Skip to main content

Neutron Stars as Probes for General Relativity and Gravitational Waves

  • Living reference work entry
  • First Online:
Handbook of Supernovae
  • 322 Accesses

Abstract

The discovery of the first radio pulsar in a binary system, by Russell Hulse and Joseph Taylor in 1974, initiated a completely new field for testing general relativity (GR) and alternative theories of gravity.

To date there are a number of binary pulsars known, which can be utilized for precision test of relativistic gravity. Depending on their orbital properties and their companion, these pulsars provide tests for various different phenomena, predicted by GR and its alternatives. In many aspects, these tests go far beyond of what can be achieved in the solar system. A prime example is the verification of the existence of gravitational waves, as predicted by GR. It is the large fractional binding energy ( ∼ 0. 1) and the strong internal gravity of neutron stars, that make high-precision timing of binary pulsars ideal probes for various predictions of strong-field gravity. So far, GR has passed all these tests with flying colors.

In the near future, in terms of radio pulsars, new radio telescopes, like the SKA, will soon greatly enhance our timing capabilities of known binary pulsars. Furthermore, new instrumentation and search techniques promise the discovery of many new systems, suitable for testing GR, among these hopefully also a pulsar in orbit around a black hole.

Quite recently, ground-based gravitational wave detectors have made their first observations of gravitational waves. This has not only opened a new window on the universe, but has also taken our gravity tests to the highly dynamical strong-field regime. While the first gravitational wave signals came from merging black holes, it is expected that in the near future mergers of double neutron-star as well as neutron star-black hole systems will be among the observed gravitational wave signals. Moreover, pulsar timing arrays are expected to soon observe gravitational waves in the nano-Hertz band, emitted by supermassive black hole binaries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbott BP et al (LIGO Scientific Collaboration and Virgo Collaboration) (2016a) Observation of gravitational waves from a binary black hole merger. Phys Rev Lett 116:061102

    Google Scholar 

  • Abbott BP et al (LIGO Scientific Collaboration and Virgo Collaboration) (2016b) Tests of general relativity with GW150914. eprint arXiv:1602.03841

    Google Scholar 

  • Allen B, Knispel B, Cordes JM, Deneva JS, Hessels JWT, Anderson D, Aulbert C, Bock O, Brazier A et al (2013) The Einstein@Home search for radio pulsars and PSR J2007+2722 discovery. Astrophys J 773:91

    Article  ADS  Google Scholar 

  • Alsing J, Berti E, Will CM, and Zaglauer H (2012) Gravitational radiation from compact binary systems in the massive Brans-Dicke theory of gravity. Phys Rev D 85:064041

    Article  ADS  Google Scholar 

  • Antoniadis J, Freire PCC, Wex N, Tauris TM, Lynch RS, van Kerkwijk MH, Kramer M, Bassa C, Dhillon VS et al (2013) A massive pulsar in a compact relativistic binary. Science 340:448

    Article  ADS  Google Scholar 

  • Antoniadis J, van Kerkwijk MH, Koester D, Freire PCC, Wex N (2012) The relativistic pulsar-white dwarf binary PSR J1738+0333 - I. Mass determination and evolutionary history. Mon Not R Astron Soc 423:3316–3327

    Article  ADS  Google Scholar 

  • Barausse E, Palenzuela C, Ponce M, Lehner L (2013) Neutron-star mergers in scalar-tensor theories of gravity. Phys Rev D 87:081506

    Article  ADS  Google Scholar 

  • Barker BM, O’Connell RF (1975) Gravitational two-body problem with arbitrary masses, spins, and quadrupole moments. Phys Rev D 12:329–335

    Article  ADS  Google Scholar 

  • Berti E, Barausse E, Cardoso V, Gualtieri L, Pani P, Sperhake U, Stein LC, Wex N, Yagi K et al (2015) Testing general relativity with present and future astrophysical observations. Class Quantum Grav 32:243001

    Article  ADS  Google Scholar 

  • Bertotti B, Iess L, Tortora P (2003) A test of general relativity using radio links with the Cassini spacecraft. Nature 425:374–376

    Article  ADS  Google Scholar 

  • Bhat NDR, Bailes M, Verbiest JPW (2008) Gravitational-radiation losses from the pulsar white-dwarf binary PSR J1141–6545. Phys Rev D 77(12):124017

    Article  ADS  Google Scholar 

  • Breton RP, Kaspi VM, Kramer M, McLaughlin MA, Lyutikov M, Ransom SM (2008) Relativistic spin precession in the double pulsar. Science 321:104–107

    Article  ADS  Google Scholar 

  • Burgay M, D’Amico N, Possenti A, Manchester RN, Lyne AG, Joshi BC, McLaughlin MA, Kramer M, Sarkissian JM et al (2003) An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system. Nature 426:531–533

    Article  ADS  Google Scholar 

  • Chrusciel PT, Costa JL, Heusler M (2012) Stationary black holes: uniqueness and beyond. Living Rev Relativ 15:7. (cited on 31-Oct-2015). http://www.livingreviews.org/lrr-2012-7

  • Damour T (1988) Strong-field tests of general relativity and the binary pulsar. In: Coley A, Dyer C, Tupper T (eds) Proceedings of the 2nd Canadian conference on general relativity and relativistic astrophysics, Singapore, pp 315–334

    Google Scholar 

  • Damour T, Deruelle N (1986) General relativistic celestial mechanics of binary systems. II. The post-Newtonian timing formula. Ann Inst Henri Poincaré Phys Théor 44:263–292

    MathSciNet  MATH  Google Scholar 

  • Damour T, Esposito-Farèse G (1993) Nonperturbative strong-field effects in tensor-scalar theories of gravitation. Phys Rev Lett 70:2220–2223

    Article  ADS  Google Scholar 

  • Damour T, Esposito-Farèse G (1996) Tensor-scalar gravity and binary-pulsar experiments. Phys Rev D 54:1474–1491

    Article  ADS  Google Scholar 

  • Damour T, Esposito-Farèse G (1998) Gravitational-wave versus binary-pulsar tests of strong-field gravity. Phys Rev D 58:042001

    Article  ADS  Google Scholar 

  • Damour T, Ruffini R (1974) Certain new verifications of general relativity made possible by the discovery of a pulsar belonging to a binary system. Academie des Sciences (Paris), Comptes Rendus, Serie A – Sciences Mathematiques 279:971–973

    ADS  Google Scholar 

  • Damour T, Schäfer G (1988) Higher order relativistic periastron advances in binary pulsars. Nuovo Cimento B 101:127

    Article  ADS  Google Scholar 

  • Damour T, Taylor JH (1991) On the orbital period change of the binary pulsar PSR 1913+16. Astrophys J 366:501–511

    Article  ADS  Google Scholar 

  • Damour T, Taylor JH (1992) Strong-field tests of relativistic gravity and binary pulsars. Phys Rev D 45:1840–1868

    Article  ADS  Google Scholar 

  • Deller AT, Bailes M, Tingay SJ (2009) Implications of a VLBI distance to the double pulsar J0737–3039A/B. Science 323:1327–1329

    Article  ADS  Google Scholar 

  • Detweiler S (1979) Pulsar timing measurements and the search for gravitational waves. Astrophys J 234:1100–1104

    Article  ADS  Google Scholar 

  • Dyson FW, Eddington AS, Davidson C (1920) A determination of the deflection of light by the Sun’s gravitational field, from observations made at the total eclipse of May 29, 1919. R Soc Lond Philos Trans Ser A 220:291–333

    Article  ADS  Google Scholar 

  • Eatough RP, Falcke H, Karuppusamy R, Lee KJ, Champion DJ, Keane EF, Desvignes G, Schnitzeler DHFM, Spitler LG et al (2013) A strong magnetic field around the supermassive black hole at the centre of the Galaxy. Nature 501:391–394

    Article  ADS  Google Scholar 

  • Einstein A (1915) Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin), pp 831–839

    Google Scholar 

  • Einstein A (1915) Die Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin), pp 844–847

    Google Scholar 

  • Estabrook FB, Wahlquist HD (1975) Response of Doppler spacecraft tracking to gravitational radiation. Gen Relativ Gravitation 6:439–447

    Article  ADS  Google Scholar 

  • Fonseca E, Stairs IH, Thorsett SE (2014) A comprehensive study of relativistic gravity using PSR B1534+12. Astrophys J 787:82

    Article  ADS  Google Scholar 

  • Freire PCC, Kramer M, Wex N (2012) Tests of the universality of free fall for strongly self-gravitating bodies with radio pulsars. Class Quantum Grav 29:184007

    Article  ADS  MATH  Google Scholar 

  • Freire PCC, Wex N, Esposito-Farèse G, Verbiest JPW, Bailes M, Jacoby BA (2012) The relativistic pulsar-white dwarf binary PSR J1738+0333 - II. The most stringent test of scalar-tensor gravity. Mon Not R Astron Soc 423:3328–3343

    Article  ADS  Google Scholar 

  • Hewish A, Bell SJ, Pilkington JDH, Scott PF (1968) Observation of a rapidly pulsating radio source. Nature 217:709–713

    Article  ADS  Google Scholar 

  • Hobbs G, Archibald A, Arzoumanian Z, Backer D, Bailes M, Bhat NDR, Burgay M, Burke-Spolaor S, Champion D et al (2010) The international pulsar timing array project: using pulsars as a gravitational wave detector. Class Quantum Grav 27:084013

    Article  ADS  Google Scholar 

  • Hobbs G, Coles W, Manchester RN, Keith MJ, Shannon RM, Chen D, Bailes M, Bhat NDR, Burke-Spolaor S et al (2012) Development of a pulsar-based time-scale. Mon Not R Astron Soc 427:2780–2787

    Article  ADS  Google Scholar 

  • Hulse RA, Taylor JH (1975) Discovery of a pulsar in a binary system. Astrophys J 195:L51–L53

    Article  ADS  Google Scholar 

  • Jacoby BA, Cameron PB, Jenet FA, Anderson SB (2006) Measurement of orbital decay in the double neutron star binary PSR B2127+11C. Astrophys J 644:L113–L116

    Article  ADS  Google Scholar 

  • Jenet FA, Lommen A, Larson SL (2004) Constraining the properties of supermassive black hole systems using pulsar timing: application to 3C 66B. Astrophys J 606:799–803

    Article  ADS  Google Scholar 

  • Keane EF, Bhattacharyya B, Kramer M, Stappers BW, Bates SD, Burgay M, Chatterjee S, Champion DJ, Eatough RP et al (2015) A cosmic census of radio pulsars with the SKA. In: Proceedings of advancing astrophysics with the square kilometre array (AASKA14). 9–13 June, 2014. eprint arXiv:1501.00056

    Google Scholar 

  • Kramer M (1998) Determination of the geometry of the PSR B1913+16 system by geodetic precession. Astrophys J 509:856–860

    Article  ADS  Google Scholar 

  • Kramer M (2012) Probing gravitation with pulsars. Proc Int Astron Union 8:19–26

    Article  Google Scholar 

  • Kramer M, Stairs IH (2008) The double pulsar. Annu Rev Astron Astrophy 46:541–572

    Article  ADS  Google Scholar 

  • Kramer M, Stairs IH, Manchester RN, McLaughlin MA, Lyne AG, Ferdman RD, Burgay M, Lorimer DR, Possenti A et al (2006) Tests of general relativity from timing the double pulsar. Science 314:97–102

    Article  ADS  Google Scholar 

  • Kramer M, Wex N (2009) TOPICAL REVIEW: The double pulsar system: a unique laboratory for gravity. Class Quantum Grav 26:073001

    Article  ADS  MATH  Google Scholar 

  • Lambert SB, Le Poncin-Lafitte C (2011) Improved determination of γ by VLBI. Astron Astrophys 529:A70

    Article  ADS  Google Scholar 

  • Lattimer JM, Schutz BF (2005) Constraining the equation of state with moment of inertia measurements Astron Astrophys 629:979–984

    Google Scholar 

  • Lee KJ, Jenet FA, Price RH (2008) Pulsar timing as a probe of non-einsteinian polarizations of gravitational waves. Astrophys J 685:1304–1319

    Article  ADS  Google Scholar 

  • Lee KJ, Jenet FA, Price RH, Wex N (2010) Detecting massive gravitons using pulsar timing arrays. Astrophys J 722:1589–1597

    Article  ADS  Google Scholar 

  • Liu K, Eatough RP, Wex N (2014) Pulsar-black hole binaries: prospects for new gravity tests with future radio telescopes. Mon Not R Astron Soc 445:3115–3132

    Article  ADS  Google Scholar 

  • Liu K, Wex N, Kramer M, Cordes JM (2012) Prospects for probing the spacetime of Sgr A* with pulsars. Astrophys J 747:1

    Article  ADS  Google Scholar 

  • Lorimer DR, Kramer M (2004) Handbook of pulsar astronomy. Cambridge University Press, Cambridge

    Google Scholar 

  • Lynch RS, Boyles J, Ransom SM, Stairs IH, Lorimer DR, McLaughlin MA, Hessels JWT, Kaspi VM, Kondratiev VI et al (2013) The green bank telescope 350 MHz drift-scan survey II: data analysis and the timing of 10 new pulsars, including a relativistic binary. Astrophys J 763:81

    Article  ADS  Google Scholar 

  • Lyne AG, Burgay M, Kramer M, Possenti A, Manchester RN, Camilo F, McLaughlin MA, Lorimer DR, D’Amico N et al (2004) A double-pulsar system: a rare laboratory for relativistic gravity and plasma physics. Science 303:1153–1157

    Article  ADS  Google Scholar 

  • Manchester RN (2015) Pulsars and gravity. Int J Mod Phys D 24:1530018

    Article  ADS  Google Scholar 

  • Manchester RN, Hobbs GB, Teoh A (2005) The Australia telescope national facility pulsar catalogue. Astrophys J 129:1993–2006. http://www.atnf.csiro.au/research/pulsar/psrcat/.

    ADS  Google Scholar 

  • Matthews AM, Nice DJ, Fonseca E, Arzoumanian Z, Crowter K, Demorest PB, Dolch T, Ellis JA, Ferdman RD et al (2015) The NANOGrav nine-year data set: astrometric measurements of 37 millisecond pulsars. eprint arXiv:1509.08982

    Google Scholar 

  • Müther H, Prakash M, Ainsworth TL (1987) The nuclear symmetry energy in relativistic Brueckner-Hartree-Fock calculations. Phys Lett B 199:469–474

    Article  ADS  Google Scholar 

  • Nan R, Li D, Jin C, Wang Q, Zhu L, Zhu W (2011) The five-hundred-meter aperture spherical radio telescope (FAST) project. Int J Mod Phys D 20:989–1024

    Article  ADS  Google Scholar 

  • Perera BBP, McLaughlin MA, Kramer M, Stairs IH, Ferdman RD, Freire PCC, Possenti A, Breton RP, Manchester RN et al (2010) The evolution of PSR J0737–3039B and a model for relativistic spin precession. Astrophys J 721:1193–1205

    Article  ADS  Google Scholar 

  • Perryman MAC, de Boer KS, Gilmore G, Høg E, Lattanzi MG, Lindegren L (2001) GAIA: Composition, formation and evolution of the Galaxy. Astron Astrophys 369:339–363

    Article  ADS  Google Scholar 

  • Phinney ES (1992) Pulsars as probes of Newtonian dynamical systems. R Soc Lond Philos Trans Ser A 341:39–75

    Article  ADS  Google Scholar 

  • Psaltis D, Wex N, Kramer M (2016) A quantitative test of the No-Hair theorem with Sgr A* using stars, pulsars, and the event horizon telescope. Astrophys J 818:121

    Article  ADS  Google Scholar 

  • Ransom SM, Stairs IH, Archibald AM, Hessels JWT, Kaplan DL, van Kerkwijk MH, Boyles J, Deller AT, Chatterjee S et al (2014) A millisecond pulsar in a stellar triple system. Nature 505:520–524

    Article  ADS  Google Scholar 

  • Sesana A, Vecchio A, Colacino CN (2008) The stochastic gravitational-wave background from massive black hole binary systems: implications for observations with Pulsar Timing Arrays. Mon Not R Astron Soc 390:192–209

    Article  ADS  Google Scholar 

  • Shapiro II (1964) Fourth test of general relativity. Phys Rev Lett 13:789–791

    Article  ADS  MathSciNet  Google Scholar 

  • Shibata M, Taniguchi K, Okawa H, Buonanno A (2014) Coalescence of binary neutron stars in a scalar-tensor theory of gravity. Phys Rev D 89:084005

    Article  ADS  Google Scholar 

  • Smits R, Kramer M, Stappers B, Lorimer DR (2009) Pulsar searches and timing with the square kilometre array. Astron Astrophys 493:1161–1170

    Article  ADS  Google Scholar 

  • Stairs IH, Thorsett SE, Arzoumanian Z (2004) Measurement of gravitational spin-orbit coupling in a binary-pulsar system. Phys Rev Lett 93:141101

    Article  ADS  Google Scholar 

  • Taylor AR (2012) The square kilometre array. Proc Int Astron Union 8:337–341

    Article  Google Scholar 

  • Taylor JH, Fowler LA, McCulloch PM (1979) Measurements of general relativistic effects in the binary pulsar PSR 1913+16. Nature 277:437–440

    Article  ADS  Google Scholar 

  • Taylor JH, Hulse RA, Fowler LA, Gullahorn GE (1976) Further observations of the binary pulsar PSR 1913+16. Astrophys J 206:L53–L58

    Article  ADS  Google Scholar 

  • Verbiest JPW, Bailes M, Coles WA, Hobbs GB, van Straten W, Champion DJ, Jenet FA, Manchester RN, Bhat NDR et al Timing stability of millisecond pulsars and prospects for gravitational-wave detection. Mon Not R Astron Soc 400:951–968

    Google Scholar 

  • Verbiest JPW, Bailes M, van Straten W, Hobbs GB, Edwards RT, Manchester RN (2008) Precision timing of PSR J0437–4715: an accurate pulsar distance, a high pulsar mass, and a Limit on the variation of Newton’s gravitational constant. Astrophys J 679:675–680

    Article  ADS  Google Scholar 

  • Weinreb S, Bardin J, Mani H (2009) Matched wideband low-noise amplifiers for radio astronomy. Rev Sci Instrum 80:044702

    Article  ADS  Google Scholar 

  • Weisberg JM, Nice DJ, Taylor JH (2010) Timing measurements of the relativistic binary pulsar PSR B1913+16. Astrophys J 722:1030–1034

    Article  ADS  Google Scholar 

  • Weisberg JM Taylor JH (2002) General relativistic geodetic spin precession in binary pulsar B1913+16: mapping the emission beam in two dimensions. Astrophys J 576:942–949

    Article  ADS  Google Scholar 

  • Wex N (2014) Testing relativistic gravity with radio pulsars. In: Kopeikin S (ed) Frontiers in relativistic celestial mechanics: applications and experiments. De Gruyter Studies in Mathematical Physics, vol 22, eprint arXiv:1402.5594

    Google Scholar 

  • Wex N, Kalogera V, Kramer M (2000) Constraints on supernova kicks from the double neutron star system PSR B1913+16. Astrophys J 528:401–409

    Article  ADS  Google Scholar 

  • Wex N, Kopeikin SM (1999) Frame dragging and other precessional effects in black hole pulsar binaries. Astrophys J 514:388–401

    Article  ADS  Google Scholar 

  • Will CM (1993) Theory and experiment in gravitational physics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Yunes N, Siemens X (2013) Gravitational-wave tests of general relativity with ground-based detectors and pulsar-timing arrays. Living Rev Relativ 16:9. (Cited on 31-Oct-2015). http://www.livingreviews.org/lrr-2013-9

  • Yunes N, Yagi K, Pretorius F (2016) Theoretical physics implications of the binary black-hole merger GW150914. eprint arXiv:1603.08955

    Google Scholar 

  • Zhu WW, Stairs IH, Demorest PB, Nice DJ, Ellis JA, Ransom SM, Arzoumanian Z, Crowter K, Dolch T et al (2015) Testing theories of gravitation using 21-year timing of pulsar binary J1713+0747. Astrophys J 809:41

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Wex .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Wex, N. (2016). Neutron Stars as Probes for General Relativity and Gravitational Waves. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-20794-0_72-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20794-0_72-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-20794-0

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics