Skip to main content
Log in

Atoms of All Channels, Unite! Average Case Analysis of Multi-Channel Sparse Recovery Using Greedy Algorithms

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

This paper provides new results on computing simultaneous sparse approximations of multichannel signals over redundant dictionaries using two greedy algorithms. The first one, p-thresholding, selects the S atoms that have the largest p-correlation while the second one, p-simultaneous matching pursuit (p-SOMP), is a generalisation of an algorithm studied by Tropp in (Signal Process. 86:572–588, 2006). We first provide exact recovery conditions as well as worst case analyses of all algorithms. The results, expressed using the standard cumulative coherence, are very reminiscent of the single channel case and, in particular, impose stringent restrictions on the dictionary.

We unlock the situation by performing an average case analysis of both algorithms. First, we set up a general probabilistic signal model in which the coefficients of the atoms are drawn at random from the standard Gaussian distribution. Second, we show that under this model, and with mild conditions on the coherence, the probability that p-thresholding and p-SOMP fail to recover the correct components is overwhelmingly small and gets smaller as the number of channels increases.

Furthermore, we analyse the influence of selecting the set of correct atoms at random. We show that, if the dictionary satisfies a uniform uncertainty principle (Candes and Tao, IEEE Trans. Inf. Theory, 52(12):5406–5425, 2006), the probability that simultaneous OMP fails to recover any sufficiently sparse set of atoms gets increasingly smaller as the number of channels increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baraniuk, R., Davenport, M., DeVore, R., Wakin, M.: A simple proof of the restricted isometry property for random matrices. Constr. Approx. (to appear)

  2. Baron, D., Duarte, M., Sarvotham, S., Wakin, M., Baraniuk, R.: An information-theoretic approach to distributed compressed sensing. In: Proc. 45rd Conference on Communication, Control, and Computing (2005)

  3. Baron, D., Wakin, M., Duarte, M., Sarvotham, S., Baraniuk, R.: Distributed compressed sensing. Preprint (2005)

  4. Candès, E., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MATH  Google Scholar 

  5. Candes, E., Tao, T.: Near optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)

    Article  MathSciNet  Google Scholar 

  6. Chen, J., Huo, X.: Sparse representations for multiple measurement vectors (MMV) in an over-complete dictionary. In: International Conference on Acoustics, Speech and Signal Processing (ICASSP-2005) (2005)

  7. Chen, J., Huo, X.: Theoretical results on sparse representations of multiple measurement vectors. IEEE Trans. Signal Process. 54(12), 4634–4643 (2006)

    Article  Google Scholar 

  8. DeVore, R., Lorentz, G.: Constructive Approximation. Springer, Berlin (1993)

    MATH  Google Scholar 

  9. Donoho, D., Elad, M.: Maximal sparsity representation via l 1 minimization. Proc. Nat. Acad. Sci. 100(4), 369–388 (2003)

    MathSciNet  Google Scholar 

  10. Donoho, D., Elad, M., Temlyakov, V.: Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inf. Theory 52(1), 6–18 (2006)

    Article  MathSciNet  Google Scholar 

  11. Donoho, D., Vetterli, M., DeVore, R.A., Daubechies, I.: Data compression and harmonic analysis. IEEE Trans. Inf. Theory 44, 391–432 (1998)

    Article  MathSciNet  Google Scholar 

  12. Gribonval, R., Nielsen, M.: Beyond sparsity: Recovering structured representations by l1 minimization and greedy algorithms. Publication interne 1684, IRISA, Rennes (2005)

  13. Gribonval, R., Nielsen, M., Vandergheynst, P.: Towards an adaptive computational strategy for sparse signal approximation. Preprint of the Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA) (2006)

  14. Grimmett, G.R., Stirzaker, D.R.: Probability and Random Processes. Oxford University Press, London (2001)

    Google Scholar 

  15. Ledoux, M.: The Concentration of Measure Phenomenon. Am. Math. Soc., Providence (2001)

    MATH  Google Scholar 

  16. Ledoux, M., Talagrand, M.: Probability in Banach Spaces. Isoperimetry and Processes. Springer, Berlin (1991)

    MATH  Google Scholar 

  17. Luo, Z., Gaspar, M., Liu, J., Swami, A.: Distributed signal processing in sensor networks. IEEE Signal Process. Mag. 23(4), 14–15 (2006)

    Article  Google Scholar 

  18. Rauhut, H.: Stability results for random sampling of sparse trigonometric polynomials. IEEE Trans. Inf. Theory (to appear)

  19. Rauhut, H., Schnass, K., Vandergheynst, P.: Compressed sensing and redundant dictionaries. IEEE Trans. Inf. Theory 54(5), 2210–2219 (2008)

    Article  MathSciNet  Google Scholar 

  20. Rudelson, M., Vershynin, R.: Sparse reconstruction by convex relaxation: Fourier and Gaussian measurements. In: Proc. CISS 2006 (40th Annual Conference on Information Sciences and Systems) (2006)

  21. Schnass, K., Vandergheynst, P.: Average Performance Analysis for Thresholding. IEEE Signal Process. Lett. 14(11), 828–831 (2007)

    Article  Google Scholar 

  22. Schnass, K., Vandergheynst, P.: Dictionary preconditioning for greedy algorithms. IEEE Trans. Signal Process. 56(5), 1994–2002 (2008)

    Article  MathSciNet  Google Scholar 

  23. Taubman, D., Marcellin, W.: JPEG2000: Image Compression Fundamentals, Standards, and Practice. Springer, Berlin (2002)

    Google Scholar 

  24. Tropp, J.: Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 50(10), 2231–2242 (2004)

    Article  MathSciNet  Google Scholar 

  25. Tropp, J.: Topics in sparse approximation. Ph.D. Thesis, University of Texas at Austin (2004)

  26. Tropp, J.: Just relax: Convex programming methods for subset selection and sparse approximation. IEEE Trans. Inf. Theory 51(3), 1030–1051 (2006)

    Article  MathSciNet  Google Scholar 

  27. Tropp, J.: On the conditioning of random subdictionaries. Appl. Comput. Harmon. Anal. 25, 1–24 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Tropp, J., Gilbert, A., Strauss, M.: Algorithms for simultaneous sparse approximations. Part I: Greedy pursuit. Signal Process. 86, 572–588 (2006). Special issue “Sparse approximations in signal and image processing”

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Schnass.

Additional information

Communicated by Anna Gilbert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gribonval, R., Rauhut, H., Schnass, K. et al. Atoms of All Channels, Unite! Average Case Analysis of Multi-Channel Sparse Recovery Using Greedy Algorithms. J Fourier Anal Appl 14, 655–687 (2008). https://doi.org/10.1007/s00041-008-9044-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-008-9044-y

Keywords

Mathematics Subject Classification (2000)

Navigation