Skip to main content

Nucleosynthesis in Thermonuclear Supernovae

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Supernovae

Abstract

The explosion energy of thermonuclear (type Ia) supernovae is derived from the difference in nuclear binding energy liberated in the explosive fusion of light “fuel” nuclei, predominantly carbon and oxygen, into more tightly bound nuclear “ash” dominated by iron and silicon group elements. The very same explosive thermonuclear fusion event is also one of the major processes contributing to the nucleosynthesis of the heavy elements, in particular the iron-group elements. For example, most of the iron and manganese in the sun and its planetary system were produced in thermonuclear supernovae. Here, we review the physics of explosive thermonuclear burning in carbon-oxygen white dwarf material and the methodologies utilized in calculating predicted nucleosynthesis from hydrodynamic explosion models. While the dominant explosion scenario remains unclear, many aspects of the nuclear combustion and nucleosynthesis are common to all models and must occur in some form in order to produce the observed yields. We summarize the predicted nucleosynthetic yields for existing explosion models, placing particular emphasis on characteristic differences in the nucleosynthetic signatures of the different suggested scenarios leading to type Ia supernovae. Following this, we discuss how these signatures compare with observations of several individual supernovae, remnants, and the composition of material in our galaxy and galaxy clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anders E, Grevesse N (1989) Abundances of the elements – meteoritic and solar. Geochimica et Cosmochimica Acta 53:197–214. DOI 10.1016/ 0016-7037(89)90286-X

    Article  ADS  Google Scholar 

  • Arnett D (1996) Supernovae and nucleosynthesis: an investigation of the history of matter from the big bang to the present. Princeton University Press, Princeton

    Google Scholar 

  • Arnett WD (1969) A possible model of supernovae: detonation of 12C. Astrophys Space Sci 5:180–212. DOI 10.1007/BF00650291

    Article  ADS  Google Scholar 

  • Arnett WD (1982) Type I supernovae. I – analytic solutions for the early part of the light curve. Astrophys J 253:785–797. DOI 10.1086/159681

    Article  ADS  Google Scholar 

  • Arnould M (1976) Possibility of synthesis of proton-rich nuclei in highly evolved stars. II. Astron Astrophys 46:117–125

    ADS  Google Scholar 

  • Audouze J, Truran JW (1975) P-process nucleosynthesis in postshock supernova envelope environments. Astrophys J 202:204–213. DOI 10.1086/ 153965

    Article  ADS  Google Scholar 

  • Benetti S, Cappellaro E, Mazzali PA, Turatto M, Altavilla G, Bufano F, Elias-Rosa N, Kotak R, Pignata G, Salvo M, Stanishev V (2005) The diversity of Type Ia supernovae: evidence for systematics? Astrophys J 623:1011–1016. DOI 10.1086/428608, astro-ph/0411059

    Google Scholar 

  • Bildsten L, Hall DM (2001) Gravitational settling of 22Ne in liquid white dwarf interiors. Astrophys J Lett 549:L219–L223. DOI 10.1086/319169, astro-ph/0101365

    Google Scholar 

  • Bodansky D, Clayton DD, Fowler WA (1968) Nuclear quasi-equilibrium during silicon burning. Astrophys J Suppl 16:299. DOI 10.1086/190176

    Article  ADS  Google Scholar 

  • Böhringer H, Werner N (2010) X-Ray spectroscopy of galaxy clusters: studying astrophysical processes in the largest celestial laboratories. Astron Astrophys Rev 18:127–196. DOI 10.1007/s00159-009-0023-3

    Article  ADS  Google Scholar 

  • Borkowski KJ, Reynolds SP, Green DA, Hwang U, Petre R, Krishnamurthy K, Willett R (2010) Radioactive scandium in the youngest galactic supernova remnant G1.9+0.3. Astrophys J Lett 724:L161–L165. DOI 10. 1088/2041-8205/724/2/L161, 1006.3552

    Google Scholar 

  • Brachwitz F, Dean DJ, Hix WR, Iwamoto K, Langanke K, Martínez-Pinedo G, Nomoto K, Strayer MR, Thielemann FK, Umeda H (2000) The role of electron captures in Chandrasekhar-mass models for Type Ia supernovae. Astrophys J 536:934–947. DOI 10.1086/308968, astro-ph/0001464

    Google Scholar 

  • Bravo E, García-Senz D (2009) Pulsating reverse detonation models of Type Ia supernovae. I. Detonation ignition. Astrophys J 695:1244–1256. DOI 10.1088/0004-637X/695/2/1244, 0901.3008

    Google Scholar 

  • Bravo E, Martínez-Pinedo G (2012) Sensitivity study of explosive nucleosynthesis in Type Ia supernovae: modification of individual thermonuclear reaction rates. Phys Rev C 85(5):055805. DOI 10.1103/ PhysRevC.85.055805, 1204.1981

    Google Scholar 

  • Bravo E, García-Senz D, Cabezón RM, Domínguez I (2009) Pulsating reverse detonation models of Type Ia supernovae. II. Explosion. Astrophys J 695:1257–1272. DOI 10.1088/0004-637X/695/2/ 1257, 0901.3013

    Google Scholar 

  • Burbidge EM, Burbidge GR, Fowler WA, Hoyle F (1957) Synthesis of the elements in stars. Rev Mod Phys 29:547–650. DOI 10.1103/RevModPhys. 29.547

    Article  ADS  Google Scholar 

  • Calder AC, Townsley DM, Seitenzahl IR, Peng F, Messer OEB, Vladimirova N, Brown EF, Truran JW, Lamb DQ (2007) Capturing the fire: flame energetics and neutronization for Type Ia supernova simulations. Astrophys J 656:313–332. DOI 10.1086/510709, astro-ph/0611009

    Google Scholar 

  • Calder AC, Krueger BK, Jackson AP, Townsley DM (2013) The influence of chemical composition on models of Type Ia supernovae. Front Phys 8:168–188. DOI 10.1007/s11467-013-0301-4, 1303.2207

    Google Scholar 

  • Cameron AGW (1957) Nuclear reactions in stars and nucleogenesis. Publ Astron Soc Pac 69:201. DOI 10.1086/127051

    Article  ADS  Google Scholar 

  • Carlton AK, Borkowski KJ, Reynolds SP, Hwang U, Petre R, Green DA, Krishnamurthy K, Willett R (2011) Expansion of the youngest galactic supernova remnant G1.9+0.3. Astrophys J Lett 737:L22. DOI 10.1088/ 2041-8205/737/1/L22, 1106.4498

    Google Scholar 

  • Chamulak DA, Brown EF, Timmes FX, Dupczak K (2008) The reduction of the electron abundance during the pre-explosion simmering in white dwarf supernovae. Astrophys J 677:160–168. DOI 10.1086/528944, 0801.1643

    Google Scholar 

  • Churazov E, Sunyaev R, Isern J, Knödlseder J, Jean P, Lebrun F, Chugai N, Grebenev S, Bravo E, Sazonov S, Renaud M (2014) Cobalt-56 γ-ray emission lines from the Type Ia supernova 2014J. Nature 512:406–408. DOI 10.1038/nature13672, 1405.3332

    Google Scholar 

  • Churazov E, Sunyaev R, Isern J, Bikmaev I, Bravo E, Chugai N, Grebenev S, Jean P, Knödlseder J, Lebrun F, Kuulkers E (2015) Gamma-rays from Type Ia supernova SN2014J. Astrophys J 812:62. DOI 10.1088/ 0004-637X/812/1/62, 1502.00255

    Google Scholar 

  • Ciaraldi-Schoolmann F, Seitenzahl IR, Röpke FK (2013) A subgrid-scale model for deflagration-to-detonation transitions in Type Ia supernova explosion simulations. Numerical implementation. Astron Astrophys 559:A117. DOI 10.1051/ 0004-6361/201321480, 1307.8146

    Google Scholar 

  • Crocker RM, Ruiter AJ, Seitenzahl IR, Panther FH, Baumgardt H, Moller A, Nataf DM, Ferrario L, Eldridge JJ, White M, Sim S, Tucker BE, Aharonian F (2016) Sub-luminous ‘1991bg-Like’ thermonuclear supernovae account for most diffuse antimatter in the milky way. ArXiv e-prints 1607.03495

    Google Scholar 

  • de Plaa J (2013) The origin of the chemical elements in cluster cores. Astronomische Nachrichten 334:416. DOI 10.1002/asna.201211870, 1210.1093

    Google Scholar 

  • de Plaa J, Werner N, Bleeker JAM, Vink J, Kaastra JS, Méndez M (2007) Constraining supernova models using the hot gas in clusters of galaxies. Astron Astrophys 465:345–355. DOI 10.1051/0004-6361: 20066382, astro-ph/0701553

    Google Scholar 

  • Dhawan S, Leibundgut B, Spyromilio J, Blondin S (2016) A reddening-free method to estimate the 56Ni mass of Type Ia supernovae. Astron Astrophys 588:A84. DOI 10.1051/0004-6361/201527201, 1601.04874

    Google Scholar 

  • Diehl R, Siegert T, Hillebrandt W, Grebenev SA, Greiner J, Krause M, Kromer M, Maeda K, Röpke F, Taubenberger S (2014) Early 56Ni decay gamma rays from SN2014J suggest an unusual explosion. Science 345:1162–1165. DOI 10.1126/science.1254738, 1407.3061

    Google Scholar 

  • Dopita MA, Sutherland RS (2003) Astrophysics of the diffuse universe. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Dupke RA, White RE III (2000) Constraints on Type Ia supernova models from X-Ray spectra of galaxy clusters. Astrophys J 528:139–144. DOI 10. 1086/308181, astro-ph/9907343

    Google Scholar 

  • Dwek E (2016) Iron: a key element for understanding the origin and evolution of interstellar dust. ArXiv e-prints 1605.01957

    Google Scholar 

  • Fink M, Röpke FK, Hillebrandt W, Seitenzahl IR, Sim SA, Kromer M (2010) Double-detonation sub-Chandrasekhar supernovae: can minimum helium shell masses detonate the core? Astron Astrophys 514:A53. DOI 10. 1051/0004-6361/200913892, 1002.2173

    Google Scholar 

  • Fink M, Kromer M, Seitenzahl IR, Ciaraldi-Schoolmann F, Röpke FK, Sim SA, Pakmor R, Ruiter AJ, Hillebrandt W (2014) Three-dimensional pure deflagration models with nucleosynthesis and synthetic observables for Type Ia supernovae. Mon Not R Astron Soc 438:1762–1783. DOI 10. 1093/mnras/stt2315, 1308.3257

    Google Scholar 

  • Foley RJ, Chornock R, Filippenko AV, Ganeshalingam M, Kirshner RP, Li W, Cenko SB, Challis PJ, Friedman AS, Modjaz M, Silverman JM, Wood-Vasey WM (2009) SN 2008ha: an extremely low luminosity and exceptionally low energy supernova. Astron J 138:376–391. DOI 10.1088/ 0004-6256/138/2/376, 0902.2794

    Google Scholar 

  • Fransson C, Jerkstrand A (2015) Reconciling the infrared catastrophe and observations of SN 2011fe. Astrophys J Lett 814:L2. DOI 10.1088/ 2041-8205/814/1/L2, 1511.00245

    Google Scholar 

  • Fuller GM, Fowler WA, Newman MJ (1982) Stellar weak interaction rates for intermediate-mass nuclei. II - A = 21 to A = 60. Astrophys J 252:715–740. DOI 10.1086/159597

    Article  ADS  Google Scholar 

  • Gasques LR, Afanasjev AV, Aguilera EF, Beard M, Chamon LC, Ring P, Wiescher M, Yakovlev DG (2005) Nuclear fusion in dense matter: reaction rate and carbon burning. Phys Rev C 72(2):025806. DOI 10.1103/ PhysRevC.72.025806, astro-ph/0506386

    Google Scholar 

  • Gasques LR, Brown EF, Chieffi A, Jiang CL, Limongi M, Rolfs C, Wiescher M, Yakovlev DG (2007) Implications of low-energy fusion hindrance on stellar burning and nucleosynthesis. Phys Rev C 76(3):035802. DOI 10. 1103/PhysRevC.76.035802

    Google Scholar 

  • Graur O, Zurek D, Shara MM, Riess AG, Seitenzahl IR, Rest A (2016) Late-time photometry of Type Ia supernova SN 2012cg reveals the radioactive decay of 57 Co. Astrophys J 819:31. DOI 10.3847/0004-637X/ 819/1/31, 1505.00777

    Google Scholar 

  • Hix WR, Meyer BS (2006) Thermonuclear kinetics in astrophysics. Nucl Phys A 777:188–207. DOI 10.1016/j.nuclphysa.2004.10.009, astro-ph/0509698

    Google Scholar 

  • Howard WM, Meyer BS, Woosley SE (1991) A new site for the astrophysical gamma-process. Astrophys J Lett 373:L5–L8. DOI 10.1086/186038

    Article  ADS  Google Scholar 

  • Iben I Jr (1981) On intermediate-mass single stars and accreting white dwarfs as sources of neutron-rich isotopes. Astrophys J 243:987–993. DOI 10.1086/158663

    Article  ADS  Google Scholar 

  • Iben I Jr, Nomoto K, Tornambe A, Tutukov AV (1987) On interacting helium star-white dwarf pairs as supernova precursors. Astrophys J 317:717–723. DOI 10.1086/165318

    Article  ADS  Google Scholar 

  • Iwamoto K, Brachwitz F, Nomoto K, Kishimoto N, Umeda H, Hix WR, Thielemann FK (1999) Nucleosynthesis in Chandrasekhar mass models for Type IA supernovae and constraints on progenitor systems and burning-front propagation. Astrophys J Suppl 125:439–462. DOI 10.1086/ 313278, astro-ph/0002337

    Google Scholar 

  • Jackson AP, Calder AC, Townsley DM, Chamulak DA, Brown EF, Timmes FX (2010) Evaluating systematic dependencies of Type Ia supernovae: the influence of deflagration to detonation density. Astrophys J 720:99–113. DOI 10.1088/0004-637X/720/1/99, 1007.1138

    Google Scholar 

  • Jackson AP, Townsley DM, Calder AC (2014) Power-law wrinkling turbulence-flame interaction model for astrophysical flames. Astrophys J 784:174. DOI 10.1088/0004-637X/784/2/174, 1402.4527

    Google Scholar 

  • Jones S, Roepke FK, Pakmor R, Seitenzahl IR, Ohlmann ST, Edelmann PVF (2016) Do electron-capture supernovae make neutron stars? First multidimensional hydrodynamic simulations of the oxygen deflagration. ArXiv e-prints 1602.05771

    Google Scholar 

  • Kasliwal MM, Kulkarni SR, Gal-Yam A, Nugent PE, Sullivan M, Bildsten L, Yaron O, Perets HB, Arcavi I, Ben-Ami S, Bhalerao VB, Bloom JS, Cenko SB, Filippenko AV, Frail DA, Ganeshalingam M, Horesh A, Howell DA, Law NM, Leonard DC, Li W, Ofek EO, Polishook D, Poznanski D, Quimby RM, Silverman JM, Sternberg A, Xu D (2012) Calcium-rich gap transients in the remote outskirts of galaxies. Astrophys J 755:161. DOI 10.1088/0004-637X/755/2/161, 1111.6109

    Google Scholar 

  • Kerzendorf WE, Taubenberger S, Seitenzahl IR, Ruiter AJ (2014) Very late photometry of SN 2011fe. Astrophys J Lett 796:L26. DOI 10.1088/ 2041-8205/796/2/L26, 1406.6050

    Google Scholar 

  • Khokhlov AM (1991) Delayed detonation model for Type Ia supernovae. Astron Astrophys 245:114–128

    ADS  Google Scholar 

  • Kobayashi C, Nomoto K (2009) The role of Type Ia Supernovae in chemical evolution. I. Lifetime of Type Ia supernovae and metallicity effect. Astrophys J 707:1466–1484. DOI 10.1088/0004-637X/707/2/1466, 0801.0215

    Google Scholar 

  • Kobayashi C, Nomoto K, Hachisu I (2015) Subclasses of Type Ia supernovae as the origin of [α/Fe] ratios in dwarf spheroidal galaxies. Astrophys J Lett 804:L24. DOI 10.1088/2041-8205/804/1/L24, 1503.06739

    Google Scholar 

  • Kromer M, Sim SA, Fink M, Röpke FK, Seitenzahl IR, Hillebrandt W (2010) Double-detonation sub-Chandrasekhar supernovae: synthetic observables for minimum helium shell mass models. Astrophys J 719:1067–1082. DOI 10.1088/0004-637X/719/2/1067, 1006.4489

    Google Scholar 

  • Kromer M, Fink M, Stanishev V, Taubenberger S, Ciaraldi-Schoolman F, Pakmor R, Röpke FK, Ruiter AJ, Seitenzahl IR, Sim SA, Blanc G, Elias-Rosa N, Hillebrandt W (2013) 3D deflagration simulations leaving bound remnants: a model for 2002cx-like Type Ia supernovae. Mon Not R Astron Soc 429:2287–2297. DOI 10.1093/mnras/sts498, 1210.5243

    Google Scholar 

  • Kromer M, Ohlmann ST, Pakmor R, Ruiter AJ, Hillebrandt W, Marquardt KS, Röpke FK, Seitenzahl IR, Sim SA, Taubenberger S (2015) Deflagrations in hybrid CONe white dwarfs: a route to explain the faint Type Iax supernova 2008ha. Mon Not R Astron Soc 450:3045–3053. DOI 10.1093/mnras/stv886, 1503.04292

    Google Scholar 

  • Lambert DL (1992) The p-nuclei – abundances and origins. Astron Astrophys Rev 3:201–256. DOI 10.1007/BF00872527

    Article  ADS  Google Scholar 

  • Langanke K, Martínez-Pinedo G (2001) Rate tables for the weak processes of pf-SHELL nuclei in stellar environments. At Data Nucl Data Tables 79:1–46. DOI 10.1006/adnd.2001.0865

    Article  ADS  Google Scholar 

  • Livne E (1990) Successive detonations in accreting white dwarfs as an alternative mechanism for Type I supernovae. Astrophys J Lett 354:L53–L55. DOI 10.1086/185721

    Article  ADS  Google Scholar 

  • Livne E, Arnett D (1995) Explosions of Sub–Chandrasekhar mass white dwarfs in two dimensions. Astrophys J 452:62. DOI 10.1086/176279

    Article  ADS  Google Scholar 

  • Lopez LA, Grefenstette BW, Reynolds SP, An H, Boggs SE, Christensen FE, Craig WW, Eriksen KA, Fryer CL, Hailey CJ, Harrison FA, Madsen KK, Stern DK, Zhang WW, Zoglauer A (2015) A spatially resolved study of the synchrotron emission and titanium in Tycho’s supernova remnant using NuSTAR. Astrophys J 814:132. DOI 10.1088/0004-637X/814/2/132, 1504.07238

    Google Scholar 

  • Maeda K, Röpke FK, Fink M, Hillebrandt W, Travaglio C, Thielemann FK (2010) Nucleosynthesis in two-dimensional delayed detonation models of Type Ia supernova explosions. Astrophys J 712:624–638. DOI 10.1088/ 0004-637X/712/1/624, 1002.2153

    Google Scholar 

  • Marquardt KS, Sim SA, Ruiter AJ, Seitenzahl IR, Ohlmann ST, Kromer M, Pakmor R, Röpke FK (2015) Type Ia supernovae from exploding oxygen-neon white dwarfs. Astron Astrophys 580:A118. DOI 10.1051/ 0004-6361/201525761, 1506.05809

    Google Scholar 

  • Martínez-Rodríguez H, Piro AL, Schwab J, Badenes C (2016) Neutronization during carbon simmering in Type Ia supernova progenitors. ArXiv e-prints 1602.00673

    Google Scholar 

  • Mazzali PA, Röpke FK, Benetti S, Hillebrandt W (2007) A common explosion mechanism for Type Ia supernovae. Science 315:825. DOI 10. 1126/science.1136259, astro-ph/0702351

    Google Scholar 

  • Mazzali PA, Sullivan M, Filippenko AV, Garnavich PM, Clubb KI, Maguire K, Pan YC, Shappee B, Silverman JM, Benetti S, Hachinger S, Nomoto K, Pian E (2015) Nebular spectra and abundance tomography of the Type Ia supernova SN 2011fe: a normal SN Ia with a stable Fe core. Mon Not R Astron Soc 450:2631–2643. DOI 10.1093/mnras/stv761, 1504.04857

    Google Scholar 

  • McWilliam A (1997) Abundance ratios and galactic chemical evolution. Annu Rev Astron Astrophys 35:503–556. DOI 10.1146/annurev.astro.35.1.503

    Article  ADS  Google Scholar 

  • Meakin CA, Seitenzahl I, Townsley D, Jordan GC IV, Truran J, Lamb D (2009) Study of the detonation phase in the gravitationally confined detonation model of Type Ia supernovae. Astrophys J 693:1188–1208. DOI 10.1088/0004-637X/693/2/1188, 0806.4972

    Google Scholar 

  • Mernier F, de Plaa J, Pinto C, Kaastra JS, Kosec P, Zhang YY, Mao J, Werner N (2016a) On the origin of central abundances in the hot intra-cluster medium – I. Individual and average abundance ratios from XMM-Newton EPIC. Astron Astrophys 592:1–18, id.A157. DOI 10.1051/ 0004-6361/201527824

    Google Scholar 

  • Mernier F, de Plaa J, Pinto C, Kaastra JS, Kosec P, Zhang YY, Mao J, Werner N, Pols OR, Vink J (2016b Origin of central abundances in the hot intra-cluster medium – II. Chemical enrichment and supernova yield models. Astron Astrophys 595:1–19, id.A126. DOI 10.1051/0004-66361/ 201628765

    Google Scholar 

  • Meyer BS, Krishnan TD, Clayton DD (1996) 48Ca production in matter expanding from high temperature and density. Astrophys J 462:825. DOI 10.1086/177197

    Google Scholar 

  • Miles BJ, van Rossum DR, Townsley DM, Timmes FX, Jackson AP, Calder AC, Brown EF (2016) On measuring the metallicity of a Type Ia supernova progenitor. Astrophys J 824:59. DOI 10.3847/0004-637X/824/ 1/59, 1508.05961

    Google Scholar 

  • Moll R, Raskin C, Kasen D, Woosley SE (2014) Type Ia supernovae from merging white dwarfs. I. Prompt detonations. Astrophys J 785:105. DOI 10.1088/0004-637X/785/2/105, 1311.5008

    Google Scholar 

  • Moore K, Townsley DM, Bildsten L (2013) The effects of curvature and expansion on helium detonations on white dwarf surfaces. Astrophys J 776:97. DOI 10.1088/0004-637X/776/2/97, 1308.4193

    Google Scholar 

  • Nomoto K, Thielemann FK, Yokoi K (1984) Accreting white dwarf models of Type I supernovae. III – carbon deflagration supernovae. Astrophys J 286:644–658. DOI 10.1086/162639

    Article  ADS  Google Scholar 

  • Ohlmann ST, Kromer M, Fink M, Pakmor R, Seitenzahl IR, Sim SA, Röpke FK (2014) The white dwarf’s carbon fraction as a secondary parameter of Type Ia supernovae. Astron Astrophys 572:A57. DOI 10.1051/0004-6361/ 201423924, 1409.2866

    Google Scholar 

  • Pakmor R, Kromer M, Röpke FK, Sim SA, Ruiter AJ, Hillebrandt W (2010) Sub-luminous Type Ia supernovae from the mergers of equal-mass white dwarfs with mass ∼ 0.9M solar . Nature 463:61–64. DOI 10.1038/nature08642, 0911.0926

    Google Scholar 

  • Pakmor R, Kromer M, Taubenberger S, Sim SA, Röpke FK, Hillebrandt W (2012) Normal Type Ia supernovae from violent mergers of white dwarf binaries. Astrophys J Lett 747:L10. DOI 10.1088/2041-8205/747/1/L10, 1201.5123

    Google Scholar 

  • Pakmor R, Kromer M, Taubenberger S, Springel V (2013) Helium-ignited violent mergers as a unified model for normal and rapidly declining Type Ia supernovae. Astrophys J Lett 770:L8. DOI 10.1088/2041-8205/770/1/L8, 1302.2913

    Google Scholar 

  • Papish O, Perets HB (2016) Supernovae from direct collisions of white dwarfs and the role of helium shell ignition. Astrophys J 822:19. DOI 10.3847/ 0004-637X/822/1/19, 1502.03453

    Google Scholar 

  • Parikh A, José J, Seitenzahl IR, Röpke FK (2013) The effects of variations in nuclear interactions on nucleosynthesis in thermonuclear supernovae. Astron Astrophys 557:A3. DOI 10.1051/0004-6361/201321518, 1306.6007

    Google Scholar 

  • Pignatari M, Göbel K, Reifarth R, Travaglio C (2016) The production of proton-rich isotopes beyond iron: the γ-process in stars. Int J Mod Phys E 25:1630003-232. DOI 10.1142/ S0218301316300034, 1605.03690

    Google Scholar 

  • Pinto PA, Eastman RG (2000) The physics of Type Ia supernova light curves. I. Analytic results and time dependence. Astrophys J 530:744–756. DOI 10.1086/308376

    Article  ADS  Google Scholar 

  • Piro AL, Bildsten L (2008) Neutronization during Type Ia supernova simmering. Astrophys J 673:1009–1013. DOI 10.1086/524189, 0710.1600

    Google Scholar 

  • Plewa T, Calder AC, Lamb DQ (2004) Type Ia supernova explosion: gravitationally confined detonation. Astrophys J Lett 612:L37–L40. DOI 10.1086/424036, astro-ph/0405163

    Google Scholar 

  • Rauscher T, Dauphas N, Dillmann I, Fröhlich C, Fülöp Z, Gyürky G (2013) Constraining the astrophysical origin of the p-nuclei through nuclear physics and meteoritic data. Rep Prog Phys 76(6):066201. DOI 10.1088/ 0034-4885/76/6/066201, 1303.2666

    Google Scholar 

  • Röpke FK, Hillebrandt W, Schmidt W, Niemeyer JC, Blinnikov SI, Mazzali PA (2007) A three-dimensional deflagration model for Type Ia supernovae compared with observations. Astrophys J 668:1132–1139. DOI 10.1086/ 521347, 0707.1024

    Google Scholar 

  • Röpke FK, Kromer M, Seitenzahl IR, Pakmor R, Sim SA, Taubenberger S, Ciaraldi-Schoolmann F, Hillebrandt W, Aldering G, Antilogus P, Baltay C, Benitez-Herrera S, Bongard S, Buton C, Canto A, Cellier-Holzem F, Childress M, Chotard N, Copin Y, Fakhouri HK, Fink M, Fouchez D, Gangler E, Guy J, Hachinger S, Hsiao EY, Chen J, Kerschhaggl M, Kowalski M, Nugent P, Paech K, Pain R, Pecontal E, Pereira R, Perlmutter S, Rabinowitz D, Rigault M, Runge K, Saunders C, Smadja G, Suzuki N, Tao C, Thomas RC, Tilquin A, Wu C (2012) Constraining Type Ia supernova models: SN 2011fe as a test case. Astrophys J Lett 750:L19. DOI 10.1088/2041-8205/750/1/L19, 1203.4839

    Google Scholar 

  • Ruiter AJ, Sim SA, Pakmor R, Kromer M, Seitenzahl IR, Belczynski K, Fink M, Herzog M, Hillebrandt W, Röpke FK, Taubenberger S (2013) On the brightness distribution of Type Ia supernovae from violent white dwarf mergers. Mon Not R Astron Soc 429:1425–1436. DOI 10.1093/mnras/ sts423, 1209.0645

    Google Scholar 

  • Scalzo RA, Aldering G, Antilogus P, Aragon C, Bailey S, Baltay C, Bongard S, Buton C, Childress M, Chotard N, Copin Y, Fakhouri HK, Gal-Yam A, Gangler E, Hoyer S, Kasliwal M, Loken S, Nugent P, Pain R, Pécontal E, Pereira R, Perlmutter S, Rabinowitz D, Rau A, Rigaudier G, Runge K, Smadja G, Tao C, Thomas RC, Weaver B, Wu C (2010) Nearby supernova factory observations of SN 2007if: first total mass measurement of a super-Chandrasekhar-mass progenitor. Astrophys J 713:1073–1094. DOI 10.1088/0004-637X/713/2/1073, 1003.2217

    Google Scholar 

  • Scalzo RA, Ruiter AJ, Sim SA (2014) The ejected mass distribution of Type Ia supernovae: a significant rate of non-Chandrasekhar-mass progenitors. Mon Not R Astron Soc 445:2535–2544. DOI 10.1093/mnras/stu1808, 1408.6601

    Google Scholar 

  • Schmidt W, Niemeyer JC, Hillebrandt W, Röpke FK (2006) A localised subgrid scale model for fluid dynamical simulations in astrophysics. II. Application to Type Ia supernovae. Astron Astrophys 450:283–294. DOI 10.1051/0004-6361: 20053618, astro-ph/0601500

    Google Scholar 

  • Seitenzahl IR, Meakin CA, Townsley DM, Lamb DQ, Truran JW (2009a) Spontaneous initiation of detonations in white dwarf environments: determination of critical sizes. Astrophys J 696:515–527. DOI 10.1088/ 0004-637X/696/1/515, 0901.3677

    Google Scholar 

  • Seitenzahl IR, Taubenberger S, Sim SA (2009b) Late-time supernova light curves: the effect of internal conversion and auger electrons. Mon Not R Astron Soc 400:531–535. DOI 10.1111/j.1365-2966.2009.15478.x, 0908.0247

    Google Scholar 

  • Seitenzahl IR, Townsley DM, Peng F, Truran JW (2009c) Nuclear statistical equilibrium for Type Ia supernova simulations. At Data Nucl Data Tables 95:96–114. DOI 10.1016/j.adt.2008.08.001

    Article  ADS  Google Scholar 

  • Seitenzahl IR, Röpke FK, Fink M, Pakmor R (2010) Nucleosynthesis in thermonuclear supernovae with tracers: convergence and variable mass particles. Mon Not R Astron Soc 407:2297–2304. DOI 10.1111/j. 1365-2966.2010.17106.x, 1005.5071

    Google Scholar 

  • Seitenzahl IR, Ciaraldi-Schoolmann F, Röpke FK (2011) Type Ia supernova diversity: white dwarf central density as a secondary parameter in three-dimensional delayed detonation models. Mon Not R Astron Soc 414:2709–2715. DOI 10.1111/j.1365-2966.2011.18588.x, 1012.4929

    Google Scholar 

  • Seitenzahl IR, Cescutti G, Röpke FK, Ruiter AJ, Pakmor R (2013a) Solar abundance of manganese: a case for near Chandrasekhar-mass Type Ia supernova progenitors. Astron Astrophys 559:L5. DOI 10.1051/ 0004-6361/201322599, 1309.2397

    Google Scholar 

  • Seitenzahl IR, Ciaraldi-Schoolmann F, Röpke FK, Fink M, Hillebrandt W, Kromer M, Pakmor R, Ruiter AJ, Sim SA, Taubenberger S (2013b) Three-dimensional delayed-detonation models with nucleosynthesis for Type Ia supernovae. Mon Not R Astron Soc 429:1156–1172. DOI 10.1093/ mnras/sts402, 1211.3015

    Google Scholar 

  • Seitenzahl IR, Summa A, Krauß F, Sim SA, Diehl R, Elsässer D, Fink M, Hillebrandt W, Kromer M, Maeda K, Mannheim K, Pakmor R, Röpke FK, Ruiter AJ, Wilms J (2015) 5.9-keV Mn K-shell X-ray luminosity from the decay of 55Fe in Type Ia supernova models. Mon Not R Astron Soc 447:1484–1490. DOI 10.1093/mnras/stu2537, 1412.0835

    Google Scholar 

  • Seitenzahl IR, Kromer M, Ohlmann ST, Ciaraldi-Schoolmann F, Marquardt K, Fink M, Hillebrandt W, Pakmor R, Roepke FK, Ruiter AJ, Sim SA, Taubenberger S (2016) Three-dimensional simulations of gravitationally confined detonations compared to observations of SN 1991T. ArXiv e-prints 1606.00089

    Google Scholar 

  • Shen KJ, Bildsten L (2014) The ignition of carbon detonations via converging shock waves in white dwarfs. Astrophys J 785:61. DOI 10.1088/ 0004-637X/785/1/61, 1305.6925

    Google Scholar 

  • Shen KJ, Moore K (2014) The initiation and propagation of helium detonations in white dwarf envelopes. Astrophys J 797:46. DOI 10.1088/ 0004-637X/797/1/46, 1409.3568

    Google Scholar 

  • Sim SA, Röpke FK, Hillebrandt W, Kromer M, Pakmor R, Fink M, Ruiter AJ, Seitenzahl IR (2010) Detonations in sub-Chandrasekhar-mass C+O white dwarfs. Astrophys J Lett 714:L52–L57. DOI 10.1088/2041-8205/ 714/1/L52, 1003.2917

    Google Scholar 

  • Stein J, Wheeler JC (2006) The convective Urca process with implicit two-dimensional hydrodynamics. Astrophys J 643:1190–1197. DOI 10. 1086/503246, astro-ph/0512580

    Google Scholar 

  • Stritzinger M, Mazzali PA, Sollerman J, Benetti S (2006) Consistent estimates of 56Ni yields for Type Ia supernovae. Astron Astrophys 460:793–798. DOI 10. 1051/0004-6361:20065514, astro-ph/0609232

    Google Scholar 

  • Taam RE (1980) The long-term evolution of accreting carbon white dwarfs. Astrophys J 242:749–755. DOI 10.1086/158509

    Article  ADS  Google Scholar 

  • Taubenberger S, Elias-Rosa N, Kerzendorf WE, Hachinger S, Spyromilio J, Fransson C, Kromer M, Ruiter AJ, Seitenzahl IR, Benetti S, Cappellaro E, Pastorello A, Turatto M, Marchetti A (2015) Spectroscopy of the Type Ia supernova 2011fe past 1000 d. Mon Not R Astron Soc 448:L48–L52. DOI 10.1093/mnrasl/slu201, 1411.7599

    Google Scholar 

  • Thielemann FK, Nomoto K, Yokoi K (1986) Explosive nucleosynthesis in carbon deflagration models of Type I supernovae. Astron Astrophys 158:17–33

    ADS  Google Scholar 

  • Timmes FX, Woosley SE, Weaver TA (1995) Galactic chemical evolution: hydrogen through zinc. Astrophys J Suppl 98:617–658. DOI 10.1086/ 192172, astro-ph/9411003

    Google Scholar 

  • Timmes FX, Brown EF, Truran JW (2003) On variations in the peak luminosity of Type Ia supernovae. Astrophys J Lett 590:L83–L86. DOI 10. 1086/376721, astro-ph/0305114

    Google Scholar 

  • Townsley DM, Miles BJ, Timmes FX, Calder AC, Brown EF (2016) A tracer method for computing Type Ia supernova yields: burning model calibration, reconstruction of thickened flames, and verification for planar detonations. Astrophys J Supp 225:3. DOI 10.3847/0067-0049/225/1/3. ArXiv e-prints 1605.04878

    Google Scholar 

  • Travaglio C, Hillebrandt W, Reinecke M, Thielemann FK (2004) Nucleosynthesis in multi-dimensional SN Ia explosions. Astron Astrophys 425:1029–1040. DOI 10.1051/0004-6361: 20041108, astro-ph/0406281

    Google Scholar 

  • Travaglio C, Röpke FK, Gallino R, Hillebrandt W (2011) Type Ia supernovae as sites of the p-process: two-dimensional models coupled to nucleosynthesis. Astrophys J 739:93. DOI 10.1088/0004-637X/739/2/93, 1106.0582

    Google Scholar 

  • Travaglio C, Gallino R, Rauscher T, Röpke FK, Hillebrandt W (2015) Testing the role of SNe Ia for galactic chemical evolution of p-nuclei with two-dimensional models and with s-process seeds at different metallicities. Astrophys J 799:54. DOI 10.1088/0004-637X/799/1/54, 1411.2399

    Google Scholar 

  • Troja E, Segreto A, La Parola V, Hartmann D, Baumgartner W, Markwardt C, Barthelmy S, Cusumano G, Gehrels N (2014) Swift/BAT detection of hard X-Rays from tycho’s supernova remnant: evidence for titanium-44. Astrophys J Lett 797:L6. DOI 10.1088/2041-8205/797/1/L6, 1411.0991

    Google Scholar 

  • Tutukov A, Yungelson L (1996) Double-degenerate semidetached binaries with helium secondaries: cataclysmic variables, supersoft X-Ray sources, supernovae and accretion-induced collapses. Mon Not R Astron Soc 280:1035–1045. DOI 10.1093/mnras/280.4.1035

    Article  ADS  Google Scholar 

  • Waldman R, Sauer D, Livne E, Perets H, Glasner A, Mazzali P, Truran JW, Gal-Yam A (2011) Helium shell detonations on low-mass white dwarfs as a possible explanation for SN 2005E. Astrophys J 738:21. DOI 10.1088/0004-637X/738/1/21, 1009.3829

    Google Scholar 

  • Woosley SE (1997) Neutron-rich nucleosynthesis in carbon deflagration supernovae. Astrophys J 476:801–810

    Article  ADS  Google Scholar 

  • Woosley SE, Howard WM (1978) The p-process in supernovae. Astrophys J Suppl 36:285–304. DOI 10.1086/190501

    Article  ADS  Google Scholar 

  • Woosley SE, Kasen D (2011) Sub-Chandrasekhar mass models for supernovae. Astrophys J 734:38. DOI 10.1088/0004-637X/734/1/38, 1010.5292

    Google Scholar 

  • Woosley SE, Weaver TA (1994) Sub-Chandrasekhar mass models for Type Ia supernovae. Astrophys J 423:371–379. DOI 10.1086/173813

    Article  ADS  Google Scholar 

  • Woosley SE, Arnett WD, Clayton DD (1973) The explosive burning of oxygen and silicon. Astrophys J Suppl 26:231. DOI 10.1086/190282

    Article  ADS  Google Scholar 

  • Yamaguchi H, Badenes C, Foster AR, Bravo E, Williams BJ, Maeda K, Nobukawa M, Eriksen KA, Brickhouse NS, Petre R, Koyama K (2015) A Chandrasekhar mass progenitor for the Type Ia supernova remnant 3C 397 from the enhanced abundances of nickel and manganese. Astrophys J Lett 801:L31. DOI 10.1088/2041-8205/801/2/ L31, 1502.04255

    Google Scholar 

Download references

Acknowledgements

IRS was supported during this work by Australian Research Council Laureate Grant FL09921.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo Rolf Seitenzahl .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Seitenzahl, I.R., Townsley, D.M. (2017). Nucleosynthesis in Thermonuclear Supernovae. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-20794-0_87-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20794-0_87-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20794-0

  • Online ISBN: 978-3-319-20794-0

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Nucleosynthesis in Thermonuclear Supernovae
    Published:
    22 June 2017

    DOI: https://doi.org/10.1007/978-3-319-20794-0_87-2

  2. Original

    Nucleosynthesis in Thermonuclear Supernovae
    Published:
    25 February 2017

    DOI: https://doi.org/10.1007/978-3-319-20794-0_87-1