Skip to main content

The Effects of Supernovae on the Dynamical Evolution of Binary Stars and Star Clusters

Handbook of Supernovae

Abstract

In this chapter I review the effects of supernovae explosions on the dynamical evolution of (1) binary stars and (2) star clusters.

  1. (1)

    Supernovae in binaries can drastically alter the orbit of the system, sometimes disrupting it entirely, and are thought to be partially responsible for “runaway” massive stars – stars in the Galaxy with large peculiar velocities. The ejection of the lower-mass secondary component of a binary occurs often in the event of the more massive primary star exploding as a supernova. The orbital properties of binaries that contain massive stars mean that the observed velocities of runaway stars (10s–100s km s−1) are consistent with this scenario.

  2. (2)

    Star formation is an inherently inefficient process, and much of the potential in young star clusters remains in the form of gas. Supernovae can in principle expel this gas, which would drastically alter the dynamics of the cluster by unbinding the stars from the potential. However, recent numerical simulations, and observational evidence that gas-free clusters are observed to be bound, suggest that the effects of supernova explosions on the dynamics of star clusters are likely to be minimal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allison RJ, Goodwin SP (2011) On the formation of trapezium-like systems. MNRAS 415:1967

    Article  ADS  Google Scholar 

  • Bastian N, Goodwin SP (2006) Evidence for the strong effect of gas removal on the internal dynamics of young stellar clusters. MNRAS 369:L9

    Article  ADS  Google Scholar 

  • Bastian N, Covey KR, Meyer MR (2010) A Universal Stellar Initial Mass Function? A Critical Look at Variations. ARA&A 48:339

    Article  ADS  Google Scholar 

  • Baumgardt H, Kroupa P (2007) A comprehensive set of simulations studying the influence of gas expulsion on star cluster evolution. MNRAS 380:1589. doi:10.1111/j.1365-2966.2007.12209.x

    Article  ADS  Google Scholar 

  • Blaauw A (1961) On the origin of the O- and B-type stars with high velocities (the ”run-away” stars), and some related problems. BAIN 15:265

    Google Scholar 

  • Blaauw A (1964) The O Associations in the Solar Neighborhood. ARA&A 2:213. doi:10.1146/annurev.aa.02.090164.001241

    Article  ADS  Google Scholar 

  • Boersma J (1961) Mathematical theory of the two-body problem with one of the masses decreasing with time. BAIN 15:291

    MathSciNet  Google Scholar 

  • Cartwright A, Whitworth AP (2004) The statistical analysis of star clusters. MNRAS 348:589

    Article  ADS  Google Scholar 

  • Cottaar M, Meyer MR, Parker RJ (2012) Characterizing a cluster’s dynamic state using a single epoch of radial velocities. A&A 547:A35. doi:10.1051/0004-6361/201219673

    Article  ADS  Google Scholar 

  • Dale JE, Ercolano B, Bonnell IA (2012) Ionizing feedback from massive stars in massive clusters - II. Disruption of bound clusters by photoionization. MNRAS 424:377. doi:10.1111/j.1365-2966.2012.21205.x

    Google Scholar 

  • Efremov YN (1995) Star Complexes and Associations: Fundamental and Elementary Cells of Star Formation. AJ 110:2757. doi10.1086/117728

    Google Scholar 

  • Elmegreen BG (2006) On the Similarity between Cluster and Galactic Stellar Initial Mass Functions. ApJ 648:572

    Article  ADS  Google Scholar 

  • Elmegreen BG, Elmegreen DM (2001) Fractal Structure in Galactic Star Fields. AJ 121:1507

    Article  ADS  Google Scholar 

  • Gieles M, Sana H, Portegies Zwart SF (2010) On the velocity dispersion of young star clusters: super-virial or binaries?. MNRAS 402:1750. doi:10.1111/j.1365-2966.2009.15993.x

    Article  ADS  Google Scholar 

  • Goodwin SP, Bastian N (2006) Gas expulsion and the destruction of massive young clusters. MNRAS 373:752

    Article  ADS  Google Scholar 

  • Goodwin SP, Kroupa P, Goodman A, Burkert A (2007) The Fragmentation of Cores and the Initial Binary Population. In: Reipurth B, Jewitt D, Keil K (eds) Protostars and planets V. University of Arizona Press/Lunar and Planetary Institute, Tucson/Houston, pp 133–147

    Google Scholar 

  • Hills JG (1980) The effect of mass loss on the dynamical evolution of a stellar system - Analytic approximations. ApJ 235:986

    Article  ADS  Google Scholar 

  • Horton AJ, Bate MR, Bonnell IA (2001) Binary formation in stellar clusters. MNRAS 321:585. doi:10.1046/j.1365-8711.2001.04071.x

    Article  ADS  Google Scholar 

  • Huang SS (1956) A dynamical problem in binary systems and its bearing on stellar evolution. AJ 61:49. doi:10.1086/107290

    Article  ADS  Google Scholar 

  • King RR, Parker RJ, Patience J, Goodwin SP (2012) Testing the universality of star formation - I. Multiplicity in nearby star-forming regions. MNRAS 421:2025

    Google Scholar 

  • Kroupa P (1995) Inverse dynamical population synthesis and star formation. MNRAS 277:1491

    Article  ADS  Google Scholar 

  • Kroupa P, Aarseth A, Hurley J (2001) The formation of a bound star cluster: from the Orion nebula cluster to the Pleiades. MNRAS 321:699

    Article  ADS  Google Scholar 

  • Kruijssen JMD (2012) On the fraction of star formation occurring in bound stellar clusters. MNRAS 426:3008

    Article  ADS  Google Scholar 

  • Kruijssen JMD, Maschberger T, Moeckel N, Clarke CJ, Bastian N, Bonnell IA (2012) The dynamical state of stellar structure in star-forming regions. MNRAS 419:841

    Article  ADS  Google Scholar 

  • Krumholz MR, Matzner CD, McKee CF (2006) The Global Evolution of Giant Molecular Clouds. I. Model Formulation and Quasi-Equilibrium Behavior. ApJ 653:361. doi:10.1086/508679

    Google Scholar 

  • Lada CJ, Lada EA (2003) Embedded Clusters in Molecular Clouds. ARA&A 41:57

    Article  ADS  Google Scholar 

  • Lada CJ, Margulis M, Dearborn D (1984) The formation and early dynamical evolution of bound stellar systems. ApJ 285:141

    Article  ADS  Google Scholar 

  • Leonard PJT, Duncan MJ (1990) Runaway stars from young star clusters containing initial binaries. II - A mass spectrum and a binary energy spectrum. AJ 99:608. doi:10.1086/115354

    Google Scholar 

  • Mason BD, Hartkopf WI, Gies DR, Henry TJ Helsel JW (2009) The High Angular Resolution Multiplicity of Massive Stars. AJ 137:3358

    Article  ADS  Google Scholar 

  • Matzner CD (2002) On the Role of Massive Stars in the Support and Destruction of Giant Molecular Clouds. ApJ 566:302. doi:10.1086/338030

    Article  ADS  Google Scholar 

  • Meynet G, Maeder A (2003) Stellar evolution with rotation. X. Wolf-Rayet star populations at solar metallicity. A&A 404:975. doi:10.1051/0004-6361:20030512

    Google Scholar 

  • Moeckel N, Bate MR (2010) On the evolution of a star cluster and its multiple stellar systems following gas dispersal. MNRAS 404:721

    Article  ADS  Google Scholar 

  • Oh S, Kroupa P, Pflamm-Altenburg J (2015) Dependency of Dynamical Ejections of O Stars on the Masses of Very Young Star Clusters. ApJ 805:92. doi:10.1088/0004-637X/805/2/92

    Article  ADS  Google Scholar 

  • Olczak C, Pfalzner S, Eckart A (2008) Encounters in the ONC - observing imprints of star-disc interactions. A&A 488:191

    Article  ADS  Google Scholar 

  • Öpik E (1924) Statistical Studies of Double Stars: On the Distribution of Relative Luminosities and Distances of Double Stars in the Harvard Revised Photometry North of Declination -31​. Tartu Obs Publ 25:6

    Google Scholar 

  • Parker RJ (2014) Dynamics versus structure: breaking the density degeneracy in star formation. MNRAS 445:4037

    Article  ADS  Google Scholar 

  • Pellerin A, Meyer M, Harris J, Calzetti D (2007) Stellar Clusters in NGC 1313: Evidence of Infant Mortality. ApJL 658:L87. doi:10.1086/515437

    Article  ADS  Google Scholar 

  • Portegies Zwart SF (2000) The Characteristics of High-Velocity O and B Stars Which Are Ejected from Supernovae in Binary Systems. ApJ 544:437. doi:10.1086/317190

    Article  ADS  Google Scholar 

  • Raghavan D, McMaster HA, Henry TJ, Latham DW, Marcy GW, Mason BD, Gies DR, White RJ, ten Brummelaar TA (2010) A Survey of Stellar Families: Multiplicity of Solar-type Stars. ApJSS 190:1

    Article  ADS  Google Scholar 

  • Reggiani MM, Meyer MR (2011) Binary Formation Mechanisms: Constraints from the Companion Mass Ratio Distribution. ApJ 738:60. doi:10.1088/0004-637X/738/1/60

    Article  ADS  Google Scholar 

  • Salpeter EE (1955) The Luminosity Function and Stellar Evolution. ApJ 121:161

    Article  ADS  Google Scholar 

  • Sana H, de Koter A, de Mink SE, Dunstall PR, Evans CJ et al (2013) The VLT-FLAMES Tarantula Survey. VIII. Multiplicity properties of the O-type star population. A&A 550:A107. doi:10.1051/0004-6361/201219621

    Google Scholar 

  • Tauris TM, Takens RJ (1998) Runaway velocities of stellar components originating from disrupted binaries via asymmetric supernova explosions. A&A 330:1047

    ADS  Google Scholar 

  • Tutukov AV (1978) Early Stages of Dynamical Evolution of Star Cluster Models. A&A 70:57

    ADS  Google Scholar 

  • Wright NJ, Parker RJ, Goodwin SP, Drake JJ (2014) Constraints on massive star formation: Cygnus OB2 was always an association. MNRAS 438:639

    Article  ADS  Google Scholar 

  • Zwicky F (1957) Handbuch der Phys 51:766

    ADS  Google Scholar 

Download references

Acknowledgements

I acknowledge support from the Royal Astronomical Society in the form of a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Parker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Parker, R.J. (2016). The Effects of Supernovae on the Dynamical Evolution of Binary Stars and Star Clusters. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-20794-0_116-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20794-0_116-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-20794-0

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    The Effects of Supernovae on the Dynamical Evolution of Binary Stars and Star Clusters
    Published:
    11 August 2017

    DOI: https://doi.org/10.1007/978-3-319-20794-0_116-2

  2. Original

    The Effects of Supernovae on the Dynamical Evolution of Binary Stars and Star Clusters
    Published:
    17 August 2016

    DOI: https://doi.org/10.1007/978-3-319-20794-0_116-1