Skip to main content

Updates on the Promising Anticancer Activity of CDF, a Synthetic Curcumin Analogue

  • Chapter
Critical Dietary Factors in Cancer Chemoprevention

Abstract

In the last few decades we have witnessed an increased interest in nutraceuticals research for their putative use as anticancer therapeutics. A major drawback of nutraceuticals is their poor bioavailability. A few years back we synthesized a difluorinated analogue of curcumin, named CDF, which showed promise during our initial studies by being more bioavailable. This prompted us to investigate the anticancer mechanism(s) of this promising compound in detail, with the ultimate goal of taking this compound to the clinical setting. In this expert opinion, we provide a succinct overview of all the biological effects of CDF that we have discovered in the last few years. These include the ability of CDF to regulate epigenetic factors, miRNAs, and the cancer stem cell markers. Development and characterization of CDF is a good example of how natural chemical structures can be modified for better efficacy and activity against cancer cells, although such agents require further development for clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad A, Biersack B, Li Y, Kong D, Bao B, Schobert R et al (2013) Targeted regulation of PI3K/Akt/mTOR/NF-kappaB signaling by indole compounds and their derivatives: mechanistic details and biological implications for cancer therapy. Anticancer Agents Med Chem 13(7):1002–1013

    Article  CAS  Google Scholar 

  • Ahmad A, Li Y, Bao B, Kong D, Sarkar FH (2014) Epigenetic regulation of miRNA-cancer stem cells nexus by nutraceuticals. Mol Nutr Food Res 58(1):79–86. doi:10.1002/mnfr.201300528

    Article  CAS  Google Scholar 

  • Ahmad A, Ginnebaugh KR, Li Y, Padhye SB, Sarkar FH (2015a) Molecular targets of naturopathy in cancer research: bridge to modern medicine. Nutrients 7(1):321–334. doi:10.3390/nu7010321

    Article  Google Scholar 

  • Ahmad A, Sayed A, Ginnebaugh KR, Sharma V, Suri A, Saraph A et al (2015b) Molecular docking and inhibition of matrix metalloproteinase-2 by novel difluorinatedbenzylidene curcumin analog. Am J Transl Res 7(2):298–308

    Google Scholar 

  • Ali S, Ahmad A, Banerjee S, Padhye S, Dominiak K, Schaffert JM et al (2010) Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res 70(9):3606–3617. doi:10.1158/0008-5472.CAN-09-4598

    Article  CAS  Google Scholar 

  • Ali AS, Ali S, Ahmad A, Bao B, Philip PA, Sarkar FH (2011) Expression of microRNAs: potential molecular link between obesity, diabetes and cancer. Obes Rev 12(12):1050–1062. doi:10.1111/j.1467-789X.2011.00906.x

    Article  CAS  Google Scholar 

  • Ali S, Ahmad A, Aboukameel A, Bao B, Padhye S, Philip PA et al (2012) Increased Ras GTPase activity is regulated by miRNAs that can be attenuated by CDF treatment in pancreatic cancer cells. Cancer Lett 319(2):173–181. doi:10.1016/j.canlet.2012.01.013

    Article  CAS  Google Scholar 

  • Bao B, Ali S, Kong D, Sarkar SH, Wang Z, Banerjee S et al (2011) Anti-tumor activity of a novel compound-CDF is mediated by regulating miR-21, miR-200, and PTEN in pancreatic cancer. PLoS One 6(3):e17850. doi:10.1371/journal.pone.0017850

    Article  CAS  Google Scholar 

  • Bao B, Thakur A, Li Y, Ahmad A, Azmi AS, Banerjee S et al (2012a) The immunological contribution of NF-kappaB within the tumor microenvironment: a potential protective role of zinc as an anti-tumor agent. Biochim Biophys Acta 1825(2):160–172. doi:10.1016/j.bbcan.2011.11.002

    CAS  Google Scholar 

  • Bao B, Ahmad A, Kong D, Ali S, Azmi AS, Li Y et al (2012b) Hypoxia induced aggressiveness of prostate cancer cells is linked with deregulated expression of VEGF, IL-6 and miRNAs that are attenuated by CDF. PLoS One 7(8):e43726. doi:10.1371/journal.pone.0043726

    Article  CAS  Google Scholar 

  • Bao B, Ali S, Ahmad A, Azmi AS, Li Y, Banerjee S et al (2012c) Hypoxia-induced aggressiveness of pancreatic cancer cells is due to increased expression of VEGF, IL-6 and miR-21, which can be attenuated by CDF treatment. PLoS One 7(12):e50165. doi:10.1371/journal.pone.0050165

    Article  CAS  Google Scholar 

  • Bao B, Ali S, Banerjee S, Wang Z, Logna F, Azmi AS et al (2012d) Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor microRNAs and attenuating EZH2 expression. Cancer Res 72(1):335–345. doi:10.1158/0008-5472.CAN-11-2182

    Article  CAS  Google Scholar 

  • Ben-Neriah Y, Karin M (2011) Inflammation meets cancer, with NF-kappaB as the matchmaker. Nat Immunol 12(8):715–723. doi:10.1038/ni.2060

    Article  CAS  Google Scholar 

  • Chan B, Manley J, Lee J, Singh SR (2015) The emerging roles of microRNAs in cancer metabolism. Cancer Lett 356(2 Pt A):301–308. doi:10.1016/j.canlet.2014.10.011

    Article  CAS  Google Scholar 

  • Dandawate PR, Vyas A, Ahmad A, Banerjee S, Deshpande J, Swamy KV et al (2012) Inclusion complex of novel curcumin analogue CDF and beta-cyclodextrin (1:2) and its enhanced in vivo anticancer activity against pancreatic cancer. Pharm Res 29(7):1775–1786. doi:10.1007/s11095-012-0700-1

    Article  CAS  Google Scholar 

  • Fu X, Han Y, Wu Y, Zhu X, Lu X, Mao F et al (2011) Prognostic role of microRNA-21 in various carcinomas: a systematic review and meta-analysis. Eur J Clin Invest 41(11):1245–1253. doi:10.1111/j.1365-2362.2011.02535.x

    Article  CAS  Google Scholar 

  • Gao W, Xu J, Liu L, Shen H, Zeng H, Shu Y (2012) A systematic-analysis of predicted miR-21 targets identifies a signature for lung cancer. Biomed Pharmacother 66(1):21–28. doi:10.1016/j.biopha.2011.09.004

    Article  CAS  Google Scholar 

  • Gul K, Singh AK, Jabeen R (2015) Nutraceuticals and functional foods: the foods for future world. Crit Rev Food Sci Nutr. doi:10.1080/10408398.2014.903384

    Google Scholar 

  • Gupta SC, Kismali G, Aggarwal BB (2013a) Curcumin, a component of turmeric: from farm to pharmacy. Biofactors 39(1):2–13. doi:10.1002/biof.1079

    Article  CAS  Google Scholar 

  • Gupta SC, Patchva S, Aggarwal BB (2013b) Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J 15(1):195–218. doi:10.1208/s12248-012-9432-8

    Article  CAS  Google Scholar 

  • Hata A, Lieberman J (2015) Dysregulation of microRNA biogenesis and gene silencing in cancer. Sci Signal 8(368):re3. doi:10.1126/scisignal.2005825

    Article  Google Scholar 

  • Howells LM, Mahale J, Sale S, McVeigh L, Steward WP, Thomas A et al (2014) Translating curcumin to the clinic for lung cancer prevention: evaluation of the preclinical evidence for its utility in primary, secondary, and tertiary prevention strategies. J Pharmacol Exp Ther 350(3):483–494. doi:10.1124/jpet.114.216333

    Article  Google Scholar 

  • Kanwar SS, Yu Y, Nautiyal J, Patel BB, Padhye S, Sarkar FH et al (2011) Difluorinated-curcumin (CDF): a novel curcumin analog is a potent inhibitor of colon cancer stem-like cells. Pharm Res 28(4):827–838. doi:10.1007/s11095-010-0336-y

    Article  CAS  Google Scholar 

  • Li Y, Kong D, Wang Z, Ahmad A, Bao B, Padhye S et al (2011) Inactivation of AR/TMPRSS2-ERG/Wnt signaling networks attenuates the aggressive behavior of prostate cancer cells. Cancer Prev Res 4(9):1495–1506. doi:10.1158/1940-6207.CAPR-11-0077

    Article  CAS  Google Scholar 

  • Liu J, Zhu H, Yang X, Ge Y, Zhang C, Qin Q et al (2014) MicroRNA-21 is a novel promising target in cancer radiation therapy. Tumour Biol 35(5):3975–3979. doi:10.1007/s13277-014-1623-8

    Article  CAS  Google Scholar 

  • Padhye S, Yang H, Jamadar A, Cui QC, Chavan D, Dominiak K et al (2009a) New difluoro Knoevenagel condensates of curcumin, their Schiff bases and copper complexes as proteasome inhibitors and apoptosis inducers in cancer cells. Pharm Res 26(8):1874–1880. doi:10.1007/s11095-009-9900-8

    Article  CAS  Google Scholar 

  • Padhye S, Banerjee S, Chavan D, Pandye S, Swamy KV, Ali S et al (2009b) Fluorocurcumins as cyclooxygenase-2 inhibitor: molecular docking, pharmacokinetics and tissue distribution in mice. Pharm Res 26(11):2438–2445. doi:10.1007/s11095-009-9955-6

    Article  CAS  Google Scholar 

  • Padhye S, Chavan D, Pandey S, Deshpande J, Swamy KV, Sarkar FH (2010) Perspectives on chemopreventive and therapeutic potential of curcumin analogs in medicinal chemistry. Mini Rev Med Chem 10(5):372–387

    Article  CAS  Google Scholar 

  • Pan X, Wang ZX, Wang R (2010) MicroRNA-21: a novel therapeutic target in human cancer. Cancer Biol Ther 10(12):1224–1232

    Article  CAS  Google Scholar 

  • Rahmani AH, Al Zohairy MA, Aly SM, Khan MA (2014) Curcumin: a potential candidate in prevention of cancer via modulation of molecular pathways. Biomed Res Int 2014:761608. doi:10.1155/2014/761608

    Article  Google Scholar 

  • Roy S, Yu Y, Padhye SB, Sarkar FH, Majumdar AP (2013) Difluorinated-curcumin (CDF) restores PTEN expression in colon cancer cells by down-regulating miR-21. PLoS One 8(7):e68543. doi:10.1371/journal.pone.0068543

    Article  CAS  Google Scholar 

  • Sarkar FH, Li Y (2008) NF-kappaB: a potential target for cancer chemoprevention and therapy. Front Biosci 13:2950–2959

    Article  CAS  Google Scholar 

  • Sarkar FH, Li Y, Wang Z, Kong D (2008) NF-kappaB signaling pathway and its therapeutic implications in human diseases. Int Rev Immunol 27(5):293–319. doi:10.1080/08830180802276179

    Article  CAS  Google Scholar 

  • Sarkar FH, Li Y, Wang Z, Padhye S (2010) Lesson learned from nature for the development of novel anti-cancer agents: implication of isoflavone, curcumin, and their synthetic analogs. Curr Pharm Des 16(16):1801–1812

    Article  CAS  Google Scholar 

  • Sethi S, Li Y, Sarkar FH (2013) Regulating miRNA by natural agents as a new strategy for cancer treatment. Curr Drug Targets 14(10):1167–1174

    Article  CAS  Google Scholar 

  • Sethi S, Ali S, Sethi S, Sarkar FH (2014) MicroRNAs in personalized cancer therapy. Clin Genet 86(1):68–73. doi:10.1111/cge.12362

    Article  CAS  Google Scholar 

  • Shanmugam MK, Rane G, Kanchi MM, Arfuso F, Chinnathambi A, Zayed ME et al (2015) The multifaceted role of curcumin in cancer prevention and treatment. Molecules 20(2):2728–2769. doi:10.3390/molecules20022728

    Article  Google Scholar 

  • Sheedy FJ (2015) Turning 21: Induction of miR-21 as a Key Switch in the Inflammatory Response. Front Immunol 6:19. doi:10.3389/fimmu.2015.00019

    Article  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65(1):5–29. doi:10.3322/caac.21254

    Article  Google Scholar 

  • Syed DN, Suh Y, Afaq F, Mukhtar H (2008) Dietary agents for chemoprevention of prostate cancer. Cancer Lett 265(2):167–176. doi:10.1016/j.canlet.2008.02.050

    Article  CAS  Google Scholar 

  • Tkach KE, Oyler JE, Altan-Bonnet G (2014) Cracking the NF-kappaB code. Sci Signal 7(313):e5. doi:10.1126/scisignal.2005108

    Article  Google Scholar 

  • Vallianou NG, Evangelopoulos A, Schizas N, Kazazis C (2015) Potential anticancer properties and mechanisms of action of curcumin. Anticancer Res 35(2):645–651

    CAS  Google Scholar 

  • Vidigal JA, Ventura A (2015) The biological functions of miRNAs: lessons from in vivo studies. Trends Cell Biol 25(3):137–147. doi:10.1016/j.tcb.2014.11.004

    Article  CAS  Google Scholar 

  • Wu L, Zhao JC, Kim J, Jin HJ, Wang CY, Yu J (2013) ERG is a critical regulator of Wnt/LEF1 signaling in prostate cancer. Cancer Res 73(19):6068–6079. doi:10.1158/0008-5472.CAN-13-0882

    Article  CAS  Google Scholar 

  • Xue J, Niu J, Wu J, Wu ZH (2014) MicroRNAs in cancer therapeutic response: friend and foe. World J Clin Oncol 5(4):730–743. doi:10.5306/wjco.v5.i4.730

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazlul H. Sarkar Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ginnebaugh, K.R., Ahmad, A., Sarkar, F.H. (2016). Updates on the Promising Anticancer Activity of CDF, a Synthetic Curcumin Analogue. In: Ullah, M., Ahmad, A. (eds) Critical Dietary Factors in Cancer Chemoprevention. Springer, Cham. https://doi.org/10.1007/978-3-319-21461-0_1

Download citation

Publish with us

Policies and ethics