Skip to main content

Microsurgical Approaches for In Vivo Prevascularization

  • Living reference work entry
  • First Online:
Vascularization for Tissue Engineering and Regenerative Medicine

Abstract

The rapid and sufficient vascularization of large tissues is the main obstacle to the broad implementation of tissue engineering (TE) into clinical practices. Typically, the vascularization of engineered tissues is achieved after implantation, by stimulating the ingrowth of surrounding blood vessels via the delivery of angiogenic factors, the addition of angiogenic cells, and the optimization of scaffold properties. Although these approaches showed promising results, the ingrowth of the host’s vasculature into the implant remains slow. In a parallel effort, various prevascularization approaches were developed, which aim at inducing the formation of a vasculature within engineered tissues, before implantation. Such a prevasculature can connect to the host’s vasculature and rapidly perfuse the implant. However, building a patterned, hierarchical, functional vascular tree that can be hooked to the host, possibly via microsurgery, is a long-lasting challenge. Current approaches of prevascularization include the in vitro induction of endothelial cells organization into a microvascular network and the in vivo incubation of an engineered tissue within a surgically prepared angiogenic site (e.g., arteriovenous loop). This last approach, rooted in surgical practices, allows for the ingrowth of a hierarchical, functional vasculature within the construct, which can connect to the host upon transfer to the secondary site of defect. Here, we outline this family of promising surgical strategies aiming at the in vivo formation of vascular networks within engineered tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Argenta LC, Watanabe MJ, Grabb WC (1983) The use of tissue expansion in head and neck reconstruction. Ann Plast Surg 11:31–37

    Article  Google Scholar 

  • Arkudas A, Tjiawi J, Bleiziffer O et al (2007a) Fibrin gel-immobilized VEGF and bFGF efficiently stimulate angiogenesis in the AV loop model. Mol Med 13:480–487. doi:10.2119/2007-00057.Arkudas

    Article  Google Scholar 

  • Arkudas A, Beier JP, Heidner K et al (2007b) Axial prevascularization of porous matrices using an arteriovenous loop promotes survival and differentiation of transplanted autologous osteoblasts. Tissue Eng 13:1549–1560. doi:10.1089/ten.2006.0387

    Article  Google Scholar 

  • Arkudas A, Pryymachuk G, Hoereth T et al (2009) Dose-finding study of fibrin gel-immobilized vascular endothelial growth factor 165 and basic fibroblast growth factor in the arteriovenous loop rat model. Tissue Eng Part A 15:2501–2511. doi:10.1089/ten.tea.2008.0477

    Article  Google Scholar 

  • Arkudas A, Beier JP, Pryymachuk G et al (2010) Automatic quantitative micro-computed tomography evaluation of angiogenesis in an axially vascularized tissue-engineered bone construct. Tissue Eng Part C Methods 16:1503–1514. doi:10.1089/ten.tec.2010.0016

    Article  Google Scholar 

  • Arkudas A, Pryymachuk G, Beier JP et al (2012a) Combination of extrinsic and intrinsic pathways significantly accelerates axial vascularization of bioartificial tissues. Plast Reconstr Surg 129:55e–65e. doi:10.1097/PRS.0b013e3182361f97

    Article  Google Scholar 

  • Arkudas A, Pryymachuk G, Hoereth T et al (2012b) Composition of fibrin glues significantly influences axial vascularization and degradation in isolation chamber model. Blood Coagul Fibrinolysis 23:419–427. doi:10.1097/MBC.0b013e3283540c0f

    Article  Google Scholar 

  • Asano Y, Ichioka S, Shibata M et al (2005) Sprouting from arteriovenous shunt vessels with increased blood flow. Med Biol Eng Comput 43:126–130

    Article  Google Scholar 

  • Beier JP, Horch RE, Hess A et al (2010) Axial vascularization of a large volume calcium phosphate ceramic bone substitute in the sheep AV loop model. J Tissue Eng Regen Med 4:216–223. doi:10.1002/term.229

    Article  Google Scholar 

  • Beier JP, Hess A, Loew J et al (2011) De novo generation of an axially vascularized processed bovine cancellous-bone substitute in the sheep arteriovenous-loop model. Eur Surg Res 46:148–155. doi:10.1159/000324408

    Article  Google Scholar 

  • Bitto FF, Klumpp D, Lange C et al (2013) Myogenic differentiation of mesenchymal stem cells in a newly developed neurotised AV-loop model. Biomed Res Int 2013:935046–935011. doi:10.1155/2013/935046

    Google Scholar 

  • Bleiziffer O, Eriksson E, Yao F et al (2007) Gene transfer strategies in tissue engineering. J Cell Mol Med 11:206–223. doi:10.1111/j.1582-4934.2007.00027.x

    Article  Google Scholar 

  • Bleiziffer O, Hammon M, Naschberger E et al (2011) Endothelial progenitor cells are integrated in newly formed capillaries and alter adjacent fibrovascular tissue after subcutaneous implantation in a fibrin matrix. J Cell Mol Med 15:2452–2461. doi:10.1111/j.1582-4934.2010.01247.x

    Article  Google Scholar 

  • Boos AM, Loew JS, Weigand A et al (2013) Engineering axially vascularized bone in the sheep arteriovenous-loop model. J Tissue Eng Regen Med 7:654–664. doi:10.1002/term.1457

    Article  Google Scholar 

  • Bouhadir KH, Mooney DJ (2001) Promoting angiogenesis in engineered tissues. J Drug Target 9:397–406

    Article  Google Scholar 

  • Brown DL, Meagher PJ, Knight KR et al (2006) Survival and function of transplanted islet cells on an in vivo, vascularized tissue engineering platform in the rat: a pilot study. Cell Transplant 15:319–324

    Article  Google Scholar 

  • Brudno Y, Ennett-Shepard AB, Chen RR et al (2013) Enhancing microvascular formation and vessel maturation through temporal control over multiple pro-angiogenic and pro-maturation factors. Biomaterials 34:9201–9209. doi:10.1016/j.biomaterials.2013.08.007

    Article  Google Scholar 

  • Brüner S, Bickert B, Sauerbier M, Germann G (2004) Concept of arteriovenous loupes in high-risk free-tissue transfer: history and clinical experiences. Microsurgery 24:104–113. doi:10.1002/micr.20006

    Article  Google Scholar 

  • Buehrer G, Balzer A, Arnold I et al (2015) Combination of BMP2 and MSCs significantly increases bone formation in the rat arterio-venous loop model. Tissue Eng Part A 21:96–105. doi:10.1089/ten.TEA.2014.0028

    Article  Google Scholar 

  • Cao Y, Mitchell G, Messina A et al (2006) The influence of architecture on degradation and tissue ingrowth into three-dimensional poly(lactic-co-glycolic acid) scaffolds in vitro and in vivo. Biomaterials 27:2854–2864. doi:10.1016/j.biomaterials.2005.12.015

    Article  Google Scholar 

  • Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660. doi:10.1038/nm0603-653

    Article  Google Scholar 

  • Cassell OC, Morrison WA, Messina A et al (2001) The influence of extracellular matrix on the generation of vascularized, engineered, transplantable tissue. Ann N Y Acad Sci 944:429–442

    Article  Google Scholar 

  • Cassell OCS, Hofer SOP, Morrison WA, Knight KR (2002) Vascularisation of tissue-engineered grafts: the regulation of angiogenesis in reconstructive surgery and in disease states. Br J Plast Surg 55:603–610

    Article  Google Scholar 

  • Cavadas PC (2008) Arteriovenous vascular loops in free flap reconstruction of the extremities. Plast Reconstr Surg 121:514–520. doi:10.1097/01.prs.0000297634.53915.e5

    Article  Google Scholar 

  • Cowan DB, Lye SJ, Langille BL (1998) Regulation of vascular connexin43 gene expression by mechanical loads. Circ Res 82:786–793

    Article  Google Scholar 

  • Dolderer JH, Abberton KM, Thompson EW et al (2007) Spontaneous large volume adipose tissue generation from a vascularized pedicled fat flap inside a chamber space. Tissue Eng 13:673–681. doi:10.1089/ten.2006.0212

    Article  Google Scholar 

  • Erol OO (1976) The transformation of a free skin graft into a vascularized pedicled flap. Plast Reconstr Surg 58:470–477

    Article  Google Scholar 

  • Erol OO, Spira M (1979) New capillary bed formation with a surgically constructed arteriovenous fistula. Surg Forum 30:530–531

    Google Scholar 

  • Eweida AM, Nabawi AS, Elhammady HA et al (2012) Axially vascularized bone substitutes: a systematic review of literature and presentation of a novel model. Arch Orthop Trauma Surg 132:1353–1362. doi:10.1007/s00402-012-1550-3

    Article  Google Scholar 

  • Fiegel HC, Pryymachuk G, Rath S et al (2010) Foetal hepatocyte transplantation in a vascularized AV-loop transplantation model in the rat. J Cell Mol Med 14:267–274. doi:10.1111/j.1582-4934.2008.00369.x

    Article  Google Scholar 

  • Germann G, Pelzer M, Sauerbier M (1998) Prefabricated flaps, a new reconstructive concept. Orthopade 27:451–456

    Google Scholar 

  • Giessler GA, Zobitz M, Friedrich PF, Bishop AT (2009) Host-derived neoangiogenesis with short-term immunosuppression allows incorporation and remodeling of vascularized diaphyseal allogeneic rabbit femur transplants. J Orthop Res 27:763–770. doi:10.1002/jor.20764

    Article  Google Scholar 

  • Guo L, Pribaz JJ (2009) Clinical flap prefabrication. Plast Reconstr Surg 124:e340–e350. doi:10.1097/PRS.0b013e3181bcf094

    Article  Google Scholar 

  • Hofer SOP, Mitchell GM, Penington AJ et al (2005) The use of pimonidazole to characterise hypoxia in the internal environment of an in vivo tissue engineering chamber. Br J Plast Surg 58:1104–1114. doi:10.1016/j.bjps.2005.04.033

    Article  Google Scholar 

  • Holle J, Vinzenz K, Würinger E et al (1996) The prefabricated combined scapula flap for bony and soft-tissue reconstruction in maxillofacial defects--a new method. Plast Reconstr Surg 98:542–552

    Article  Google Scholar 

  • Horch RE, Beier JP, Kneser U, Arkudas A (2014) Successful human long-term application of in situ bone tissue engineering. J Cell Mol Med 18:1478–1485. doi:10.1111/jcmm.12296

    Article  Google Scholar 

  • Inoue G, Tamura Y (1991) The use of an afferent arteriovenous fistula in digit replantation surgery: a report of two cases. Br J Plast Surg 44:230–233

    Article  Google Scholar 

  • Jeon O, Ryu SH, Chung JH, Kim B-S (2005) Control of basic fibroblast growth factor release from fibrin gel with heparin and concentrations of fibrinogen and thrombin. J Control Release 105:249–259

    Article  Google Scholar 

  • Kawamura K, Yajima H, Ohgushi H et al (2006) Experimental study of vascularized tissue-engineered bone grafts. Plast Reconstr Surg 117:1471–1479. doi:10.1097/01.prs.0000197883.17428.22

    Article  Google Scholar 

  • Khouri RK, Ozbek MR, Hruza GJ, Young VL (1995) Facial reconstruction with prefabricated induced expanded (PIE) supraclavicular skin flaps. Plast Reconstr Surg 95:1007–1015. discussion 1016–7

    Article  Google Scholar 

  • Kneser DMU, Polykandriotis E, Heidner K, et al (2005) Induzierte gerichtete Vaskularisation mit einer arteriovenösen Gefäßschleife in einer biogenen Matrix zum Knochengewebsersatz durch Tissue Engineering. In: Chirurgisches Forum 2005. Springer, Berlin/Heidelberg, pp 365–368

    Google Scholar 

  • Kneser U, Polykandriotis E, Ohnolz J et al (2006) Engineering of vascularized transplantable bone tissues: induction of axial vascularization in an osteoconductive matrix using an arteriovenous loop. Tissue Eng 12:1721–1731. doi:10.1089/ten.2006.12.1721

    Article  Google Scholar 

  • Kneser U, Arkudas A, Beier JP et al (2013) Extended skin and soft tissue defects after vascular wounds: plastic surgical concepts. Zentralbl Chir 138:536–542. doi:10.1055/s-0032-1328035

    Article  Google Scholar 

  • Kohane DS, Langer R (2008) Polymeric biomaterials in tissue engineering. Pediatr Res 63:487–491. doi:10.1203/01.pdr.0000305937.26105.e7

    Article  Google Scholar 

  • L’Heureux N, Dusserre N, Konig G et al (2006) Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med 12:361–365. doi:10.1038/nm1364

    Article  Google Scholar 

  • Laschke MW, Rücker M, Jensen G et al (2008) Improvement of vascularization of PLGA scaffolds by inosculation of in situ-preformed functional blood vessels with the host microvasculature. Ann Surg 248:939–948. doi:10.1097/SLA.0b013e31818fa52f

    Article  Google Scholar 

  • Laws MJ, Taylor RN, Sidell N et al (2008) Gap junction communication between uterine stromal cells plays a critical role in pregnancy-associated neovascularization and embryo survival. Development 135:2659–2668. doi:10.1242/dev.019810

    Article  Google Scholar 

  • Levenberg S, Rouwkema J, Macdonald M et al (2005) Engineering vascularized skeletal muscle tissue. Nat Biotechnol 23:879–884. doi:10.1038/nbt1109

    Article  Google Scholar 

  • Lokmic Z, Stillaert F, Morrison WA et al (2007) An arteriovenous loop in a protected space generates a permanent, highly vascular, tissue-engineered construct. FASEB J 21:511–522. doi:10.1096/fj.06-6614com

    Article  Google Scholar 

  • Manasseri B, Cuccia G, Moimas S et al (2007) Microsurgical arterovenous loops and biological templates: a novel in vivo chamber for tissue engineering. Microsurgery 27:623–629. doi:10.1002/micr.20415

    Article  Google Scholar 

  • Matsuda K, Falkenberg KJ, Woods AA et al (2013) Adipose-derived stem cells promote angiogenesis and tissue formation for in vivo tissue engineering. Tissue Eng Part A 19:1327–1335. doi:10.1089/ten.TEA.2012.0391

    Article  Google Scholar 

  • Mehdizadeh H, Sumo S, Bayrak ES et al (2013) Three-dimensional modeling of angiogenesis in porous biomaterial scaffolds. Biomaterials 34:2875–2887. doi:10.1016/j.biomaterials.2012.12.047

    Article  Google Scholar 

  • Messina A, Bortolotto SK, Cassell OCS et al (2005) Generation of a vascularized organoid using skeletal muscle as the inductive source. FASEB J 19:1570–1572. doi:10.1096/fj.04-3241fje

    Google Scholar 

  • Mian R, Morrison WA, Hurley JV et al (2000) Formation of new tissue from an arteriovenous loop in the absence of added extracellular matrix. Tissue Eng 6:595–603. doi:10.1089/10763270050199541

    Article  Google Scholar 

  • Mian RA, Knight KR, Penington AJ et al (2001) Stimulating effect of an arteriovenous shunt on the in vivo growth of isografted fibroblasts: a preliminary report. Tissue Eng 7:73–80. doi:10.1089/107632700300003305

    Article  Google Scholar 

  • Morritt AN, Bortolotto SK, Dilley RJ et al (2007) Cardiac tissue engineering in an in vivo vascularized chamber. Circulation 115:353–360. doi:10.1161/CIRCULATIONAHA.106.657379

    Article  Google Scholar 

  • Naito Y, Shinoka T, Duncan D et al (2011) Vascular tissue engineering: towards the next generation vascular grafts. Adv Drug Deliv Rev 63:312–323. doi:10.1016/j.addr.2011.03.001

    Article  Google Scholar 

  • Nam SY, Ricles LM, Suggs LJ, Emelianov SY (2014) Imaging strategies for tissue engineering applications. Tissue Eng Part B Rev 21:88–102. doi:10.1089/ten.TEB.2014.0180. 140819121136005

    Article  Google Scholar 

  • Nowakowski A, Walczak P, Janowski M, Lukomska B (2015) Genetic engineering of mesenchymal stem cells for regenerative medicine. Stem Cells Dev 24:2219–2242. doi:10.1089/scd.2015.0062

    Article  Google Scholar 

  • Ohno T, Pelzer M, Larsen M et al (2007) Host-derived angiogenesis maintains bone blood flow after withdrawal of immunosuppression. Microsurgery 27:657–663. doi:10.1002/micr.20427

    Article  Google Scholar 

  • Oswald TM, Stover SA, Gerzenstein J et al (2007) Immediate and delayed use of arteriovenous fistulae in microsurgical flap procedures: a clinical series and review of published cases. Ann Plast Surg 58:61–63. doi:10.1097/01.sap.0000250743.78576.35

    Article  Google Scholar 

  • Pelzer M, Larsen M, Chung Y-G et al (2007) Short-term immunosuppression and surgical neoangiogenesis with host vessels maintains long-term viability of vascularized bone allografts. J Orthop Res 25:370–377. doi:10.1002/jor.20313

    Article  Google Scholar 

  • Polykandriotis E, Arkudas A, Euler S et al (2006) Prevascularisation strategies in tissue engineering. Handchir Mikrochir Plast Chir 38:217–223. doi:10.1055/s-2006-924419

    Article  Google Scholar 

  • Polykandriotis E, Arkudas A, Beier JP et al (2007a) Intrinsic axial vascularization of an osteoconductive bone matrix by means of an arteriovenous vascular bundle. Plast Reconstr Surg 120:855–868. doi:10.1097/01.prs.0000277664.89467.14

    Article  Google Scholar 

  • Polykandriotis E, Arkudas A, Horch RE et al (2007b) Autonomously vascularized cellular constructs in tissue engineering: opening a new perspective for biomedical science. J Cell Mol Med 11:6–20. doi:10.1111/j.1582-4934.2007.00012.x

    Article  Google Scholar 

  • Polykandriotis E, Tjiawi J, Euler S et al (2008) The venous graft as an effector of early angiogenesis in a fibrin matrix. Microvasc Res 75:25–33. doi:10.1016/j.mvr.2007.04.003

    Article  Google Scholar 

  • Pribaz JJ, Fine NA (1994) Prelamination: defining the prefabricated flap – a case report and review. Microsurgery 15:618–623

    Article  Google Scholar 

  • Pribaz JJ, Maitz PK, Fine NA (1994) Flap prefabrication using the “vascular crane” principle: an experimental study and clinical application. Br J Plast Surg 47:250–256. doi:10.1016/0007-1226(94)90007-8

    Article  Google Scholar 

  • Pribaz JJ, Fine N, Orgill DP (1999) Flap prefabrication in the head and neck: a 10-year experience. Plast Reconstr Surg 103:808–820

    Article  Google Scholar 

  • Rath SN, Pryymachuk G, Bleiziffer OA et al (2011) Hyaluronan-based heparin-incorporated hydrogels for generation of axially vascularized bioartificial bone tissues: in vitro and in vivo evaluation in a PLDLLA-TCP-PCL-composite system. J Mater Sci Mater Med 22:1279–1291. doi:10.1007/s10856-011-4300-0

    Article  Google Scholar 

  • Rath SN, Arkudas A, Lam CX et al (2012) Development of a pre-vascularized 3D scaffold-hydrogel composite graft using an arterio-venous loop for tissue engineering applications. J Biomater Appl 27:277–289. doi:10.1177/0885328211402243

    Article  Google Scholar 

  • Rivron NC, Raiss CC, Liu J et al (2012) Sonic hedgehog-activated engineered blood vessels enhance bone tissue formation. Proc Natl Acad Sci U S A 109:4413–4418. doi:10.1073/pnas.1117627109

    Article  Google Scholar 

  • Rophael JA, Craft RO, Palmer JA et al (2007) Angiogenic growth factor synergism in a murine tissue engineering model of angiogenesis and adipogenesis. Am J Pathol 171:2048–2057. doi:10.2353/ajpath.2007.070066

    Article  Google Scholar 

  • Schmidt VJ, Hilgert JG, Covi JM et al (2015) Flow increase is decisive to initiate angiogenesis in veins exposed to altered hemodynamics. PLoS One 10:e0117407. doi:10.1371/journal.pone.0117407

    Article  Google Scholar 

  • Semenza GL (2007) Vasculogenesis, angiogenesis, and arteriogenesis: mechanisms of blood vessel formation and remodeling. J Cell Biochem 102:840–847. doi:10.1002/jcb.21523

    Article  Google Scholar 

  • Shandalov Y, Egozi D, Koffler J et al (2014) An engineered muscle flap for reconstruction of large soft tissue defects. Proc Natl Acad Sci U S A 111:6010–6015. doi:10.1073/pnas.1402679111

    Article  Google Scholar 

  • Takeda T, Murphy S, Uyama S et al (1995) Hepatocyte transplantation in swine using prevascularized polyvinyl alcohol sponges. Tissue Eng 1:253–262. doi:10.1089/ten.1995.1.253

    Article  Google Scholar 

  • Tamai S, Yajima H, Ono H (1993) Revascularization procedures in the treatment of Kienböck’s disease. Hand Clin 9:455–466

    Google Scholar 

  • Tanaka Y, Tsutsumi A, Crowe DM et al (2000) Generation of an autologous tissue (matrix) flap by combining an arteriovenous shunt loop with artificial skin in rats: preliminary report. Br J Plast Surg 53:51–57. doi:10.1054/bjps.1999.3186

    Article  Google Scholar 

  • Tanaka Y, Sung K-C, Tsutsumi A et al (2003) Tissue engineering skin flaps: which vascular carrier, arteriovenous shunt loop or arteriovenous bundle, has more potential for angiogenesis and tissue generation? Plast Reconstr Surg 112:1636–1644. doi:10.1097/01.PRS.0000086140.49022.AB

    Article  Google Scholar 

  • Tanaka Y, Sung K-C, Fumimoto M et al (2006) Prefabricated engineered skin flap using an arteriovenous vascular bundle as a vascular carrier in rabbits. Plast Reconstr Surg 117:1860–1875. doi:10.1097/01.prs.0000218842.28359.f1

    Article  Google Scholar 

  • Tee R, Morrison WA, Dusting GJ et al (2012) Transplantation of engineered cardiac muscle flaps in syngeneic rats. Tissue Eng Part A 18:1992–1999. doi:10.1089/ten.TEA.2012.0151

    Article  Google Scholar 

  • Utzinger U, Baggett B, Weiss JA et al (2015) Large-scale time series microscopy of neovessel growth during angiogenesis. Angiogenesis 18:219–232. doi:10.1007/s10456-015-9461-x

    Article  Google Scholar 

  • Wang H-H, Kung C-I, Tseng Y-Y et al (2008) Activation of endothelial cells to pathological status by down-regulation of connexin43. Cardiovasc Res 79:509–518. doi:10.1093/cvr/cvn112

    Article  Google Scholar 

  • Warnke PH, Springer ING, Wiltfang J et al (2004) Growth and transplantation of a custom vascularised bone graft in a man. Lancet 364:766–770. doi:10.1016/S0140-6736(04)16935-3

    Article  Google Scholar 

  • Watson O, Novodvorsky P, Gray C et al (2013) Blood flow suppresses vascular notch signalling via dll4 and is required for angiogenesis in response to hypoxic signalling. Cardiovasc Res 100:252–261. doi:10.1093/cvr/cvt170

    Article  Google Scholar 

  • Weis C, Covi JM, Hilgert JG et al (2015) Automatic quantification of angiogenesis in 2D sections: a precise and timesaving approach. J Microsc. doi:10.1111/jmi.12252

    Google Scholar 

  • Yao ST (1982) Microvascular transplantation of prefabricated free thigh flap. Plast Reconstr Surg 69:568

    Article  Google Scholar 

  • Yuan Q, Bleiziffer O, Boos AM et al (2014) PHDs inhibitor DMOG promotes the vascularization process in the AV loop by HIF-1a up-regulation and the preliminary discussion on its kinetics in rat. BMC Biotechnol 14:961. doi:10.1186/s12896-014-0112-x

    Google Scholar 

  • Zdolsek JM, Morrison WA, Dingle AM et al (2011) An “off the shelf” vascular allograft supports angiogenic growth in three-dimensional tissue engineering. J Vasc Surg 53:435–444. doi:10.1016/j.jvs.2010.08.019

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Koepple .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Koepple, C., Kneser, U., Schmidt, V.J. (2017). Microsurgical Approaches for In Vivo Prevascularization. In: Holnthoner, W., Banfi, A., Kirkpatrick, J., Redl, H. (eds) Vascularization for Tissue Engineering and Regenerative Medicine. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-21056-8_17-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21056-8_17-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21056-8

  • Online ISBN: 978-3-319-21056-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics