Skip to main content
Log in

Papermaking fibre-suspension flow simulations at multiple scales

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

Papermaking flows are extremely challenging for modelling and simulation, if one accepts their full complexity. A wide range of particles, including fibres, fibre fragments (fines) and fillers (non-organic particles), flow and interact with each other in a non-dilute suspension, a complex geometry and at a high flow rate. Different simulation approaches are reviewed from particle-level simulations, through meso-scale simulations to the full flow geometry of the papermaking line. Their application to papermaking and potential to provide fundamental understanding as well as direct process-optimization support are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leppänen T (2007) Effect of fibre orientation on cockling of paper. PhD thesis, University of Kuopio, Finland

  2. Karlsson M, Hämäläinen J (2004) A model-based decision-aid system to add value to papermaking. Neittaanmäki P, Rossi T, Majava K, Pironneau O (eds) CD Proceedings of 4th ECCOMAS 2004, vol I. Jyväskylä, Finland

  3. Madetoja E (2007) Novel process line approach for model-based optimization in papermaking—sensitivity and uncertainty analysis. PhD thesis, University of Kuopio, Finland

  4. Wu J, Aidun CK (2010) A method for direct simulation of flexible fiber suspensions using lattice-Boltzmann equation with external boundary force field. Int J Multip Flow 36(3): 202–209

    Article  Google Scholar 

  5. Wu J, Aidun CK (2010) Simulating 3D deformable particle suspensions using lattice Boltzmann method with discrete external boundary force. Int J Numer Methods Fluids 62(7): 765–783

    MATH  Google Scholar 

  6. Aidun CK, Clausen JR (2010) Lattice-Boltzmann method for complex flows. Annu Rev Fluid Mech 42: 439–472

    Article  ADS  MathSciNet  Google Scholar 

  7. Qi D (2006) Direct simulations of flexible cylindrical fiber suspensions in finite Reynolds number flows. J Chem Phys 125: 114901

    Article  ADS  Google Scholar 

  8. Tornberg A-K, Shelley MJ (2004) Simulating the dynamics and interactions of flexible fibres in Stokes flows. J Comput Phys 196: 8–40

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Batchelor GK (1970) Slender-body theory for particles of arbitrary cross-section in Stokes flow. J Fluid Mech 44(3): 419–440

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Yamane Y, Kaneda Y, Doi M (1994) Numerical simulation of semi-dilute suspensions of rodlike particles in shear flow. J Non-Newton Fluid Mech 54: 405–421

    Article  Google Scholar 

  11. Fan X, Phan-Thien N, Zheng R (1998) A direct simulation of fibre suspensions. J Non-Newton Fluid Mech 74: 113–135

    Article  MATH  Google Scholar 

  12. Tornberg A-K, Gustavsson K (2006) A numerical method for simulations of rigid fiber suspensions. J Comput Phys 215(1): 172–196

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Yamamoto S, Matsuoka T (1995) Dynamic simulation of fiber suspensions in shear flow. J Chem Phys 102: 2254–2260

    Article  ADS  Google Scholar 

  14. Yamamoto S, Matsuoka T (1996) Dynamic simulation of microstructure and rheology of fiber suspensions. Polym Eng Sci 36(19): 2396–2403

    Article  Google Scholar 

  15. Skjetne P, Ross RF, Klingenberg DJ (1997) Simulation of single fiber dynamics. J Chem Phys 107(6): 2108–2121

    Article  ADS  Google Scholar 

  16. Joung CG, Phan-Thien N, Fan XJ (2001) Direct simulation of flexible fibers. J Non-Newton Fluid Mech 99: 1–36

    Article  MATH  Google Scholar 

  17. Joung CG, Phan-Thien N, Fan XJ (2002) Viscosity of curved fibers in suspensions. J Non-Newton Fluid Mech 102: 1–17

    Article  MATH  Google Scholar 

  18. Joung CG (2003) Direct simulation studies of suspended particles and fibre-filled suspensions. PhD thesis, University of Sydney, Australia

  19. Jayageeth C, Sharma VI, Singh A (2009) Dynamics of short fiber suspensions in bounded shear flow. Int J Multip Flow 35: 261–269

    Article  Google Scholar 

  20. Brady JF, Bossis G (1988) Stokesian dynamics. Annu Rev Fluid Mech 20: 111–157

    Article  ADS  Google Scholar 

  21. Claeys IL, Brady JF (1993) Suspensions of prolate spheroids in Stokes-flow. 1. Dynamics of a finite number of particles in an unbounded fluid. J Fluid Mech 251: 411–442

    Article  MATH  ADS  Google Scholar 

  22. Claeys IL, Brady JF (1993) Suspensions of prolate spheroids in Stokes-flow. 2. Statistically homogeneous dispersions. J Fluid Mech 251: 443–477

    Article  ADS  Google Scholar 

  23. Ross RF, Klingenberg DJ (1997) Dynamic simulation of flexible fibers composed of linked rigid bodies. J Chem Phys 106(7): 2949–2960

    Article  ADS  Google Scholar 

  24. Schmid CF, Klingenberg DJ (2000) Mechanical flocculation in flowing fiber suspensions. Phys Rev Lett 84: 290–293

    Article  ADS  Google Scholar 

  25. Schmid CF, Switzer LH, Klingenberg DJ (2000) Simulations of fiber flocculation: Effects of fiber properties and interfiber friction. J Rheol 44: 781–809

    Article  ADS  Google Scholar 

  26. Switzer LH, Klingenberg DJ (2003) Rheology of sheared flexible fiber suspensions via fiber-level simulations. J Rheol 47(3): 759–778

    Article  ADS  Google Scholar 

  27. Switzer LH, Klingenberg DJ (2003) Simulations of fiber floc dispersion in linear flow fields. Nord Pulp Pap Res J 18(2): 141–144

    Article  Google Scholar 

  28. Switzer LH, Klingenberg DJ (2004) Flocculation in simulations of sheared fiber suspensions. Int J Multip Flow 30: 67–87

    Article  MATH  Google Scholar 

  29. Kim S, Karrila SJ (1991) Microhydrodynamics: principles and selected applications. Butterworth-Heinemann, Stoneham, MA

    Google Scholar 

  30. Wang G, Yu W, Zhou C (2006) Optimization of the rod chain model to simulate the motions of a long flexible fiber in simple shear flows. Eur J Mech B Fluids 25: 337–347

    Article  MATH  Google Scholar 

  31. Soszynski RM, Kerekes RJ (1988) Elastic interlocking of nylon fibers suspended in liquid. Nord Pulp Pap Res J 3: 172–184

    Article  Google Scholar 

  32. Sundararajakumar RR, Koch DL (1997) Structures and properties of sheared fiber suspensions with mechanical contacts. J Non-Newton Fluid Mech 73: 205–239

    Article  Google Scholar 

  33. Joseph G, Zenit R, Hunt M, Rosenwinkel A (2001) Particle-wall collisions in a viscous fluid. J Fluid Mech 433: 329–346

    MATH  ADS  Google Scholar 

  34. Lindström SB, Uesaka T (2007) Simulation of the motion of flexible fibres in viscous fluid flow. Phys Fluids 19: 113307

    Article  ADS  Google Scholar 

  35. Lindström SB, Uesaka T (2008) Simulation of semidilute suspensions of non-Brownian fibres in shear flow. J Chem Phys 128: 024901

    Article  ADS  Google Scholar 

  36. Lindström SB (2008) Modelling and simulation of paper structure development. PhD thesis, Mid Sweden University, Sundsvall, Sweden

  37. Lindström SB, Uesaka T (2009) A numerical investigation of the rheology of sheared fibre suspensions. Phys Fluids 21: 083301

    Article  ADS  Google Scholar 

  38. Weinane E, Liu J-G (1996) Essentially compact schemes for unsteady viscous incompressible flows. J Comput Phys 126: 122–138

    Article  MathSciNet  Google Scholar 

  39. Weinane E, Liu J-G (1997) Finite difference methods for 3D viscous incompressible flows in the vorticity-vector potential formulation on nonstaggered grids. J Comput Phys 138: 57–82

    Article  MathSciNet  Google Scholar 

  40. Switzer LH, Klingenberg DJ, Scott CT (2004) Handsheet formation and mechanical testing via fiber-level simulations. Nord Pulp Pap Res J 19: 434–439

    Article  Google Scholar 

  41. Miettinen PPJ, Ketoja JA, Klingenberg DJ (2007) Simulated strength of wet fibre networks. Int J Pulp Pap Sci 33(4): 198–205

    Google Scholar 

  42. Miettinen PPJ, Ketoja JA (2008) Simulation of triaxial deformation of wet fiber networks. Nord Pulp Pap Res J 23(3): 264–271

    Article  Google Scholar 

  43. Lindström SB, Uesaka T (2008) Particle-level simulation of forming of the fibre network in papermaking. Int J Eng Sci 46: 858–876

    Article  Google Scholar 

  44. Lindström SB, Uesaka T, Hirn U (2009) Evolution of the paper structure along the length of a twin-wire former. In: 14th Fund research symposium, vol 1. Oxford, UK, pp 207–245

  45. Kulachenko A, Uesaka T, Lindström SB (2008) Reinventing mechanics of fibre networks. In: Progress in paper physics seminar. Espoo, Finland, pp 185–187, 193

  46. Kulachenko A, Lindström SB, Uesaka T (2009) Strength of wet fibre networks—size scaling. In: Proceedings of papermaking research symposium, Finland

  47. Folgar F, Tucker C III (1984) Orientation behaviour of fibers in concentrated suspensions. J Reinf Plast Compos 3(2): 98–119

    Article  Google Scholar 

  48. Advani S, Tucker C III (1987) The use of tensors to describe and predict fiber orientation in short fibre composites. J Rheol 31(8): 751–784

    Article  ADS  Google Scholar 

  49. Olson JA, Kerekes RJ (1998) The motion of fibres in turbulent flow. J Fluid Mech 377: 47–64

    Article  MATH  ADS  Google Scholar 

  50. Petrie C (1999) The rheology of fibre suspensions. J Non-Newton Fluid Mech 87: 369–402

    Article  MATH  Google Scholar 

  51. Krochak P, Olson J, Martinez D (2008) The orientation of semidilute rigid fiber suspensions in a linearly contracting channel. Phys Fluids 20: 073303

    Article  ADS  Google Scholar 

  52. Bernstein O, Shapiro M (1994) Direct determination of the orientation distribution function of cylindrical particles immersed in laminar and turbulent shear flows. J Aerosol Sci 25(1): 113–136

    Article  Google Scholar 

  53. Krushkal E, Gallily I (1988) On the orientation distribution of non-spherical aerosol particles in general shear flow. Part 2. The turbulent case. J Aerosol Sci 19(2): 197–211

    Article  Google Scholar 

  54. Olson J, Frigaard I, Chan C, Hämäläinen J (2004) Modelling turbulent fibre suspension flowing in a planar contraction: the one-dimensional headbox. Int J Multip Flow 30: 51–66

    Article  MATH  Google Scholar 

  55. Parsheh M, Brown M, Aidun C (2006) Variation of fiber orientation in turbulent flow inside a planar contraction with different shapes. Int J Multip Flow 32: 1354–1369

    Article  MATH  Google Scholar 

  56. Krochak P, Olson J, Martinez M (2009) Fiber suspension flow in a tapered channel: the effect of flow/fiber coupling. Int J Multiph Flow 35: 676–688

    Article  Google Scholar 

  57. Shin M, Koch D (2005) Rotational and translational dispersion of fibres in isotropic turbulent flows. J Fluid Mech 540: 143–173

    Article  MATH  ADS  Google Scholar 

  58. Jeffery GB (1923) The motion of ellipsoidal particles immersed in a viscous fluid. Proc Roy Soc A 102: 161–179

    MATH  ADS  Google Scholar 

  59. Mortensen P, Andersson H, Gillissen J, Boersma BJ (2008) Dynamics of prolate ellipsoidal particles in turbulent channel flow. Phys Fluids 20: 093302

    Article  ADS  Google Scholar 

  60. Olson J (2001) The motion of fibres in turbulent flow, stochastic simulation of isotropic homogenous turbulence. Int J Multip Flow 27: 2083–2103

    Article  MATH  Google Scholar 

  61. Schiek R, Shaqfeh E (1995) A nonlocal theory for stress in bound, Brownian suspensions of slender, rigid fibres. J Fluid Mech 296: 271–324

    Article  MATH  ADS  MathSciNet  Google Scholar 

  62. Parsheh M, Brown M, Aidun C (2005) On the orientation of stiff fibres suspended in turbulent flow in planar contraction. J Fluid Mech 545: 245–269

    Article  MATH  ADS  Google Scholar 

  63. Hyensjö M (2008) Fibre orientation modelling applied to contracting flows related to papermaking. PhD thesis, Royal Institute of Technology, Stockholm

  64. Eloranta H (2005) Fluid mechanics of the papermaking machine headbox—instabilities and disturbances in the slice chamber. PhD thesis, Tampere University of Technology

  65. Olson J (2002) Analytic estimate of the fibre orientation distribution in a headbox flow. Nord Pulp Pap Res J 17(3): 302–306

    Article  Google Scholar 

  66. Putkiranta M, Eloranta H, Pärssinen T, Saarenrinne P (2009) Evolution of the fiber orientation distribution in streamwise elongational flow. In: CD proceedings of papermaking research symposium, 2009. Kuopio, Finland

  67. Mason SG (1954) Fibre motion and floccation. Pulp Pap Mag Canada 55(13): 96–102

    Google Scholar 

  68. Karema H, Salmela J, Tukiainen M, Lepomäki H (2001) Prediction of paper formation by fluidisation and reflocculation experiments’. In: 12th Fund research symposium, pp 559–589

  69. Kerekes RJ (1983) Pulp floc behavior in entry flow to constrictions. Tappi J 66(1): 88–91

    Google Scholar 

  70. Steen M (1990) Turbulence and flocculation in fibre suspensions. PhD thesis, University of Trondheim

  71. Ramkrishna D (2000) Population balances—theory and applications to particulate systems in engineering. Academic Press, San Diego

    Google Scholar 

  72. ANSYS CFX-11.0 Electronical manual

  73. Hämäläinen T, Hämäläinen J, Salmela J (2007) Evolution of fibre flocs in a turbulent pipe expansion flow. In: 6th international conference on Multiphase flow (CD Proceedings)

  74. Hämäläinen J (1993) Mathematical modeling and simulation of fluid flows in the headbox of paper machines. PhD thesis, University of Jyväskylä

  75. Hämäläinen J, Tarvainen P, Aspholm P (2005) HOCS FIBRE—new tool for optimized fibre orientation angles. In: 91st annual meeting PAPTAC, CD proceedings

  76. Jäsberg A (2007) Flow behaviour of fibre suspension in straight pipes: new experimental techniques and multiphase modeling. PhD thesis, University of Jyväskylä, Finland

  77. Hammarström D (2004) A model for simulation of fiber suspension flows. Licentiate thesis, Royal Institute of Technology, Stockholm, Sweden

  78. Niklas M, Asendrych D (2006) Modelling of fluid flow with complex rheology. Syst J Transdiscipl Syst Sci 11: 63–73

    Google Scholar 

  79. Kondora G, Asendrych D (2009) Flow simulation in a disc refiner. In: Proceedings of 14th conference on Model fluid flows, Budapest

  80. Ventura C, Blanco A, Negro C, Ferreira P, Garcia F, Rasteiro M (2007) Modeling pulp fiber suspension rheology. Tappi J 6(7): 17–23

    Google Scholar 

  81. Ventura C, Garcia F, Ferreira P, Rasteiro M (2008) Flow dynamics of pulp fiber suspensions. Tappi J 7(8): 20–26

    Google Scholar 

  82. Wikström T (2002) Flow and rheology of pulp suspensions at medium consistency. PhD thesis, Chalmers University of Technology, Sweden

  83. Huhtanen JP (2004) Modeling of fiber suspension flows in refiner and other papermaking processes by combining non-Newtonian fluid dynamics and turbulence. PhD thesis, Tampere University of Technology, Finland

  84. Hämäläinen J, Hämäläinen T, Madetoja E, Ruotsalainen H (2008) CFD-based optimization for complete industrial process: Papermaking. In: Thévenin D, Janiga G (eds) Optimization and computational fluid dynamics. Springer, Berlin

    Google Scholar 

  85. Hämäläinen J, Mäkinen R, Tarvainen P (2000) Optimal design of paper machine headboxes. Int J Numer Methods Fluids 34: 685–700

    Article  MATH  Google Scholar 

  86. Hämäläinen J, Miettinen K, Tarvainen P, Toivanen J (2003) Interactive solution approach to a multiobjective optimization problem in a paper machine headbox design. J Opt Theory Appl 116(2): 265–281

    Article  MATH  Google Scholar 

  87. Toivanen J, Hämäläinen J, Miettinen K, Tarvainen P (2003) Designing paper machine headbox using GA. Mater Manuf Process 18(3): 533–541

    Article  Google Scholar 

  88. Hämäläinen J, Tarvainen P (2000) CFD-based shape and control optimization applied to a paper machine headbox. In: 86th annual meeting PAPTAC, pp A99–A102

  89. Hämäläinen J, Tarvainen P (2002) CFD-optimized headbox flows. Pulp Pap Can 103: 39–41

    Google Scholar 

  90. Avikainen M, Hämäläinen J, Tarvainen P (2010) HOCS Fibre: CFD-based software for fibre orientation profile optimization for conventional and dilution headboxes. Nord Pulp Pap Res J (in press)

  91. Hämäläinen J, Miettinen K, Madetoja E, Mäkelä MM, Tarvainen P (2004) Multiobjective decision making for papermaking. In: Wedley WC (eds) CD proceedings of 17th MCDM 2004. Whistler, British Columbia

    Google Scholar 

  92. Hämäläinen J., Madetoja E, Ruotsalainen H (2008) Simulation-based optimization and decision support for papermaking. In: Jin Y, Zhai H, Li Z (eds) Proceedings of ICPPB’08, vol I. Nanjing, China

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hämäläinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hämäläinen, J., Lindström, S.B., Hämäläinen, T. et al. Papermaking fibre-suspension flow simulations at multiple scales. J Eng Math 71, 55–79 (2011). https://doi.org/10.1007/s10665-010-9433-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-010-9433-5

Keywords

Navigation