A.: Slow flow past periodic arrays of cylinders with application to heat transfer. Int. J. Multiphase Flow 8, 193–206 (1982)

    Article  MATH  Google Scholar 

  24. Svenning, E., Mark, A., Edelvik, F., Glatt, E., Rief, S., Wiegmann, A., Martinsson, L., Lai, R., Fredlund, M., Nyman, U.: Multiphase simulation of fiber suspension flows using immersed boundary methods. Nordic Pulp Paper Res. J. 27(2), 184–191 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by German BMBF, 05M2010 and 05M2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Marheineke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Cibis, T.M., Leithäuser, C., Marheineke, N., Wegener, R. (2016). Homogenization Strategies for Fiber Curtains and Bundles in Air Flows. In: Russo, G., Capasso, V., Nicosia, G., Romano, V. (eds) Progress in Industrial Mathematics at ECMI 2014. ECMI 2014. Mathematics in Industry(), vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-23413-7_136

Download citation

Publish with us

Policies and ethics