Skip to main content

Supernovae and the Formation of Planetary Systems

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Supernovae
  • 223 Accesses

Abstract

Immediately after the discovery in 1976 of strong evidence for live “Aluminum-26 (26Al)” during the formation of certain portions of the Allende meteorite, the suggestion was made that this short-lived radioisotope may have been synthesized in a core-collapse (type II) supernova, transported across the interstellar medium by a supernova remnant, and injected into a dense molecular cloud core, which then collapsed as a result of the impact of the supernova remnant shock wave and subsequently formed our solar system. This theoretical hypothesis has been investigated in the intervening years with increasingly detailed hydrodynamical models of the interaction of supernova shock waves with target cloud cores, and it remains as a viable explanation for the source of the26Al and various other short-lived radioisotopes discovered since 1976 in samples of the most primitive, unprocessed meteorites. While the formation processes of exoplanetary systems are much harder to decipher, based on our extremely limited information about their constituent planets and small bodies, much less their isotopic compositions, the supernova triggering and injection scenario is an attractive means for explaining the initiation of the formation of our own planetary system, and hence might be expected to be a formation mechanism for some currently uncertain fraction of the exoplanetary systems that we now know are common in our galaxy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adams FC, Fatuzzo M, Holden L (2014) Distributions of short-lived radioactive nuclei produced by young embedded star clusters. Astrophys J 789:86–104

    Article  ADS  Google Scholar 

  • Balazs LG, Abraham P, Kun M, Keleman J, Toth LV (2004) Star count analysis of the interstellar matter in the region of L1251. Astron Astrophys 425:133–141

    Article  ADS  Google Scholar 

  • Blair WP, Sankrit R, Raymond JC, Long KS (1999) Distance to the cygnus loop from Hubble Space Telescope imaging of the primary shock front. Astrophys J 118:942–947

    ADS  Google Scholar 

  • Boss AP (1995) Collapse and fragmentation of molecular cloud cores. II. Collapse induced by stellar shock waves. Astrophy J 439: 224–236

    Article  ADS  Google Scholar 

  • Boss AP (2011) Mixing and transport of isotopic heterogeneity in the early solar system. Ann Rev Earth Planet Sci 40:23–43

    Article  ADS  Google Scholar 

  • Boss AP, Foster PN (1998) Injection of short-lived isotopes into the presolar cloud. Astrophys J Lett 494:L103–L106

    Article  ADS  Google Scholar 

  • Boss AP, Keiser SA (2010) Who pulled the trigger: a Supernova or an asymptotic giant branch star? Astrophys J 717:L1–L5

    Article  ADS  Google Scholar 

  • Boss AP, Keiser SA (2012) Supernova-triggered molecular cloud core collapse and the Rayleigh-Taylor fingers that polluted the solar nebula. Astrophys J Lett 756:L9-L15

    Article  ADS  Google Scholar 

  • Boss AP, Keiser SA (2013) Triggering collapse of the presolar dense cloud core and injecting short-lived radioisotopes with a shock wave. II. Varied shock wave and cloud core parameters. Astrophys J 770:51–62

    Article  ADS  Google Scholar 

  • Boss AP, Keiser SA (2014) Triggering collapse of the presolar dense cloud core and injecting short-lived radioisotopes with a shock wave. III. Rotating three dimensional cloud cores. Astrophys J 788:20–29

    Article  ADS  Google Scholar 

  • Boss AP, Keiser SA (2015) Triggering collapse of the presolar dense cloud core and injecting short-lived radioisotopes with a shock wave. IV. Effects of rotational axis orientation. Astrophys J 809:103–114

    Article  ADS  Google Scholar 

  • Boss AP, Ipatov SI, Keiser SA, Myhill EA, Vanhala HAT (2008) Simultaneous triggered collapse of the presolar dense cloud core and injection of short-lived radioisotopes by a supernova shock wave. Astrophys J 686:L119–L122

    Article  ADS  Google Scholar 

  • Boss AP, Keiser SA, Ipatov SI, Myhill EA, Vanhala HAT (2010) Triggering collapse of the presolar dense cloud core and injecting short-lived radioisotopes with a shock wave. I. Varied shock speeds. Astrophys J 708:1268–1280

    Article  ADS  Google Scholar 

  • Bouvier A, Wadhwa M (2010) The age of the Solar System redefined by the oldest Pb-Pb age of a meteoritic inclusion. Nat Geo Sci 3:637–641

    Article  ADS  Google Scholar 

  • Cameron AGW, Truran JW (1977) The supernova trigger for the formation of the solar system. Icarus 30:447–461

    Article  ADS  Google Scholar 

  • Desch SJ, Morris MA, Connolly HC, Boss AP (2010) A critical examiniation of the X-wind model for chondrule and Calcium-Rich, Aluminum-Rich inclusion formation and radionuclide production. Astrophys J 725:692–711

    Article  ADS  Google Scholar 

  • Foster PN, Boss AP (1996) Triggering star formation with stellar ejecta. Astrophys J 468:784–796

    Article  ADS  Google Scholar 

  • Foster PN, Boss AP (1997) Injection of radioactive nuclides from the stellar source that triggered the collapse of the presolar nebula. Astrophys J 489:346–357

    Article  ADS  Google Scholar 

  • Gaidos E, Krot AN, Williams JP, Raymond SN (2009)26Al and the formation of the Solar System from a molecular cloud contaminated by Wolf-Rayet winds. Astrophys J 696:1854–1863

    Google Scholar 

  • Gounelle M, Meynet G (2012) Solar system genealogy revealed by extinct short-lived radionuclides in meteorites. Astron Astrophys 545:A4–A13

    Article  ADS  Google Scholar 

  • Gritschneder M, Lin DNC, Murray SD, Yin Q-Z, Gong M-N (2012) The supernova triggered formation and enrichment of our solar system. Astrophys J 745:22–34

    Article  ADS  Google Scholar 

  • Herbst W, Assousa GE (1977) Observational evidence for supernova-induced star formation: Canis Major R1. Astrophys J 217:473–487

    Article  ADS  Google Scholar 

  • Huss GR, Meyer BS, Srinivasan G, Goswami JN, Sahijpal S (2009) Stellar sources of the short-lived radionuclides in the early solar system. Geochim Cosmochim Acta 73:4922–4945

    Article  ADS  Google Scholar 

  • Krot AN, Makide K, Nagashima K, Huss GR, Ogliore, RC, Ciesla FJ, Yang L, Hellebrand E, Gaidos E (2012) Heterogeneous distribution of26Al at the birth of the solar system: evidence from refractory grains and inclusions. Meteoritics Planet Sci 47:1948–1979

    Article  ADS  Google Scholar 

  • Lee T, Papanastassiou DA, Wasserburg GJ (1976) Demonstration of26Mg excess in Allende and evidence for26Al. Geophys Res Lett 3:109–112

    Article  ADS  Google Scholar 

  • Li S, Frank A, Blackman EG (2014) Triggered star formation and its consequences. Mon Not Roy Astron Soc 444:2884–2892

    Article  ADS  Google Scholar 

  • Limongi M, Chieffi A (2006) The nucleosynthesis of26Al and60Fe in solar metallicity stars extending in mass from 11 to \(120\,\mathrm{M}_{\odot }\): the hydrostatic and explosive contributions. Astrophys J 647:483–500

    Article  ADS  Google Scholar 

  • Liu M-C, Chaussidon M, Srinivasan G, McKeegan KD (2012) A lower initial abundance of short-lived41Ca in the early Solar System and its implications for solar system formation. Astrophys J 761:137–144

    Article  ADS  Google Scholar 

  • MacPherson GJ, Davis AM, Zinner EK (1995) The distribution of aluminum-26 in the early Solar System – a reappraisal. Meteoritics 30:365–386

    Article  ADS  Google Scholar 

  • Mishra RK, Chaussidon M (2014) Fossil records of high level of60Fe in chondrules from unequilibrated chondrites. Earth Planet Sci Lett 398:90–100

    Article  ADS  Google Scholar 

  • Mishra RK, Goswami JN (2014) Fe-Ni and Al-Mg isotope records for UOC chondrules: plausible stellar source of60Fe and other short-lived nuclides in the early solar system. Geochim Cosmochim Acta 132:440–457

    Article  ADS  Google Scholar 

  • Ouellette N, Desch SJ, Hester JJ (2007) Interaction of supernova ejecta with nearby proto-planetary disks. Astrophys J 662:1268–1281

    Article  ADS  Google Scholar 

  • Ouellette N, Desch SJ, Hester JJ (2010) Injection of supernova dust in nearby protoplanetary disks. Astrophys J 711:597–612

    Article  ADS  Google Scholar 

  • Pan L, Desch SJ, Scannapieco E, Timmes FX (2012) Mixing of clumpy supernova ejecta into molecular clouds. Astrophys J 756:102–123

    Article  ADS  Google Scholar 

  • Reach WT, Rho J, Jarrett TH (2005) Shocked molecular gas in the supernova remnants W28 and W44: near-infrared and millimeter-wave observations. Astrophys J 618:297–320

    Article  ADS  Google Scholar 

  • Sahijpal S, Goswami JN (1998) Refractory phases in primitive meteorites devoid of26Al and41Ca: representative samples of first solar system solids? Astrophys J 509:L137–L140

    Article  ADS  Google Scholar 

  • Sashida T, Oka T, Tanaka K, Aono K, Matsumura S, Nagai M, Seta M (2013) Kinematics of shocked molecular gas adjacent to the supernova remnant W-44. Astrophys J 774:10–17

    Article  ADS  Google Scholar 

  • Shu FH, Shang H, Glassgold AE, Lee T (1997) X-rays and fluctuating X-winds from proto-stars. Science 277:1475–1479

    Article  ADS  Google Scholar 

  • Tachibana S, Huss GR, Kita NT, Shimoda G, Morishita Y. (2006)60Fe in chondrites: debris from a nearby supernova in the early solar system? Astrophys J 639:L87–L90

    Google Scholar 

  • Tang H, Dauphas N (2012) Abundance, distribution, and origin of60Fe in the solar protoplanetary disk. Earth Planet Sci Lett 359–360:248–263

    Article  Google Scholar 

  • Tatischeff V, Duprat J, De Sereville N (2010) A runaway Wolf-Rayet star as the origin of26Al in the early solar system. Astrophy J 714:L26–L30

    Article  ADS  Google Scholar 

  • Tatischeff V, Duprat J, De Sereville N (2014) Light-element nucleosynthesis in a molecular cloud interacting with a supernova remnant and the origin of Beryllium-10 in the protosolar nebula. Astrophy J 796:124–144

    Article  ADS  Google Scholar 

  • Tur C, Heger A, Austin SM (2010) Production of26Al,44Ti, and60Fe in core-collapse supernovae: sensitivity to the rates of the triple alpha and \(^{12}\mathrm{C}(\alpha,\gamma )^{16}\mathrm{O}\) reactions. Astrophys J 718:357–367

    Article  ADS  Google Scholar 

  • Vanhala HAT, Boss AP (2000) Injection of radioactivities into the presolar cloud: convergence testing. Astrophys J 538:911–921

    Article  ADS  Google Scholar 

  • Vanhala HAT, Boss AP (2002) Injection of radioactivities into the forming Solar System. Astrophys J 575:1144–1150

    Article  ADS  Google Scholar 

  • Vanhala HAT, Cameron AGW (1998) Numerical simulations of triggered star formation. I. collapse of dense molecular cloud cores. Astrophys J 508:291–307

    Article  ADS  Google Scholar 

  • Young ED, Simon JI, Galy A, Russell SS, Tonui E, Lovera O (2005) Supra-canonical \(^{26}\mathrm{Al}/^{27}\mathrm{Al}\) and the residence time of CAIs in the solar protoplanetary disk. Science 308:223–227

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Boss, A.P. (2017). Supernovae and the Formation of Planetary Systems. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-20794-0_21-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20794-0_21-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20794-0

  • Online ISBN: 978-3-319-20794-0

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Supernovae and the Formation of Planetary Systems
    Published:
    23 February 2017

    DOI: https://doi.org/10.1007/978-3-319-20794-0_21-3

  2. Supernovae and the Formation of Planetary Systems
    Published:
    29 December 2016

    DOI: https://doi.org/10.1007/978-3-319-20794-0_21-2

  3. Original

    Supernovae and the Formation of Planetary Systems
    Published:
    13 September 2016

    DOI: https://doi.org/10.1007/978-3-319-20794-0_21-1