Skip to main content

Compositional Variations in Palladium Electrodes Exposed to Electrolysis

  • Conference paper
Fracture, Fatigue, Failure and Damage Evolution, Volume 8

Abstract

Literature presents several cases of nuclear anomalies occurring in condensed matter, during fracture of solids, cavitation of liquids, and electrolysis experiments.

Previous papers by the authors have recently shown that, on the surface of the electrodes exposed to electrolysis visible cracks and compositional changes are strictly related to nuclear particle emissions. In particular, a mechanical interpretation of the phenomenon was provided accounting to the hydrogen embrittlement effects. Piezonuclear reactions were considered responsible for the neutron and alpha particle emissions detected during the electrolysis. Such effects are thoroughly studied in a new experimental campaign, where three pure palladium (100 % Pd) cathodes coupled with Ni anodes are used for electrolysis, separately exposed to processes of different duration: 2.5 h, 5 h and 10 h, respectively. In this paper, the authors intend to show the new results concerning the changes on the surface of the electrodes in terms of composition and presence of cracks after the electrolytic process. Measures of heat generation as well as of neutron emission will be reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borghi, D.C., Giori, D.C., Dall’Olio, A.: Experimental evidence on the emission of neutrons from cold hydrogen plasma. Proceedings of the International Workshop on Few-body Problems in Low-energy Physics, Alma-Ata, Kazakhstan, pp. 147–154 (1992); Unpublished Communication (1957); Comunicacao n. 25 do CENUFPE, Recife Brazil (1971)

    Google Scholar 

  2. Diebner, K.: Fusionsprozesse mit Hilfe konvergenter Stosswellen—einige aeltere und neuere Versuche und Ueberlegungen. Kerntechnik. 3, 89–93 (1962)

    Google Scholar 

  3. Kaliski, S.: Bi-conical system of concentric explosive compression of D-T. J. Tech. Phys. 19, 283–289 (1978)

    MathSciNet  Google Scholar 

  4. Winterberg, F.: Autocatalytic fusion–fission implosions. Atomenergie-Kerntechnik. 44, 146 (1984)

    Google Scholar 

  5. Derjaguin, B.V., et al.: Titanium fracture yields neutrons? Nature 34, 492 (1989)

    Article  Google Scholar 

  6. Fleischmann, M., Pons, S., Hawkins, M.: Electrochemically induced nuclear fusion of deuterium. J. Electroanal. Chem. 261, 301 (1989)

    Article  Google Scholar 

  7. Bockris, J.O’M., Lin, G.H., Kainthla, R.C., Packham, N.J.C., Velev, O.: Does tritium form at electrodes by nuclear reactions? In: The First Annual Conference on Cold Fusion. National Cold Fusion Institute, University of Utah Research Park, Salt Lake City (1990)

    Google Scholar 

  8. Preparata, G.: Some theories of cold fusion: a review. Fusion Technol. 20, 82 (1991)

    Google Scholar 

  9. Preparata, G.: A new look at solid-state fractures, particle emissions and “cold” nuclear fusion. Il Nuovo Cimento. 104A, 1259–1263 (1991)

    Google Scholar 

  10. Mills, R.L., Kneizys, P.: Excess heat production by the electrolysis of an aqueous potassium carbonate electrolyte and the implications for cold fusion. Fusion Technol. 20, 65 (1991)

    Google Scholar 

  11. Notoya, R., Enyo, M.: Excess Heat Production during Electrolysis of H2O on Ni, Au, Ag and Sn Electrodes in Alkaline Media, Proc. Third International Conference on Cold Fusion. Universal Academy Press, Tokyo (1992)

    Google Scholar 

  12. Miles, M.H., Hollins, R.A., Bush, B.F., Lagowski, J.J., Miles, R.E.: Correlation of excess power and helium production during D2O and H2O electrolysis using palladium cathodes. J. Electroanal. Chem. 346, 99–117 (1993)

    Article  Google Scholar 

  13. Bush, R.T., Eagleton, R.D.: Calorimetric studies for several light water electrolytic cells with nickel fibrex cathodes and electrolytes with alkali salts of potassium, rubidium, and cesium. In: Fourth International Conference on Cold Fusion. Lahaina, Maui. Electric Power Research Institute 3412 Hillview Ave., Palo Alto. (1993)

    Google Scholar 

  14. Fleischmann, M., Pons, S., Preparata, G.: Possible theories of cold fusion. Nuovo Cimento. Soc. Ital. Fis. A. 107, 143 (1994)

    Article  Google Scholar 

  15. Szpak, S., Mosier-Boss, P.A., Smith, J.J.: Deuterium uptake during Pd-D codeposition. J. Electroanal. Chem. 379, 121 (1994)

    Article  Google Scholar 

  16. Sundaresan, R., Bockris, J.O.M.: Anomalous reactions during arcing between carbon rods in water. Fusion Technol. 26, 261 (1994)

    Google Scholar 

  17. Arata, Y., Zhang, Y.: Achievement of solid-state plasma fusion (“cold-fusion”). Proc. Jpn Acad. 71B, 304–309 (1995)

    Article  Google Scholar 

  18. Ohmori, T., Mizuno, T., Enyo, M.: Isotopic distributions of heavy metal elements produced during the light water electrolysis on gold electrodes. J. New Energy. 1(3), 90 (1996)

    Google Scholar 

  19. Monti, R.A.: Low energy nuclear reactions: experimental evidence for the alpha extended model of the atom. J. New Energy. 1(3), 131 (1996)

    MathSciNet  Google Scholar 

  20. Monti, R.A.: Nuclear transmutation processes of lead, silver, thorium, uranium. In: The Seventh International Conference on Cold Fusion. ENECO Inc. Vancouver (1998)

    Google Scholar 

  21. Ohmori, T., Mizuno, T.: Strong excess energy evolution, new element production, and electromagnetic wave and/or neutron emission in light water electrolysis with a tungsten cathode. Infinite Energy. 20, 14–17 (1998)

    Google Scholar 

  22. Mizuno, T.: Nuclear Transmutation: The Reality of Cold Fusion. Infinite Energy Press, Concord (1998)

    Google Scholar 

  23. Little, S.R., Puthoff, H.E., Little, M.E.: Search for Excess Heat from a Pt Electrode Discharge in K2CO3-H2O and K2CO3-D2O Electrolytes (1998)

    Google Scholar 

  24. Ohmori, T., Mizuno, T.: Nuclear transmutation reaction caused by light water electrolysis on tungsten cathode under incandescent conditions. Infinite Energy. 5(27), 34 (1999)

    Google Scholar 

  25. Ransford, H.E.: Non-stellar nucleosynthesis: transition metal production by DC plasma-discharge electrolysis using carbon electrodes in a non-metallic cell. Infinite Energy. 4(23), 16 (1999)

    Google Scholar 

  26. Storms, E.: Excess power production from platinum cathodes using the Pons-Fleischmann effect. In: 8th International Conference on Cold Fusion. Lerici (La Spezia). Italian Physical Society, Bologna. pp. 55–61 (2000)

    Google Scholar 

  27. Storms, E.: Science of Low Energy Nuclear Reaction: a Comprehensive Compilation of Evidence and Explanations about Cold Fusion. World Scientific, Singapore (2007)

    Book  Google Scholar 

  28. Mizuno, T., et al.: Production of heat during plasma electrolysis. Jpn. J. Appl. Phys. 39, 6055–6061 (2000)

    Article  Google Scholar 

  29. Warner, J., Dash, J., Frantz. S.: Electrolysis of D2O with titanium cathodes: enhancement of excess heat and further evidence of possible transmutation. In: The Ninth International Conference on Cold Fusion. Tsinghua University, Beijing, p. 404 (2002)

    Google Scholar 

  30. Fujii, M.F., et al.: Neutron emission from fracture of piezoelectric materials in deuterium atmosphere. Jpn. J. Appl. Phys. 41, 2115–2119 (2002)

    Article  Google Scholar 

  31. Mosier-Boss, P.A., et al.: Use of CR-39 in Pd/D co-deposition experiments. Eur. Phys. J. Appl. Phys. 40, 293–303 (2007)

    Article  Google Scholar 

  32. Swartz, M.: Three physical regions of anomalous activity in deuterated palladium. Infinite Energy 14, 19–31 (2008)

    Google Scholar 

  33. Mosier-Boss, P.A., et al.: Comparison of Pd/D co-deposition and DT neutron generated triple tracks observed in CR-39 detectors. Eur. Phys. J. Appl. Phys. 51(2), 20901–20911 (2010)

    Article  Google Scholar 

  34. Kanarev, M., Mizuno, T.: Cold fusion by plasma electrolysis of water. New Energy Technol. 1, 5–10 (2002)

    Google Scholar 

  35. Cardone, F., Mignani, R.: Energy and Geometry. World Scientific, Singapore (2004). Chapter 10

    MATH  Google Scholar 

  36. Carpinteri, A., Cardone, F., Lacidogna, G.: Piezonuclear neutrons from brittle fracture: early results of mechanical compression tests. Strain. 45, 332–339 (2009). Atti dell’ Accademia delle Scienze di Torino. 33, 27–42 (2009)

    Google Scholar 

  37. Cardone, F., Carpinteri, A., Lacidogna, G.: Piezonuclear neutrons from fracturing of inert solids. Phys. Lett. A. 373, 4158–4163 (2009)

    Article  Google Scholar 

  38. Carpinteri, A., Cardone, F., Lacidogna, G.: Energy emissions from failure phenomena: mechanical, electromagnetic, nuclear. Exp. Mech. 50, 1235–1243 (2010)

    Article  Google Scholar 

  39. Carpinteri, A., Lacidogna, G., Manuello, A., Borla, O.: Piezonuclear fission reactions: evidences from microchemical analysis, neutron emission, and geological transformation. Rock. Mech. Rock. Eng. 45, 445–459 (2012)

    Article  Google Scholar 

  40. Carpinteri, A., Lacidogna, G., Manuello, A., Borla, O.: Piezonuclear fission reactions from earthquakes and brittle rocks failure: evidence of neutron emission and nonradioactive product elements. Exp. Mech. 53, 345–365 (2013)

    Article  Google Scholar 

  41. Carpinteri, A., Borla, O., Goi, A., Manuello, A., Veneziano, D.: Mechanical conjectures explaining cold nuclear fusion. Proceedings of the Conference & Exposition on Experimental and Applied Mechanics (SEM), Lombard, CD-ROM, p. 481 (2013)

    Google Scholar 

  42. Veneziano, D., Borla, O., Goi, A., Manuello, A., Carpinteri A.: Mechanical conjectures based on hydrogen embrittlement explaining cold nuclear fusion. Proceedings of the 21° Congresso Nazionale di Meccanica Teorica ed Applicata (AIMETA), Torino, CD-ROM (2013)

    Google Scholar 

  43. Carpinteri, A., Borla, O., Goi, A., Guastella, S., Manuello, A., Veneziano, D.: Hydrogen embrittlement and cold fusion effects in palladium during electrolysis experiments. In: Conference & Exposition on Experimental and Applied Mechanics (SEM), Greenville, vol. 6, pp. 37–47 (2014)

    Google Scholar 

  44. Milne, I., Ritchie, R.O., Karihaloo, B.: Comprehensive Structural Integrity: Fracture of Materials from Nano to Macro, vol. 6, pp. 31–33. Elsevier, Amsterdam (2003)

    Google Scholar 

  45. Liebowitz, H.: Fracture an Advanced Treatise. Academic, New York (1971)

    Google Scholar 

Download references

Acknowledgement

Special thanks for his collaboration in the realization of the tests are due to Mr. M. Yon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Carpinteri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Carpinteri, A. et al. (2016). Compositional Variations in Palladium Electrodes Exposed to Electrolysis. In: Beese, A., Zehnder, A., Xia, S. (eds) Fracture, Fatigue, Failure and Damage Evolution, Volume 8. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-21611-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21611-9_24

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21610-2

  • Online ISBN: 978-3-319-21611-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics