Skip to main content

Abstract

This chapter considers sparse underdetermined (ill-posed) multivariate multiple linear regression model known in signal processing literature as multiple measurement vector (MMV) model. The objective is to find good recovery of jointly sparse unknown signal vectors from the given multiple measurement vectors which are different linear combinations of the same known elementary vectors. The MMV model is an extension of the compressed sensing (CS) which is an emerging field that has attracted considerable research interest over the past few years. Recently, many popular greedy pursuit algorithms have been extended to MMV setting. All these methods, such as simultaneous normalized iterative hard thresholding (SNIHT), are not resistant to outliers or heavy-tailed errors. In this chapter, we develop a robust SNIHT method that computes the estimates of the sparse signal matrix and the scale of the error distribution simultaneously. The method is based on Huber’s criterion and hence referred to as HUB-SNIHT algorithm. The method can be tuned to have a negligible performance loss compared to SNIHT under Gaussian noise, but obtains superior joint sparse recovery under heavy-tailed non-Gaussian noise conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Blanchard, J.D., Cermak, M., Hanle, D., Jin, Y.: Greedy algorithms for joint sparse recovery. IEEE Trans. Signal Process. 62(7), 1694–1704 (2014)

    Article  MathSciNet  Google Scholar 

  • Blumensath, T., Davies, M.E.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Blumensath, T., Davies, M.E.: Normalized iterative hard thresholding: guaranteed stability and performance. IEEE J. Sel. Top. Sign. Proces. 4(2), 298–309 (2010)

    Article  Google Scholar 

  • Candes, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)

    Article  Google Scholar 

  • Carrillo, R., Barner, K.: Lorentzian based iterative hard thresholding for compressed sensing. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’11), pp. 3664–3667. Prague, Czech Republic (2011)

    Google Scholar 

  • Chen, J., Huo, X.: Theoretical results on sparse representations of multiple-measurement vectors. IEEE Trans. Signal Process. 54(12), 4634–4643 (2006)

    Article  Google Scholar 

  • Cotter, S., Rao, B.: Sparse channel estimation via matching pursuit with application to equalization. IEEE Trans. Commun. 50(3), 374–377 (2002)

    Article  Google Scholar 

  • Donoho, D.: Compressive sensing. IEEE Trans. Inf. Theory 52(2), 5406–5425 (2006)

    Google Scholar 

  • Duarte, M.F., Eldar, Y.C.: Structured compressed sensing: from theory to applications. IEEE Trans. Signal Process. 59(9), 4053–4085 (2011)

    Article  MathSciNet  Google Scholar 

  • Elad, M.: Sparse and Redundant Representations. Springer, New York (2010)

    Book  MATH  Google Scholar 

  • Eldar, Y.C., Rauhut, H. Average case analysis of multichannel sparse recovery using convex relaxation. IEEE Trans. Inf. Theory 56(1), 505–519 (2010)

    Article  MathSciNet  Google Scholar 

  • Gorodnitsky, I., George, J., Rao, B. Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm. J Electroencephalogr. Clin. Neurophysiol. 95(4), 231–251 (1995)

    Article  Google Scholar 

  • Gribonval, R., Zibulevsky, M. Handbook of Blind Source Separation, pp. 367–420. Academic, Oxford (2010)

    Google Scholar 

  • Gribonval, R., Rauhut, H., Schnass, K., Vandergheynst, P.: Atoms of all channels, unite! average case analysis of multi-channel sparse recovery using greedy algorithms. J. Fourier Anal. Appl. 14(5–6), 655–687 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Huber, P.J.: Robust Statistics. Wiley, New York (1981)

    Book  MATH  Google Scholar 

  • Malioutov, D., Çetin, M., Willsky, A.S.: A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans. Signal Process. 53(8), 3010–3022 (2005)

    Article  MathSciNet  Google Scholar 

  • Maronna, R.A., Martin, R.D., Yohai, V.J.: Robust Statistics: Theory and Methods. Wiley, New York (2006)

    Book  MATH  Google Scholar 

  • Ollila, E.: Nonparametric simultaneous sparse recovery: an application to source localization. In: Proceedings of the European Signal Processing Conference (EUSIPCO’15). Nice, France (2015). http://arxiv.org/abs/1502.02441

  • Ollila, E., Kim, H.J., Koivunen, V.: Robust compressive sensing. In: Regularization, Optimization, Kernels, and Support Vector Machines. Machine Learning and Pattern Recognition Series, pp 217–236. Chapman and Hall/CRC. Boca Raton, USA (2014a)

    Google Scholar 

  • Ollila, E., Kim, H.J., Koivunen, V. Robust iterative hard thresholding for compressed sensing. In: Proceedings of the IEEE International Symposium on Communications, Control and Signal Processing (ISCCSP’14), pp. 226–229. Athens, Greece (2014b)

    Google Scholar 

  • Ou, W., Hämäläinen, M.S., Golland, P. A distributed spatio-temporal EEG/MEG inverse solver. Neuroimage 44(3), 932–946 (2009)

    Article  Google Scholar 

  • Owen, A.B.: A robust hybrid of lasso and ridge regression. Contemp. Math. 443, 59–72 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Razavi, S.A., Ollila, E., Koivunen, V.: Robust greedy algorithms for compressed sensing. In: Proceedings of the 20th European Signal Processing Conference (EUSIPCO’12), pp 969–973. Bucharest, Romania (2009)

    Google Scholar 

  • Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  • Tropp, J.A.: Algorithms for simultaneous sparse approximation. part II: convex relaxation. Signal Process. 86, 589–602 (2006)

    Google Scholar 

  • Tropp, J.A., Gilbert, A.C., Strauss, M.J.: Algorithms for simultaneous sparse approximation. part I: greedy pursuit. Signal Process. 86, 572–588 (2006)

    Google Scholar 

  • Turlach, B., Venables, W.N., Wright, S.J.: Simultaneous variable selection. Technometrics 47(3), 349–363 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Academy of Finland for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esa Ollila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ollila, E. (2015). Robust Simultaneous Sparse Approximation. In: Nordhausen, K., Taskinen, S. (eds) Modern Nonparametric, Robust and Multivariate Methods. Springer, Cham. https://doi.org/10.1007/978-3-319-22404-6_26

Download citation

Publish with us

Policies and ethics