Skip to main content

Abstract

Unprecedented growth of global population along with increasing levels of malnutrition among infants and adults necessitate the immediate research on improving the nutritional quality of major crops. Although sufficient research is in progress towards generating elite varieties capable of withstanding adverse climates without affecting their productivity, less importance has been given to ensure the nutritional properties of these crops. Cereals constitute a major source of staple food to the global population, but the levels of micro- and macro-nutrients in cereals are considerably less when compared to millets. Millets serve as versatile crops with exceptional agronomic traits as well as nutritional characteristics. Unlike cereals, millets are C4 photosynthetic crops with several salient features such as tolerance to broad-spectrum abiotic stresses, adaptation to a wide range of ecological conditions, better survival and productivity in nutrient poor soils and are nutritionally superior to major cereals. In this context, this chapter summarizes the advancements made in the area of crop genomics with emphasis on improvement of the nutritional content of millets. Considering the genetically close-relatedness between millets and cereals, research should focus on investigating the genetics and genomics of nutritional traits in millets and introgress them into cereals using integrated omics approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AGI Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Al-Babili S, Beyer P (2005) Golden rice – five years on the road – five years to go? Trends Plant Sci 10:565–573

    Article  CAS  PubMed  Google Scholar 

  • Al-Mssallem IS, Hu S, Zhang X et al (2011) Genome sequence of the date palm Phoenix dactylifera L. Nat Commun 4:2274

    Google Scholar 

  • Argout X, Salse J, Aury JM et al (2011) The genome of Theobroma cacao. Nat Genet 43:101–108

    Article  CAS  PubMed  Google Scholar 

  • Banks JA, Nishiyama T, Hasebe M et al (2011) The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332:960–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennetzen JL, Schmutz J, Wang H et al (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30:555–561

    Article  CAS  PubMed  Google Scholar 

  • Beyer P (2010) Golden rice and ‘golden’ crops for human nutrition. Nat Biotechnol 27:478–481

    CAS  Google Scholar 

  • Bouis HE (2000) Enrichment of food staples through plant breeding: a new strategy for fighting micronutrient malnutrition. Nutrition 16:701–704

    Article  CAS  PubMed  Google Scholar 

  • Brenchley R, Spannagl M, Pfeifer M et al (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burt A, Grainger C, Young JC, Shelp B, Lee E (2010) Impacts of post-harvest handling on carotenoid concentration and composition in high-carotenoid maize (Zea mays L) kernels. J Agric Food Chem 58:8286–8292

    Article  CAS  PubMed  Google Scholar 

  • Carvalho S, Vasconcelos MW (2013) Producing more with less: strategies and novel technologies for plant-based food biofortification. Food Res Int 54:961–971

    Article  CAS  Google Scholar 

  • Chan AP, Crabtree J, Zhao Q et al (2010) Draft genome sequence of the oilseed species Ricinus communis. Nat Biotechnol 28:951–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Huang Q, Gao D et al (2013) Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution. Nat Commun 4:1595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chevreux B, Pfisterer T, Drescher B et al (2004) Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res 14:1147–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM et al (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinforma Appl Note 21:3674–3676

    Article  CAS  Google Scholar 

  • Curie C, Briat JF (2003) Iron transport and signaling in plants. Annu Rev Plant Biol 54:183–206

    Article  CAS  PubMed  Google Scholar 

  • Dassanayake M, Oh DH, Haas JS et al (2011) The genome of the extremophile crucifer Thellungiella parvula. Nat Genet 43:913–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Vos RC, Moco S, Lommen A et al (2007) Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nat Protocol 2:778–791

    Article  CAS  Google Scholar 

  • D’Hont A, Denoeud F, Aury JM et al (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488:213–217

    Article  PubMed  CAS  Google Scholar 

  • Dipti SS (2012) Bioavailability of selected minerals in different processing and cooking methods of rice (Oryza sativa L) in human nutrition. Dissertation, University of the Philippines

    Google Scholar 

  • FAO Hunger Report (2012) The State of Food Insecurity in the World 2012. Retrieved from http://www.fao.org/docrep/016/i3027e/i3027e.pdf on November 12, 2014

  • Fan MS, Zhao FJ, Fairweather-Tait SJ et al (2008) Evidence of decreasing mineral density in wheat grain over the last 160 years. J Trace Elem Med Biol 22:315–324

    Article  CAS  PubMed  Google Scholar 

  • Feuillet C, Leach JE, Rogers J et al (2011) Crop genome sequencing: lessons and rationales. Trends Plant Sci 16:77–88

    Article  CAS  PubMed  Google Scholar 

  • Fukao Y, Ferjani A, Tomioka R et al (2011) iTRAQ analysis reveals mechanisms of growth defects due to excess zinc in Arabidopsis. Plant Physiol 155:1893–1907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Mas J, Benjak A, Sanseverino W et al (2012) The genome of melon (Cucumis melo L.). Proc Natl Acad Sci U S A 109:11872–11877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garvin DF, Welch RM, Finley JW (2006) Historical shifts in the seed mineral micronutrient concentration of US hard red winter wheat germplasm. J Sci Food Agric 86:2213–2220

    Article  CAS  Google Scholar 

  • Goff SA, Ricke D, Lan TH et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  CAS  PubMed  Google Scholar 

  • Goto F, Yoshihara T, Saiki H (2000) Iron accumulation and enhanced growth in transgenic lettuce plants expressing the iron-binding protein ferritin. Theor Appl Genet 100:658–664

    Article  CAS  Google Scholar 

  • Gregorio GB, Senadhira D, Htut H et al (2000) Breeding for trace mineral density in rice. Food Nutr Bull 21:382–386

    Article  Google Scholar 

  • Guo S, Zhang J, Sun H et al (2012) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45:51–58

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Kumari K, Das J et al (2011) Development and utilization of novel intron length polymorphic markers in foxtail millet [Setaria italica (L.) P. Beauv.]. Genome 54:586–602

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Kumari K, Sahu PP et al (2012) Sequence based novel genomic microsatellite markers for robust genotyping purposes in foxtail millet [Setaria italica (L.) P. Beauv.]. Plant Cell Rep 31:323–337

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Kumari K, Muthamilarasan M et al (2013) Development and utilization of novel SSRs in foxtail millet [Setaria italica (L.) P. Beauv.]. Plant Breed 132:367–374

    Article  CAS  Google Scholar 

  • Hakala M, Lapveteläinen A, Houpalahti R et al (2003) Effects of varieties and cultivation conditions on the composition of strawberries. J Food Compos Anal 16:67–80

    Article  CAS  Google Scholar 

  • Hirschi KD (2009) Nutrient biofortification of food crops. Annu Rev Nutr 29:401–421

    Article  CAS  PubMed  Google Scholar 

  • Hu TT, Pattyn P, Bakker EG et al (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 43:476–481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang S, Li R, Zhang Z et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281

    Article  CAS  PubMed  Google Scholar 

  • Hunter S, Apweiler R, Attwood TK et al (2008) InterPro: the integrative protein signature database. Nucleic Acids Res 37:211–215

    Article  CAS  Google Scholar 

  • Ibarra-Laclette E, Lyons E, Hernández-Guzmán G et al (2013) Architecture and evolution of a minute plant genome. Nature 498:94–98

    Article  CAS  PubMed  Google Scholar 

  • IBGSC International Barley Genome Sequencing Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716

    Google Scholar 

  • IBI International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  CAS  Google Scholar 

  • IPGI International Peach Genome Initiative (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487–494

    Article  CAS  Google Scholar 

  • IWGSC International Wheat Genome Sequencing Consortium (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788

    Article  CAS  Google Scholar 

  • Jaillon O, Aury JM, Noel B et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  CAS  PubMed  Google Scholar 

  • Jia J, Zhao S, Kong X et al (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91–95

    Article  CAS  PubMed  Google Scholar 

  • Johnson AAT, Kyriacou B, Callahan DL et al (2011) Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron- and zinc-biofortification of rice endosperm. PLoS One 6:e24476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juliano BO (1985) Rice properties and processing. Food Rev Int 1:432–445

    Article  Google Scholar 

  • Karley AJ, White PJ (2009) Moving cationic minerals to edible tissues: potassium, magnesium, calcium. Curr Opin Plant Biol 12:291–298

    Article  CAS  PubMed  Google Scholar 

  • Khan Y, Yadav A, Suresh BV et al (2014) Comprehensive genome-wide identification and expression profiling of foxtail millet [Setaria italica (L.)] miRNAs in response to abiotic stress and development of miRNA database. Plant Cell Tissue Organ Cult 118:279–292

    Article  CAS  Google Scholar 

  • Kim S, Park M, Yeom SI et al (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46:270–278

    Article  CAS  PubMed  Google Scholar 

  • Krishnan NM, Pattnaik S, Jain P et al (2012) A draft of the genome and four transcriptomes of a medicinal and pesticidal angiosperm Azadirachta indica. BMC Genomics 13:464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari K, Muthamilarasan M, Misra G et al (2013) Development of eSSR-markers in Setaria italica and their applicability in studying genetic diversity, cross-transferability and comparative mapping in millet and non-millet species. PLoS One 8:e67742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead B, Hansen KD, Leek JT (2010) Cloud-scale RNA-sequencing differential expression analysis with Myrna. Genome Biol 11:R83

    Article  PubMed  PubMed Central  Google Scholar 

  • Lata C, Gupta S, Prasad M (2013) Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Crit Rev Biotechnol 33:328–343

    Article  PubMed  Google Scholar 

  • Li S, Nugroho A, Rocheford T et al (2010) Vitamin A equivalence of the B- carotene in B-carotene-biofortified maize porridge consumed by women. Am J Clin Nutr 92:1105–1112

    Article  CAS  PubMed  Google Scholar 

  • Liang J, Li Z, Tsuji K et al (2008) Milling characteristics and distribution of phytic acid and zinc in long-, medium-, and short-grain rice. J Cereal Sci 48:83–91

    Article  CAS  Google Scholar 

  • Ling HQ, Zhao S, Liu D (2013) Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496:87–90

    Article  CAS  PubMed  Google Scholar 

  • Lyons GH, Judson GJ, Ortiz-Monasterio I et al (2005) Selenium in Australia: selenium status and biofortification of wheat for better health. J Trace Elem Med Biol 19:75–82

    Article  CAS  PubMed  Google Scholar 

  • Mayer JE, Pfeiffer WH, Bouis P (2008) Biofortified crops to alleviate micronutrient malnutrition. Curr Opin Plant Biol 11:166–170

    Article  CAS  PubMed  Google Scholar 

  • Ming R, Hou S, Feng Y et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ming R, VanBuren R, Liu Y et al (2013) Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.). Genome Biol 14:R41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morris J, Hawthorne KM, Hotze T et al (2008) Nutritional impact of elevated calcium transport activity in carrots. Proc Natl Acad Sci U S A 105:1431–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray-Kolb LE, Takaiwa F, Goto F et al (2002) Transgenic rice is a source of iron for iron-depleted rats. J Nutr 132:957–960

    CAS  PubMed  Google Scholar 

  • Muthamilarasan M, Prasad M (2015) Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses. Theor Appl Genet 128:1–14

    Article  CAS  PubMed  Google Scholar 

  • Muthamilarasan M, Theriappan P, Prasad M (2013a) Recent advances in crop genomics for ensuring food security. Curr Sci 105:155–158

    Google Scholar 

  • Muthamilarasan M, Venkata Suresh B, Pandey G et al (2013b) Development of 5123 intron-length polymorphic markers for large-scale genotyping applications in foxtail millet. DNA Res 21:41–52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muthamilarasan M, Dhaka A, Yadav R, Prasad M (2015) Exploration of millet models for developing nutrient rich graminaceous crops. Plant Sci. doi:10.1016/j.plantsci.2015.08.023

    Google Scholar 

  • Muzhingi T, Gadaga TH, Siwela AH et al (2011) Yellow maize with high B-carotene is an effective source of vitamin A in healthy Zimbabwean men. Am J Clin Nutr 94:510–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Namanya P (2011) Towards the Biofortification of banana fruit for enhanced micronutrient content. Dissertation, Queensland University of Technology

    Google Scholar 

  • Naqvi S, Zhu C, Farre G et al (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci U S A 106:7762–7767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nystedt B, Street NR, Wetterbom A et al (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–584

    Article  CAS  PubMed  Google Scholar 

  • Paine JA, Shipton CA, Chaggar S et al (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol 23:482–487

    Article  CAS  PubMed  Google Scholar 

  • Palmgren MG, Clemens S, Williams LE et al (2008) Zinc biofortification of cereals: problems and solutions. Trends Plant Sci 13:464–473

    Article  CAS  PubMed  Google Scholar 

  • Pandey G, Misra G, Kumari K et al (2013) Genome-wide development and use of microsatellite markers for large-scale genotyping applications in foxtail millet [Setaria italica (L.)]. DNA Res 20:197–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Wendel JF, Gundlach H et al (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492:423–427

    Article  CAS  PubMed  Google Scholar 

  • Peng Z, Lu Y, Li L (2013) The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla). Nat Genet 45:456–461

    Article  CAS  PubMed  Google Scholar 

  • Perkins DN, Pappin DJC, Creasy DM et al (1999) Probability based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  CAS  PubMed  Google Scholar 

  • PGSC Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195

    Article  CAS  Google Scholar 

  • Rahman AY, Usharraj AO, Misra BB (2013) Draft genome sequence of the rubber tree Hevea brasiliensis. BMC Genomics 14:75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rensing SA, Lang D, Zimmer AD et al (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69

    Article  CAS  PubMed  Google Scholar 

  • Rosado JL, Hambidge KM, Miller LV et al (2009) The quantity of zinc absorbed from wheat in adult women is enhanced by biofortification. J Nutr 139:1920–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saltzman A, Birol E, Bouis HE et al (2013) Biofortification: progress toward a more nourishing future. Glob Food Secur 2:9–17

    Article  Google Scholar 

  • Sato S, Nakamura Y, Kaneko T et al (2008) Genome structure of the legume, Lotus japonicus. DNA Res 15:227–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato S, Hirakawa H, Isobe S et al (2011) Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res 18:65–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Shulaev V, Sargent DJ, Crowhurst RN et al (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43:109–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slotte T, Hazzouri KM, Ã…gren JA et al (2013) The Capsella rubella genome and the genomic consequences of rapid mating system evolution. Nat Genet 45:831–835

    Article  CAS  PubMed  Google Scholar 

  • Suresh BV, Muthamilarasan M, Mishra G et al (2013) FmMDb: a versatile database of foxtail millet markers for millets and bioenergy grasses research. PLoS One 8:e71418

    Article  CAS  Google Scholar 

  • Tang G, Qin J, Dolnikowski GG et al (2009) Golden rice is an effective source of vitamin A. Am J Clin Nutr 89:1776–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • TGC Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  CAS  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  CAS  PubMed  Google Scholar 

  • van Bakel H, Stout JM, Cote AG et al (2011) The draft genome and transcriptome of Cannabis sativa. Genome Biol 12:R102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varshney RK, Chen W, Li Y et al (2011) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30:83–89

    Article  PubMed  CAS  Google Scholar 

  • Varshney RK, Song C, Saxena RK et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol 12:e1001883

    Article  PubMed  PubMed Central  Google Scholar 

  • Vasconcelos M, Datta K, Oliva N et al (2003) Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci 164:371–378

    Article  CAS  Google Scholar 

  • Velasco R, Zharkikh A, Troggio M et al (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2:e1326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839

    Article  CAS  PubMed  Google Scholar 

  • Velu G, Ortiz-Monasterio I, Cakmak I et al (2013) Biofortification strategies to increase grain zinc and iron concentrations in wheat. J Cereal Sci. doi:10.1016/jjcs201309001

    Google Scholar 

  • Wang X, Wang H, Wang J et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Wang Z, Li F et al (2012a) The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 44:1098–1103

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Hobson N, Galindo L et al (2012b) The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J 72:461–473

    Article  PubMed  CAS  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    Article  CAS  PubMed  Google Scholar 

  • Williams L, Salt DE (2009) The plant ionome coming into focus. Curr Opin Plant Biol 12:247–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wóycicki R, Witkowicz J, GawroÅ„ski P et al (2011) The genome sequence of the North-European cucumber (Cucumis sativus L.) unravels evolutionary adaptation mechanisms in plants. PLoS One 6:e22728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu J, Wang Z, Shi Z et al (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23:396–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav CB, Bonthala VS, Muthamilarasan M et al (2014a) Genome-wide development of transposable elements-based markers in foxtail millet and construction of an integrated database. DNA Res. doi:10.1093/dnares/dsu039

    PubMed  PubMed Central  Google Scholar 

  • Yadav CB, Muthamilarasan M, Pandey G et al (2014b) Development of novel microRNA-based genetic markers in foxtail millet for genotyping applications in related grass species. Mol Breed 34:2219–2224

    Article  CAS  Google Scholar 

  • Young ND, Debellé F, Oldroyd GE et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480:520–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Hu S, Wang J et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Liu X, Quan Z et al (2012a) Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol 30:549–554

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Chen W, Sun L et al (2012b) The genome of Prunus mume. Nat Commun 3:1318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Mehanathan Muthamilarasan acknowledges the receipt of a Research Fellowship from University Grants Commission, New Delhi. The authors’ work in the area of millet genomics is supported by the core grant of NIPGR and DBT, Government of India, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehanathan Muthamilarasan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Muthamilarasan, M., Prasad, M. (2016). Role of Genomics in Enhancing Nutrition Content of Cereals. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Agronomic, Abiotic and Biotic Stress Traits. Springer, Cham. https://doi.org/10.1007/978-3-319-22518-0_3

Download citation

Publish with us

Policies and ethics