Skip to main content

Light Curves of Type I Supernovae

  • Living reference work entry
  • First Online:
Handbook of Supernovae

Abstract

The light curve of Type I supernovae (SNe I), i.e. the explosion of H-deficient stars, is mainly powered by radioactive decay. Despite their different physical origin, thermonuclear explosions of white dwarfs (SNe Ia) and core-collapse explosions of massive stars with H-free envelopes (SNe Ib/c) can be understood in the same framework. The overall morphology of the light curves is similar for all SNe I. The small radius of the progenitor is responsible for the rapid degrading of the shock energy, leading to a fast initial peak that is usually unobserved. Thereafter, the luminosity of the SN and the shape of its light curve are determined by the radioactive energy input (56Ni and56Co are the primary radioactive isotopes that power the light curve) and by the mass of the ejecta and the energy of the explosion. The energy of the explosion sets the expansion velocity which then critically determines the density and opacity of the gas. Physical parameters of the progenitor star and the explosion itself can be estimated from the shape of the light curve or derived more accurately by modeling the evolution of the light curve and the spectra simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Ambwani K, Sutherland P (1988) Gamma-ray spectra and energy deposition for type IA supernovae. ApJ 325:820

    Article  ADS  Google Scholar 

  • Arnett WD (1982) Type I supernovae. I – analytic solutions for the early part of the light curve. ApJ 253:785

    Google Scholar 

  • Bersten MC, Benvenuto O, Hamuy M (2011) Hydrodynamical models of Type II plateau supernovae. ApJ 729:61

    Article  ADS  Google Scholar 

  • Bersten MC, Benvenuto OG, Nomoto K et al (2012) The Type IIb supernova 2011dh from a supergiant progenitor. Astrophys J 757:31

    Article  ADS  Google Scholar 

  • Bodansky D, Clayton DD, Fowler WA (1968) Nuclear quasi-equilibrium during silicon burning. ApJ Supp 16:299

    Article  ADS  Google Scholar 

  • Colgate SA, McKee C (1969) Early supernova luminosity. ApJ 157:623

    Article  ADS  Google Scholar 

  • Colgate SA, White RH (1966) The hydrodynamic behavior of supernovae explosions. ApJ 143:626

    Article  ADS  Google Scholar 

  • Dessart L, Hillier DJ, Livne E et al (2011) Core-collapse explosions of Wolf-Rayet stars and the connection to Type IIb/Ib/Ic supernovae. MNRAS 414:2985

    Article  ADS  Google Scholar 

  • Falk SW, Arnett WD (1977) Radiation dynamics, envelope ejection, and supernova light curves. ApJ Supp 33:515

    Article  ADS  Google Scholar 

  • Grasberg EK, Imshenik VS, Nadyozhin DK (1971) On the theory of the light curves of supernovate. Ap & Space Sci 10:3

    Article  ADS  Google Scholar 

  • Krisciunas K, Li W, Matheson T et al (2011) The most slowly declining Type Ia supernova 2001ay. Astron J 142:74

    Article  ADS  Google Scholar 

  • Lucy LB (1999) Computing radiative equilibria with Monte Carlo techniques. Astron Astrophys 344:282

    ADS  Google Scholar 

  • Lyman JD, Bersier D, James PA et al (2016) Bolometric light curves and explosion parameters of 38. MNRAS 457:328

    Article  ADS  Google Scholar 

  • Mazzali PA, Röpke FK, Benetti S, Hillebrandt W (2007) A common explosion mechanism for Type Ia supernovae. Science 315:825

    Article  ADS  Google Scholar 

  • Mazzali PA, Maurer I, Valenti S, Kotak R, Hunter D (2010) The Type Ic SN 2007gr: a census of the ejecta from late-time optical-infrared spectra. MNRAS 408:87

    Article  ADS  Google Scholar 

  • Mazzali PA, Walker ES, Pian E et al (2013) The very energetic, broad-lined Type Ic supernova 2010ah (PTF10bzf) in the context of GRB/SNe. MNRAS 432:2463

    Article  ADS  Google Scholar 

  • Phillips MM (1993) The absolute magnitudes of Type IA supernovae. MNRAS 413:L105

    ADS  Google Scholar 

  • Swartz DA, Sutherland PG, Harkness RP (1995) Gamma ray transfer and energy deposition in supernovae. ApJ 446:766

    Article  ADS  Google Scholar 

  • Truran JW, Arnett WD, Cameron AGW (1967) Nucleosynthesis in supernova shock waves. Can J Phys 45:2315

    Article  ADS  Google Scholar 

  • Weaver TA (1976) The structure of supernova shock waves. ApJ Suppl 32:233

    Article  ADS  Google Scholar 

  • Woosley SE, Weaver TA (1986) The physics of supernova explosions. ARA&A 24:205

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melina C. Bersten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Bersten, M.C., Mazzali, P.A. (2017). Light Curves of Type I Supernovae. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-20794-0_25-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20794-0_25-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20794-0

  • Online ISBN: 978-3-319-20794-0

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics