Skip to main content

Synthetic Biology for Cellular Remodelling to Elicit Industrially Relevant Microbial Phenotypes

  • Chapter
Synthetic Biology

Abstract

Industrial microbiology is proposing an increasing number of bio-based processes that are ready to move from the validation to the demonstration step, with the industrial world being more open to this opportunity for a change. The challenge is therefore to make such processes viable and competitive. When moving from the lab to the industrial scale, the degree of complexity is increasing, and the engineered cell factories very often display emerging properties that can be explained only from a systems perspective. Unfortunately, cellular rewiring often leads to a lower accumulation of the desired product. Synthetic biology is willing to take advantage from the knowledge on mechanisms involved in cellular homeostasis and, thanks to the principles of abstraction, modularity and standardisation, translate them into more efficient cell factories. Indeed, this novel approach to potentiate the power of metabolic engineering can be applied not only to a specific metabolic pathway but can be extended to networks indirectly connected to the pathway of interest. In this chapter, some of the principal synthetic tools developed to regulate or redirect the remodelling of cell factories, from genomic to metabolic level, with the aim to obtain higher titers, yield and productivity of bio-based products will be described and commented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alper H, Stephanopoulos G (2007) Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng 9:258–267

    Article  CAS  PubMed  Google Scholar 

  • Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568

    Article  CAS  PubMed  Google Scholar 

  • Anderson JC, Clarke EJ, Arkin AP, Voigt CA (2006) Environmentally controlled invasion of cancer cells by engineered bacteria. J Mol Biol 355:619–627

    Article  CAS  PubMed  Google Scholar 

  • Ask M, Mapelli V, Höck H, Olsson L, Bettiga M (2013) Engineering glutathione biosynthesis of Saccharomyces cerevisiae increases robustness to inhibitors in pretreated lignocellulosic materials. Microb Cell Fact 12:87

    Article  PubMed Central  PubMed  Google Scholar 

  • Baez A, Cho KM, Liao JC (2011) High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal. Appl Microbiol Biotechnol 90:1681–1690

    Article  CAS  PubMed  Google Scholar 

  • Barrick JE, Yu DS, Yoon SH, Jeong H, Oh TK, Schneider D, Lenski RE, Kim JF (2009) Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461:1243–1247

    Article  CAS  PubMed  Google Scholar 

  • Blazeck J, Hill A, Liu L, Knight R, Miller J, Pan A, Otoupal P, Alper HS (2014) Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat Commun 5:3131

    Article  PubMed  Google Scholar 

  • Chang JG, Yang DM, Chang WH, Chow LP, Chan WL, Lin HH, Huang HD, Chang YS, Hung CH, Yang WK (2011) Small molecule amiloride modulates oncogenic RNA alternative splicing to devitalize human cancer cells. PLoS One 6, e18643

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Csörgo B, Fehér T, Tímár E, Blattner FR, Pósfai G (2012) Low-mutation-rate, reduced-genome Escherichia coli: an improved host for faithful maintenance of engineered genetic constructs. Microb Cell Fact 11:11

    Article  PubMed Central  PubMed  Google Scholar 

  • Danino T, Mondragón-Palomino O, Tsimring L, Hasty J (2010) A synchronized quorum of genetic clocks. Nature 463:326–330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Decker CJ, Parker R (2012) P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harb Perspect Biol 4:a012286

    Article  PubMed Central  PubMed  Google Scholar 

  • Delebecque CJ, Lindner AB, Silver PA, Aldaye FA (2011) Organization of intracellular reactions with rationally designed RNA assemblies. Science 333:470–474

    Article  CAS  PubMed  Google Scholar 

  • Delebecque CJ, Silver PA, Lindner AB (2012) Designing and using RNA scaffolds to assemble proteins in vivo. Nat Protoc 7:1797–1807

    Article  CAS  PubMed  Google Scholar 

  • Deribe YL, Pawson T, Dikic I (2010) Post-translational modifications in signal integration. Nat Struct Mol Biol 17:666–672

    Article  CAS  PubMed  Google Scholar 

  • Dettman JR, Rodrigue N, Melnyk AH, Wong A, Bailey SF, Kassen R (2012) Evolutionary insight from whole-genome sequencing of experimentally evolved microbes. Mol Ecol 21:2058–2077

    Article  CAS  PubMed  Google Scholar 

  • Dragosits M, Mattanovich D (2013) Adaptive laboratory evolution – principles and applications for biotechnology. Microb Cell Fact 12:64

    Article  PubMed Central  PubMed  Google Scholar 

  • Dunlop MJ, Keasling JD, Mukhopadhyay A (2010) A model for improving microbial biofuel production using a synthetic feedback loop. Syst Synth Biol 4:95–104

    Article  PubMed Central  PubMed  Google Scholar 

  • Ebert MS, Sharp PA (2012) Roles for microRNAs in conferring robustness to biological processes. Cell 149:515–524

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Edwards AN, Patterson-Fortin LM, Vakulskas CA, Mercante JW, Potrykus K, Vinella D, Camacho MI, Fields JA, Thompson SA, Georgellis D, Cashel M, Babitzke P, Romeo T (2011) Circuitry linking the Csr and stringent response global regulatory systems. Mol Microbiol 80:1561–1580

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Farmer WR, Liao JC (2000) Improving lycopene production in Escherichia coli by engineering metabolic control. Nat Biotechnol 18:533–537

    Article  CAS  PubMed  Google Scholar 

  • Frenkel-Morgenstern M, Danon T, Christian T, Igarashi T, Cohen L, Hou YM, Jensen LJ (2012) Genes adopt non-optimal codon usage to generate cell cycle-dependent oscillations in protein levels. Mol Syst Biol 8:572

    Article  PubMed Central  PubMed  Google Scholar 

  • Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM, Merryman C, Vashee S, Krishnakumar R, Assad-Garcia N, Andrews-Pfannkoch C, Denisova EA, Young L, Qi ZQ, Segall-Shapiro TH, Calvey CH, Parmar PP, Hutchison CA, Smith HO, Venter JC (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329:52–56

    Article  CAS  PubMed  Google Scholar 

  • Herranz H, Cohen SM (2010) MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems. Genes Dev 24:1339–1344

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Inui M, Martello G, Piccolo S (2010) MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 11:252–263

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Slack FJ (2013) Ageing and the small, non-coding RNA world. Ageing Res Rev 12:429–435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim HS, Kim NR, Yang J, Choi W (2011) Identification of novel genes responsible for ethanol and/or thermotolerance by transposon mutagenesis in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 91:1159–1172

    Article  CAS  PubMed  Google Scholar 

  • Kohlhapp FJ, Mitra AK, Lengyel E, Peter ME (2015) MicroRNAs as mediators and communicators between cancer cells and the tumor microenvironment. Oncogene 1–12. doi:10.1038/onc.2015.89

    Google Scholar 

  • Krisko A, Radman M (2013) Phenotypic and genetic consequences of protein damage. PLoS Genet 9, e1003810

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kwok CK, Tang Y, Assmann SM, Bevilacqua PC (2015) The RNA structurome: transcriptome-wide structure probing with next-generation sequencing. Trends Biochem Sci 40:221–232

    Article  CAS  PubMed  Google Scholar 

  • Lajoie MJ, Rovner AJ, Goodman DB, Aerni HR, Haimovich AD, Kuznetsov G, Mercer JA, Wang HH, Carr PA, Mosberg JA, Rohland N, Schultz PG, Jacobson JM, Rinehart J, Church GM, Isaacs FJ (2013) Genomically recoded organisms expand biological functions. Science 342:357–360

    Article  CAS  PubMed  Google Scholar 

  • Lanza AM, Curran KA, Rey LG, Alper HS (2014) A condition-specific codon optimization approach for improved heterologous gene expression in Saccharomyces cerevisiae. BMC Syst Biol 8:33

    Article  PubMed Central  PubMed  Google Scholar 

  • Li X, Cassidy JJ, Reinke CA, Fischboeck S, Carthew RW (2009) A microRNA imparts robustness against environmental fluctuation during development. Cell 137:273–282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lian J, Chao R, Zhao H (2014) Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol. Metab Eng 23:92–99

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Fu X, Liu L, Ren X, Chau CK, Li S, Xiang L, Zeng H, Chen G, Tang LH, Lenz P, Cui X, Huang W, Hwa T, Huang JD (2011) Sequential establishment of stripe patterns in an expanding cell population. Science 334:238–241

    Article  CAS  PubMed  Google Scholar 

  • Ma NJ, Moonan DW, Isaacs FJ (2014) Precise manipulation of bacterial chromosomes by conjugative assembly genome engineering. Nat Protoc 9:2285–2300

    Article  CAS  PubMed  Google Scholar 

  • Mansell TJ, Warner JR, Gill RT (2013) Trackable multiplex recombineering for gene-trait mapping in E. coli. Methods Mol Biol 985:223–246

    Article  CAS  PubMed  Google Scholar 

  • Marietou A, Nguyen AT, Allen EE, Bartlett DH (2014) Adaptive laboratory evolution of Escherichia coli K-12 MG1655 for growth at high hydrostatic pressure. Front Microbiol 5:749

    PubMed Central  PubMed  Google Scholar 

  • Martani F, Fossati T, Posteri R, Signori L, Porro D, Branduardi P (2013) Different response to acetic acid stress in Saccharomyces cerevisiae wild-type and l-ascorbic acid-producing strains. Yeast 30:365–378

    Article  CAS  PubMed  Google Scholar 

  • May T, Okabe S (2011) Enterobactin is required for biofilm development in reduced-genome Escherichia coli. Environ Microbiol 13:3149–3162

    Article  CAS  PubMed  Google Scholar 

  • McKee AE, Rutherford BJ, Chivian DC, Baidoo EK, Juminaga D, Kuo D, Benke PI, Dietrich JA, Ma SM, Arkin AP, Petzold CJ, Adams PD, Keasling JD, Chhabra SR (2012) Manipulation of the carbon storage regulator system for metabolite remodeling and biofuel production in Escherichia coli. Microb Cell Fact 11:79

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McKenna R, Thompson B, Pugh S, Nielsen DR (2014) Rational and combinatorial approaches to engineering styrene production by Saccharomyces cerevisiae. Microb Cell Fact 13:123

    Article  PubMed Central  PubMed  Google Scholar 

  • Michener JK, Thodey K, Liang JC, Smolke CD (2012) Applications of genetically-encoded biosensors for the construction and control of biosynthetic pathways. Metab Eng 14:212–222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mitchell SF, Parker R (2014) Principles and properties of eukaryotic mRNPs. Mol Cell 54:547–558

    Article  CAS  PubMed  Google Scholar 

  • Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14:454–459

    Article  CAS  PubMed  Google Scholar 

  • Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H (2008) An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Microbiol Biotechnol 81:459–464

    Article  CAS  PubMed  Google Scholar 

  • Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532

    Article  CAS  PubMed  Google Scholar 

  • Pál C, Papp B, Pósfai G (2014) The dawn of evolutionary genome engineering. Nat Rev Genet 15:504–512

    Article  PubMed  Google Scholar 

  • Patakova P, Linhova M, Rychtera M, Paulova L, Melzoch K (2013) Novel and neglected issues of acetone–butanol–ethanol (ABE) fermentation by clostridia: Clostridium metabolic diversity, tools for process mapping and continuous fermentation systems. Biotechnol Adv 31:58–67

    Article  CAS  PubMed  Google Scholar 

  • Patzschke A, Steiger MG, Holz C, Lang C, Mattanovich D, Sauer M (2015) Enhanced glutathione production by evolutionary engineering of Saccharomyces cerevisiae strains. Biotechnol J. doi:10.1002/biot.201400809

    Google Scholar 

  • Pfleger BF, Pitera DJ, Smolke CD, Keasling JD (2006) Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat Biotechnol 24:1027–1032

    Article  CAS  PubMed  Google Scholar 

  • Porro D, Branduardi P, Sauer M, Mattanovich D (2014) Old obstacles and new horizons for microbial chemical production. Curr Opin Biotechnol 30:101–106

    Article  CAS  PubMed  Google Scholar 

  • Prindle A, Samayoa P, Razinkov I, Danino T, Tsimring LS, Hasty J (2012) A sensing array of radically coupled genetic ‘biopixels’. Nature 481:39–44

    Article  CAS  Google Scholar 

  • Puig S, Querol A, Barrio E, Pérez-Ortín JE (2000) Mitotic recombination and genetic changes in Saccharomyces cerevisiae during wine fermentation. Appl Environ Microbiol 66:2057–2061

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ryu YS, Biswas RK, Shin K, Parisutham V, Kim SM, Lee SK (2014) A simple and effective method for construction of Escherichia coli strains proficient for genome engineering. PLoS One 9, e94266

    Article  PubMed Central  PubMed  Google Scholar 

  • Sedlak M, Ho NW (2004) Production of ethanol from cellulosic biomass hydrolysates using genetically engineered Saccharomyces yeast capable of cofermenting glucose and xylose. Appl Biochem Biotechnol 113–116:403–416

    Article  PubMed  Google Scholar 

  • Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC (2011) Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol 77:2905–2915

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shi S, Valle-Rodríguez JO, Siewers V, Nielsen J (2014) Engineering of chromosomal wax ester synthase integrated Saccharomyces cerevisiae mutants for improved biosynthesis of fatty acid ethyl esters. Biotechnol Bioeng 111:1740–1747

    Article  CAS  PubMed  Google Scholar 

  • Shong J, Jimenez Diaz MR, Collins CH (2012) Towards synthetic microbial consortia for bioprocessing. Curr Opin Biotechnol 23:798–802

    Article  CAS  PubMed  Google Scholar 

  • Solomon KV, Sanders TM, Prather KL (2012) A dynamic metabolite valve for the control of central carbon metabolism. Metab Eng 14:661–671

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Assad-Garcia N, Kostylev M, Noskov VN, Wise KS, Karas BJ, Stam J, Montague MG, Hanly TJ, Enriquez NJ, Ramon A, Goldgof GM, Richter RA, Vashee S, Chuang RY, Winzeler EA, Hutchison CA, Gibson DG, Smith HO, Glass JI, Venter JC (2015) Bacterial genome reduction using the progressive clustering of deletions via yeast sexual cycling. Genome Res 25:435–444

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sydor T, Schaffer S, Boles E (2010) Considerable increase in resveratrol production by recombinant industrial yeast strains with use of rich medium. Appl Environ Microbiol 76:3361–3363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tan FR, Dai LC, Wu B, Qin H, Shui ZX, Wang JL, Zhu QL, Hu QC, Ruan ZY, He MX (2015) Improving furfural tolerance of Zymomonas mobilis by rewiring a sigma factor RpoD protein. Appl Microbiol Biotechnol 99(12):5363–5371

    Google Scholar 

  • Tilloy V, Ortiz-Julien A, Dequin S (2014) Reduction of ethanol yield and improvement of glycerol formation by adaptive evolution of the wine yeast Saccharomyces cerevisiae under hyperosmotic conditions. Appl Environ Microbiol 80:2623–2632

    Article  PubMed Central  PubMed  Google Scholar 

  • Van Dien S (2013) From the first drop to the first truckload: commercialization of microbial processes for renewable chemicals. Curr Opin Biotechnol 24:1061–1068

    Article  PubMed  Google Scholar 

  • Venayak N, Anesiadis N, Cluett WR, Mahadevan R (2015) Engineering metabolism through dynamic control. Curr Opin Biotechnol 34:142–152

    Article  CAS  PubMed  Google Scholar 

  • Vishnoi M, Narula J, Devi SN, Dao HA, Igoshin OA, Fujita M (2013) Triggering sporulation in Bacillus subtilis with artificial two-component systems reveals the importance of proper Spo0A activation dynamics. Mol Microbiol 90:181–194

    CAS  PubMed  Google Scholar 

  • Walters R, Parker R (2014) Quality control: is there quality control of localized mRNAs? J Cell Biol 204:863–868

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460:894–898

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    Article  CAS  PubMed  Google Scholar 

  • Wegner A, Meiser J, Weindl D, Hiller K (2014) How metabolites modulate metabolic flux. Curr Opin Biotechnol 34:16–22

    Article  PubMed  Google Scholar 

  • Westfall PJ, Pitera DJ, Lenihan JR, Eng D, Woolard FX, Regentin R, Horning T, Tsuruta H, Melis DJ, Owens A, Fickes S, Diola D, Benjamin KR, Keasling JD, Leavell MD, McPhee DJ, Renninger NS, Newman JD, Paddon CJ (2012) Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci U S A 109:111–118

    Article  Google Scholar 

  • Winkler JD, Kao KC (2014) Recent advances in the evolutionary engineering of industrial biocatalysts. Genomics 104:406–411

    Article  CAS  PubMed  Google Scholar 

  • Xie D, Jackson EN, Zhu Q (2015) Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered Yarrowia lipolytica: from fundamental research to commercial production. Appl Microbiol Biotechnol 99:1599–1610

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xue X, Wang T, Jiang P, Shao Y, Zhou M, Zhong L, Wu R, Zhou J, Xia H, Zhao G, Qin Z (2014) MEGA (Multiple Essential Genes Assembling) deletion and replacement method for genome reduction in Escherichia coli. ACS Synth Biol. doi:10.1021/sb500324p

    Google Scholar 

  • Yamada R, Hasunuma T, Kondo A (2013) Endowing non-cellulolytic microorganisms with cellulolytic activity aiming for consolidated bioprocessing. Biotechnol Adv 31:754–763

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Rao Z, Zhang X, Xu M, Xu Z, Yang ST (2013) Improved production of 2,3-butanediol in Bacillus amyloliquefaciens by over-expression of glyceraldehyde-3-phosphate dehydrogenase and 2,3-butanediol dehydrogenase. PLoS One 8, e76149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • You L, Cox RS, Weiss R, Arnold FH (2004) Programmed population control by cell-cell communication and regulated killing. Nature 428:868–871

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Li J, Han B, Li X, Chen J (2014) Improvement of oxidative stress tolerance in Saccharomyces cerevisiae through global transcription machinery engineering. J Ind Microbiol Biotechnol 41:869–878

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

PB thankfully acknowledges Michael Sauer for the fruitful discussions and for critically reviewing the work. PB acknowledges the financial support by the FAR (Fondo di Ateneo per la Ricerca, University of Milano-Bicocca) and by the project grant SysBioNet, Italian Roadmap Research Infrastructures 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Branduardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Branduardi, P. (2016). Synthetic Biology for Cellular Remodelling to Elicit Industrially Relevant Microbial Phenotypes. In: Glieder, A., Kubicek, C., Mattanovich, D., Wiltschi, B., Sauer, M. (eds) Synthetic Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-22708-5_5

Download citation

Publish with us

Policies and ethics