Skip to main content

Abstract

The authors are currently doing fatigue tests, by using sonotrodes working at 20 kHz, and compression tests on solid samples of rock materials. The specimens are monitored by laser sources focused on spots of the external surface. The main purpose is to identify in the crystal lattice mechanical oscillations in a frequency range higher than the Acoustic Emission (kHz) and comprised between MHz and THz. Such vibrational modes in the THz regime will be the signature of developing anomalies in piezoelectric or piezomagnetic materials, such as neutron and/or alpha particle emissions, and compositional changes. Moreover, it is also known that laser current pulses should be effective in exciting vibrational modes in the high-frequency range in conductive samples.

A photodetector connected to an usual oscilloscope, measuring the intensity of reflected light, detects vibrations in the range from MHz up to few GHz. To reduce the limitations in the ability to acquire high frequency signals, additional experiments are planned exploiting the Raman effect. Through the scattered light spectrum analysis, capable of detecting radiation in the visible light field, it should be obtained information on the intermolecular interactions that during solicitations induce resonant vibrations in the field of THz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.A. Lockner, J.D. Byerlee, V. Kuksenko, A. Ponomarev, A. Sidorin, Quasi static fault growth and shear fracture energy in granite. Nature 350, 39–42 (1991)

    Article  Google Scholar 

  2. M. Ohtsu, The history and development of acoustic emission in concrete engineering. Mag. Concr. Res. 48, 321–330 (1996)

    Article  Google Scholar 

  3. J.B. Rundle, D.L. Turcotte, R. Shcherbakov, W. Klein, C. Sammis, Statistical physics approach to understanding the multiscale dynamics of earthquake fault systems. Rev. Geophys. 41, 1019–1049 (2003)

    Article  Google Scholar 

  4. G. Niccolini, A. Schiavi, P. Tarizzo, A. Carpinteri, G. Lacidogna, A. Manuello, Scaling in temporal occurrence of quasi-rigid-body vibration pulses due to macrofractures. Phys. Rev. E 82, 46115 (2010) (1-5)

    Article  Google Scholar 

  5. A. Carpinteri, G. Lacidogna, Damage monitoring of an historical masonry building by the acoustic emission technique. Mater. Struct. 39, 161–167 (2006)

    Article  Google Scholar 

  6. A. Carpinteri, G. Lacidogna, Structural monitoring and integrity assessment of medieval towers. J. Struct. Eng. (ASCE) 132, 1681–1690 (2006)

    Article  Google Scholar 

  7. A. Carpinteri, G. Lacidogna, Damage evaluation of three masonry towers by acoustic emission. Eng. Struct. 29, 1569–1579 (2007)

    Article  Google Scholar 

  8. A. Carpinteri, G. Lacidogna, G. Niccolini, Critical behaviour in concrete structures and damage localization by acoustic emission. Key Eng. Mater. 312, 305–310 (2006)

    Article  Google Scholar 

  9. A. Carpinteri, G. Lacidogna, N. Pugno, Structural damage diagnosis and life-time assessment by acoustic emission monitoring. Eng. Fract. Mech. 74, 273–289 (2007)

    Article  Google Scholar 

  10. G. Lacidogna, A. Carpinteri, A. Manuello, G. Durin, A. Schiavi, G. Niccolini, A. Agosto, Acoustic and electromagnetic emissions as precursor phenomena in failure processes. Strain 47(2), 144–152 (2010)

    Google Scholar 

  11. A. Carpinteri, G. Lacidogna, A. Manuello, A. Niccolini, A. Schiavi, A. Agosto, Mechanical and electromagnetic emissions related to stress-induced cracks. Exp. Tech. 36, 53–64 (2010)

    Article  Google Scholar 

  12. A. Misra, Theoretical study of the fracture-induced magnetic effect in ferromagnetic materials. Phys. Lett. A 62, 234–236 (1977)

    Article  Google Scholar 

  13. V. Frid, A. Rabinovitch, D. Bahat, Fracture induced electromagnetic radiation. J. Phys. D 36, 1620–1628 (2003)

    Article  Google Scholar 

  14. A. Rabinovitch, V. Frid, D. Bahat, Surface oscillations. A possible source of fracture induced electromagnetic oscillations. Tectonophysics 431, 15–21 (2007)

    Article  Google Scholar 

  15. V. Hadjicontis, C. Mavromatou, D. Nonos, Stress induced polarization currents and electromagnetic emission from rocks and ionic crystals, accompanying their deformation. Nat. Hazards Earth Syst. Sci. 4, 633–639 (2004)

    Article  Google Scholar 

  16. J.W. Warwick, C. Stoker, T.R. Meyer, Radio emission associated with rock fracture: possible application to the great Chilean earthquake of May 22, 1960. J. Geophys. Res. 87, 2851–2859 (1982)

    Article  Google Scholar 

  17. T. Nagao, Y. Enomoto, Y. Fujinawa et al., Electromagnetic anomalies associated with 1995 Kobe earthquake. J. Geodyn. 33, 401–411 (2002)

    Article  Google Scholar 

  18. O. Borla, G. Lacidogna, E. Di Battista, G. Niccolini, A. Carpinteri, Multiparameter approach for seismic risk evaluation through environmental monitoring. Atti del 21 Congresso Nazionale di Meccanica Teorica ed Applicata (AIMETA) (Torino, Italy, 2013) CD-ROM

    Google Scholar 

  19. O. Borla, G. Lacidogna, E. Di Battista, G. Niccolini, A. Carpinteri, Electromagnetic emission as failure precursor phenomenon for seismic activity monitoring. Fracture, Fatigue, Failure, and Damage Evolution, Chap. 29, Vol. 5:221–229 (2014). Proc. of the 2014 Annual Conference on Experimental and Applied Mechanics

    Google Scholar 

  20. A. Carpinteri, F. Cardone, G. Lacidogna, Piezonuclear neutrons from brittle fracture: early results of mechanical compression tests. Strain 45, 332–339 (2009)

    Article  Google Scholar 

  21. F. Cardone, A. Carpinteri, G. Lacidogna, Piezonuclear neutrons from fracturing of inert solids. Phys. Lett. A 373, 4158–4163 (2009)

    Article  Google Scholar 

  22. A. Carpinteri, O. Borla, G. Lacidogna, A. Manuello, Neutron emissions in brittle rocks during compression tests: monotonic vs cyclic loading. Phys. Mesomech. 13, 268–274 (2010)

    Article  Google Scholar 

  23. A. Carpinteri, G. Lacidogna, A. Manuello, O. Borla, Energy emissions from brittle fracture: neutron measurements and geological evidences of piezonuclear reactions. Strength Fract. Comp. 7, 13–31 (2011)

    Google Scholar 

  24. A. Carpinteri, G. Lacidogna, A. Manuello, O. Borla, Piezonuclear fission reactions from earthquakes and brittle rocks failure: evidence of neutron emission and non-radioactive product elements. Exp. Mech. 53, 345–365 (2013)

    Article  Google Scholar 

  25. A. Widom, J. Swain, Y.N. Srivastava, Neutron production from the fracture of piezoelectric rocks. J. Phys. G: Nucl. Part. Phys. 40, 15006 (2013) (1-8)

    Article  Google Scholar 

  26. A. Widom, J. Swain, Y.N. Srivastava, Photo-disintegration of the iron nucleus in fractured magnetite rocks with magnetostriction. Meccanica (2014) DOI:10.1007/s11012-014-0007-x

    Google Scholar 

  27. J.R. Ferraro, K. Nakamoto, C.W. Brown, Introductory Raman spectroscopy, 2nd edn. (Academic, Amsterdam, 2003)

    Google Scholar 

  28. P. Gillet, J. Badro, P. McMillan, A. Grzechnik, J. Schott, Thermodynamic properties and isotopic fractionation of calcite from vibrational spectroscopy of O-substituted calcite. Geochim. Cosmochim. Ac. 60, 3471–3485 (1996)

    Article  Google Scholar 

  29. M.L. Frezzotti, F. Tecce, A. Casagli, Raman spectroscopy for fluid inclusion analysis. J. Geochem. Explor. 112, 1–20 (2012)

    Article  Google Scholar 

  30. A. Carpinteri, R. Malvano, A. Manuello, G. Piana, Fundamental frequency evolution in slender beams subjected to imposed axial displacements. J. Sound Vib. 333, 2390–240 (2014)

    Article  Google Scholar 

  31. A. Carpinteri, TeraHertz phonons and piezonuclear reactions from nano-scale mechanical instabilities. Chap. 1. In: “Acoustic, Electromagnetic, Neutron Emissions from Fracture and Earthquakes”, Springer (2015) (in print)

    Google Scholar 

  32. P.L. Hagelstein, D. Letts, D. Cravens, Terahertz difference frequency response of PdD in two-laser experiments. J. Cond. Mat. Nucl. Sci. 3, 59–76 (2010)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr Sandro Cammarano and Eng. Andrea Bassani of Politecnico di Torino, Department of Structural, Geotechnical and Building Engineering, for their needful cooperation in carrying out Raman and compression tests. Special thanks are also due to Prof. Piergiorgio Rossetti, Dr Roberto Cossio and Dr Simona Ferrando of Università di Torino, Department of Earth Sciences. The Micro-Raman data have been obtained with the equipment acquired by the Interdepartmental Center “G. Scansetti” of Università di Torino for Studies on Asbestos and Other Toxic Particulates, with a grant from Compagnia di San Paolo,Torino.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Lacidogna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Lacidogna, G., Invernizzi, S., Montrucchio, B., Borla, O., Carpinteri, A. (2016). Analysis of High-Frequency Vibrational Modes Through Laser Pulses. In: Bossuyt, S., Schajer, G., Carpinteri, A. (eds) Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems, Volume 9. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-21765-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21765-9_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21764-2

  • Online ISBN: 978-3-319-21765-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics