Skip to main content

Challenges in Integrating Genetic Control in Plant and Crop Models

  • Chapter
Crop Systems Biology

Abstract

Predicting genotype-to-phenotype relationships under contrasting environments is a great challenge for plant biology and breeding. Classical crop models have been developed to predict crop yield or product quality under fluctuating environments but they are usually calibrated for a single genotype, restricting the validity range of the model itself. To overcome this limitation, genetic control has to be integrated into crop models and genotype × environment interactions have to be made explicit.

The aim of this chapter is to provide an overview of a panel of approaches that have been developed to integrate genetic control in plant and crop models. The fundamentals of quantitative genetics of complex traits are first introduced, with special attention to methods for quantitative trait loci (QTL) cartography and QTL genetic modelling. The integration of genetic control within ecophysiological models is then discussed. Several methods are reviewed, ranging from classical statistical approaches, relying on specific model parameters reflecting gene or QTL effects, to recent multi-scale models, explicitly integrating molecular networks. This chapter proposes a review of a few techniques from systems biology that can be used to describe the behaviour of cellular networks, in a simplified way. Coupling different organizational scales is finally discussed and a few examples of multi-scale plant models are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen D, Libourel I, Shachar-Hill Y (2009) Metabolic flux analysis in plants: coping with complexity. Plant Cell Environ 32:1241–1257. doi:10.1111/j.1365-3040.2009.01992.x

    Article  PubMed  CAS  Google Scholar 

  • Andrade-Sanchez P, Gore MA, Heun JT, Thorp KR, Carmo-Silva AE, French AN, Salvucci ME, White JW (2013) Development and evaluation of a field-based high-throughput phenotyping platform. Funct Plant Biol 41:68–79. doi:10.1071/FP13126

    Article  Google Scholar 

  • Andrivon D, Giorgetti C, Baranger A, Calonnec A, Cartolaro P, Faivre R, Guyader S, Lauri PE, Lescourret F, Parisi L, Ney B, Tivoli B, Sache I (2013) Defining and designing plant architectural ideotypes to control epidemics? Eur J Plant Pathol 135:611–617. doi:10.1007/s10658-012-0126-y

    Article  Google Scholar 

  • Baldazzi V, Ropers D, Markowicz Y, Kahn D, Geiselmann J, de Jong H (2010) The carbon assimilation network in Escherichia coli is densely connected and largely sign-determined by directions of metabolic fluxes. PLoS Comp Biol 6, e1000812

    Article  CAS  Google Scholar 

  • Baldazzi V, Monteiro PT, Page M, Ropers D, Geiselmann J, de Jong H (2011) Qualitative analysis of genetic regulatory networks in bacteria. Understanding the dynamics of biological systems. Springer, Dordrecht

    Google Scholar 

  • Baldazzi V, Bertin N, de Jong H, Génard M (2012) Towards multiscale plant models: integrating cellular networks. Trends Plant Sci 17:728–736. doi:10.1016/j.tplants.2012.06.012

    Article  PubMed  CAS  Google Scholar 

  • Band LR, Ja F, Godin C, Jensen OE, Pridmore T, Bennett MJ, King JR (2012a) Multiscale systems analysis of root growth and development: modeling beyond the network and cellular scales. Plant Cell 24:3892–3906. doi:10.1105/tpc.112.101550

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Band LR, Ubeda-Tomás S, Dyson RJ, Middleton AM, Hodgman TC, Owen MR, Jensen OE, Bennett MJ, King JR (2012b) Growth-induced hormone dilution can explain the dynamics of plant root cell elongation. Proc Natl Acad Sci U S A 109:7577–7582. doi:10.1073/pnas.1113632109

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Barabási A-L, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113. doi:10.1038/nrg1272

    Article  PubMed  CAS  Google Scholar 

  • Beauvoit BP, Colombié S, Monier A, Andrieu MH, Biais B, Bénard C, Chéniclet C, Dieuaide-Noubhani M, Nazaret C, Mazat JP, Gibon Y (2014) Model-assisted analysis of sugar metabolism throughout tomato fruit development reveals enzyme and carrier properties in relation to vacuole expansion. Plant Cell 26(8):3224–3242. doi:10.1105/tpc.114.127761

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Beemster GTS, Vercruysse S, De Veylder L, Kuiper M, Inzé D (2006) The arabidopsis leaf as a model system for investigating the role of cell cycle regulation in organ growth. J Plant Res 119:43–50

    Article  PubMed  Google Scholar 

  • Bermudez L, Urias U, Milstein D, Kamenetzky L, Asis R, Fernie AR, Van Sluys MA, Carrari F, Rossi M (2008) A candidate gene survey of quantitative trait loci affecting chemical composition in tomato fruit. J Exp Bot 59:2875–2890

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bertin N, Martre P, Genard M, Quilot B, Salon C (2010) Under what circumstances can process-based simulation models link genotype to phenotype for complex traits? Case-study of fruit and grain quality traits. J Exp Bot 61:955–967. doi:10.1093/jxb/erp377

    Article  PubMed  CAS  Google Scholar 

  • Blanco A, Pasqualone A, Troccoli A, Di Fonzo N, Simeone R (2002) Detection of grain protein QTLs across environments in tetraploid wheats. Plant Mol Biol 48:615–623

    Article  PubMed  CAS  Google Scholar 

  • Börner A, Worland AJ, Plaschke J, Schumann E, Law CN (1993) Pleiotropic effects of genes for reduced height (rht) and day-length insensitivity (ppd) on yield and its components for wheat grown in middle Europe. Plant Breed 111:204–216

    Article  Google Scholar 

  • Brunel S, Teulat-Merah B, Wagner MH, Huguet T, Prosperi J, Dürr C (2009) Using a model-based framework for analysing genetic diversity during germination and heterotrophic growth of Medicago truncatula. Ann Bot 103:1103–1117. doi:10.1093/aob/mcp040

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Carrera J, Rodrigo G, Jaramillo A, Elena S (2009) Reverse-engineering the Arabidopsis thaliana transcriptional network under changing environmental conditions. Genome Biol 10:R96. doi:10.1186/gb-2009-10-9-r96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Causse M, Duffe P, Gomez MC, Buret M, Damidaux R, Zamir D, Gur A, Chevalier C, Lemaire-Chamley M, Rothan C (2004) A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. J Exp Bot 55:1671–1685

    Article  PubMed  CAS  Google Scholar 

  • Causse M, Chaïb J, Lecomte L, Buret M, Hospital F (2007) Both additivity and epistasis control the genetic variations for fruit quality traits in tomato. Theor Appl Genet 115:429–442

    Article  PubMed  CAS  Google Scholar 

  • Chaïb J, Lecomte L, Buret M, Causse M (2006) Stability over genetic backgrounds, generations and years of quantitative trait locus (QTLs) for organoleptic quality in tomato. Theor Appl Genet 112:934–944

    Article  PubMed  Google Scholar 

  • Chaouiya C (2007) Petri net modelling of biological networks. Brief Bioinform 8:210–219

    Article  PubMed  CAS  Google Scholar 

  • Chaves M, Sontag ED, Albert R (2006) Methods of robustness analysis for Boolean models of gene control networks. IEE P Syst Biol 153:154–167

    Article  CAS  Google Scholar 

  • Covert M, Xiao N, Chen T, Karr J (2008) Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics 24:2044–2050. doi:10.1093/bioinformatics/btn352

    Article  PubMed  CAS  Google Scholar 

  • Curien G, Bastien O, Robert-Genthon M, Cornish-Bowden A, Cárdenas ML, Dumas R (2009) Understanding the regulation of aspartate metabolism using a model based on measured kinetic parameters. Mol Syst Biol 5:271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davidich MI, Bornholdt S (2008) Boolean network model predicts cell cycle sequence of fission yeast. PLoS One 3:e1672. doi:10.1371/journal.pone.0001672

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Jong H (2002) Modeling and simulation of genetic regulatory systems: a literature review. J Comp Biol 9:67–103. doi:10.1089/10665270252833208

    Article  Google Scholar 

  • de Jong H, Geiselmann J, Hernandez C, Page M (2003) Genetic network analyzer: qualitative simulation of genetic regulatory networks. Bioinformatics 19:336–344

    Article  PubMed  CAS  Google Scholar 

  • De Jong H, Geiselmann J, Batt G, Hernandez C, Page M (2004) Qualitative simulation of the initiation of sporulation in Bacillus subtilis. B Math Biol 66:261–299. doi:10.1016/j.bulm.2003.08.009

    Article  CAS  Google Scholar 

  • Dudley JW, Clark D, Rocheford TR, LeDeaux JR (2007) Genetic analysis of corn kernel chemical composition in the random mated 7 generation of the cross of generations 70 of ihp × ilp. Crop Sci 47:45–57

    Article  CAS  Google Scholar 

  • Fauré A, Naldi A, Chaouiya C, Thieffry D (2006) Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics 22:e124–e131. doi:10.1093/bioinformatics/btl210

    Article  PubMed  Google Scholar 

  • Geigenberger P, Stitt M, Fernie AR (2004) Metabolic control analysis and regulation of the conversion of sucrose to starch in growing potato tubers. Plant Cell Environ 27:655–673. doi:10.1111/j.1365-3040.2004.01183.x

    Article  CAS  Google Scholar 

  • Génard M, Bertin N, Borel C, Bussières P, Gautier H, Habib R, Léchaudel M, Lecomte A, Lescourret F, Lobit P et al (2007) Towards a virtual fruit focusing on quality: modelling features and potential uses. J Exp Bot 58:917–928

    Article  PubMed  CAS  Google Scholar 

  • Glass L, Kauffman SA (1973) The logical analysis of continuous, non-linear biochemical control networks. J Theor Biol 39:103–129

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez AG, Naldi A, Sánchez L, Thieffry D, Chaouiya C (2006) GINsim: a software suite for the qualitative modelling, simulation and analysis of regulatory networks. Biosystems 84:91–100. doi:10.1016/j.biosystems.2005.10.003

    Article  PubMed  CAS  Google Scholar 

  • Görke B, Stülke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:613–624. doi:10.1038/nrmicro1932

    Article  PubMed  CAS  Google Scholar 

  • Granier C, Aguirrezabal L, Chenu K, Cookson SJ, Dauzat M, Hamard P, Thioux J-J, Rolland G, Bouchier-Combaud S, Lebaudy A, Muller B, Simonneau T, Tardieu F (2006) PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit. New Phytol 169:623–635. doi:10.1111/j.1469-8137.2005.01609.x

    Article  PubMed  Google Scholar 

  • Green A, Kennaway JR, Hanna A, Bangham JA, Coen E (2010) Genetic control of organ shape and tissue polarity. PLoS Biol 8:e1000537. doi:10.1371/journal.pbio.1000537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    Article  PubMed  CAS  Google Scholar 

  • Hammer G, Cooper M, Tardieu F, Welch S, Walsh B, van Eeuwijk F, Chapman S, Podlich D (2006) Models for navigating biological complexity in breeding improved crop plants. Trends Plant Sci 11:587–593. doi:10.1016/j.tplants.2006.10.006

    Article  PubMed  CAS  Google Scholar 

  • Hammer GL, Dong Z, McLean G, Doherty A, Messina CD, Schussler J, Zinselmeier C, Paszkiewicz S, Cooper M (2009) Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. corn belt? Crop Sci 49:299–312

    Article  Google Scholar 

  • Heijnen J (2005) Approximative kinetic formats used in metabolic network modeling. Biotechnol Bioeng 91:534–545. doi:10.1002/bit.20558

    Article  PubMed  CAS  Google Scholar 

  • Heinrich R, Rapoport TA (1974) A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur J Biochem 42:89–95

    Article  PubMed  CAS  Google Scholar 

  • Heinrich R, Schuster S (1996) The regulation of cellular systems. Chapman & Hall, New York

    Book  Google Scholar 

  • Hengge-Aronis R (1999) Interplay of global regulators and cell physiology in the general stress response of Escherichia coli. Curr Opin Microbiol 2:148–152. doi:10.1016/S1369-5274(99)80026-5

    Article  PubMed  CAS  Google Scholar 

  • Hoogenboom G, White JW (2003) Improving physiological assumptions of simulation models by using gene-based approaches. Agron J 95:82–89

    Article  Google Scholar 

  • Houle D, Govindaraju DR, Omholt S (2010) Phenomics: the next challenge. Nat Rev Genet 11:855–866

    Article  PubMed  CAS  Google Scholar 

  • Howard J, Grill SW, Bois JS (2011) Turing’s next steps: the mechanochemical basis of morphogenesis. Nat Rev Mol Cell Biol 12:392–398

    Article  PubMed  CAS  Google Scholar 

  • Hunter PJ, Borg TK (2003) Integration from proteins to organs: the physiome project. Nat Rev Mol Cell Biol 4:237–243. doi:10.1038/nrm1054

    Article  PubMed  CAS  Google Scholar 

  • Hunter PJ, McCulloch AD, ter Keurs HEDJ (1998) Modelling the mechanical properties of cardiac muscle. Prog Biophys Mol Biol 69:289–331. doi:10.1016/S0079-6107(98)00013-3

    Article  PubMed  CAS  Google Scholar 

  • Jamshidi N, Palsson B (2008a) Formulating genome-scale kinetic models in the post-genome era. Mol Syst Biol 4:171

    Article  PubMed  PubMed Central  Google Scholar 

  • Jamshidi N, Palsson B (2008b) Top-down analysis of temporal hierarchy in biochemical reaction networks. PLoS Comp Biol 4, e1000177

    Article  CAS  Google Scholar 

  • Jamshidi N, Palsson B (2010) Mass action stoichiometric simulation models: incorporating kinetics and regulation into stoichiometric models. Biophys J 98:175–185. doi:10.1016/j.bpj.2009.09.064

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kacser H, Burns JA (1973) The control of flux. Sym Soc Exp Biol 27:65–104

    CAS  Google Scholar 

  • Kauffman KJ, Pajerowski JD, Jamshidi N, Palsson BO, Edwards JS (2002) Description and analysis of metabolic connectivity and dynamics in the human red blood cell. Biophys J 83:646–662. doi:10.1016/S0006-3495(02)75198-9

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kearsey MJ (1998) The principles of QTL analysis (a minimal mathematics approach). J Exp Bot 49:1619–1623

    Article  CAS  Google Scholar 

  • Kennaway R, Coen E, Green A, Bangham A (2011) Generation of diverse biological forms through combinatorial interactions between tissue polarity and growth. PLoS Comp Biol 7, e1002071. doi:10.1371/journal.pcbi.1002071

    Article  CAS  Google Scholar 

  • Keurentjes JJB, Angenent G, Dicke M, Dos Santos V, Molenaar J, van der Putten W, de Ruiter P, Struik PC, Thomma B (2011) Redefining plant systems biology: from cell to ecosystem. Trends Plant Sci 16:183–190. doi:10.1016/j.tplants.2010.12.002

    Article  PubMed  CAS  Google Scholar 

  • Knapp SJ, Bridges WC Jr, Birkes D (1990) Mapping quantitative trait loci using molecular marker linkage maps. Theor Appl Genet 79:583–592. doi:10.1007/bf00226869

    Article  PubMed  CAS  Google Scholar 

  • Kromdijk J, Bertin N, Heuvelink E, Molenaar J, de Visser PHB, Marcelis LFM, Struik PC (2014) Crop management impacts the efficiency of quantitative trait loci (QTL) detection and use: case study of fruit load × QTL interactions. J Exp Bot 65:11–22. doi:10.1093/jxb/ert365

    Article  PubMed  CAS  Google Scholar 

  • Kuchen EE, Fox S, de Reuille PB, Kennaway R, Bensmihen S, Avondo J, Calder GM, Southam P, Robinson S, Bangham A, Coen E (2012) Generation of leaf shape through early patterns of growth and tissue polarity. Science 335:1092–1096. doi:10.1126/science.1214678

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  PubMed Central  Google Scholar 

  • Laperche A, Devienne-Baret F, Maury O, Le Gouis J, Ney B (2006) A simplified conceptual model of carbon/nitrogen functioning for QTL analysis of winter wheat adaptation to nitrogen deficiency. Theor Appl Genet 113:1131–1146

    Article  PubMed  CAS  Google Scholar 

  • Li S, Assmann S, Albert R (2006) Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling. PLoS Biol 4, e312. doi:10.1371/journal.pbio.0040312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma C-X, Casella G, Wu R (2002) Functional mapping of quantitative trait loci underlying the character process: a theoretical framework. Genetics 161:1751–1762

    PubMed  PubMed Central  Google Scholar 

  • Ma H-W, Kumar B, Ditges U, Gunzer F, Buer J, Zeng A-P (2004a) An extended transcriptional regulatory network of Escherichia coli and analysis of its hierarchical structure and network motifs. Nucleic Acids Res 32:6643–6649. doi:10.1093/nar/gkh1009

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ma H-W, Zhao X-M, Yuan Y-J, Zeng A-P (2004b) Decomposition of metabolic network into functional modules based on the global connectivity structure of reaction graph. Bioinformatics 20:1870–1876. doi:10.1093/bioinformatics/bth167

    Article  PubMed  CAS  Google Scholar 

  • Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5:264–276. doi:10.1016/j.ymben.2003.09.002

    Article  PubMed  CAS  Google Scholar 

  • Malosetti M, Visser RGF, Celis-Gamboa C, Eeuwijk FA (2006) QTL methodology for response curves on the basis of non-linear mixed models, with an illustration to senescence in potato. Theor Appl Genet 113:288–300

    Article  PubMed  CAS  Google Scholar 

  • Mammadov J, Aggarwal R, Buyyarapu R, Kumpatla S (2012) SNP markers and their impact on plant breeding. Int J Plant Genomic 2012:11. doi:10.1155/2012/728398

    Google Scholar 

  • Mao L, Van Hemert JL, Dash S, Ja D (2009) Arabidopsis gene co-expression network and its functional modules. BMC Bioinf 10:346. doi:10.1186/1471-2105-10-346

    Article  CAS  Google Scholar 

  • Martínez-Antonio A, Collado-Vides J (2003) Identifying global regulators in transcriptional regulatory networks in bacteria. Curr Opin Microbiol 6:482–489. doi:10.1016/j.mib.2003.09.002

    Article  PubMed  CAS  Google Scholar 

  • Martre P, Bertin N, Salon C, Génard M (2011) Modelling the size and composition of fruit, grain and seed by process-based simulation models. New Phytol 191:601–618

    Article  PubMed  CAS  Google Scholar 

  • Messina CD, Jones JW, Boote KJ, Vallejos CE (2006) A gene-based model to simulate soybean development and yield responses to environment. Crop Sci. doi:10.2135/cropsci2005.04-0372

    Google Scholar 

  • Messina CD, Hammer GL, Dong Z, Podlich D, Cooper M (2009) Modelling crop improvement in a G × E × M framework via gene-trail-phenotype relationships. In: Sadras VO, Calderini D (eds) Crop physiology: applications for genetic improvement and agronomy. Elsevier, Netherlands, pp 235–265

    Chapter  Google Scholar 

  • Miflin B (2000) Crop improvement in the 21st century. J Exp Bot 51:1–8

    Article  PubMed  CAS  Google Scholar 

  • Monteiro PT, Ropers D, Mateescu R, Freitas AT, de Jong H (2007) Temporal logic patterns for querying dynamic models of cellular interaction networks. Bioinformatics 24:i227–i233

    Article  Google Scholar 

  • Morris MK, Saez-Rodriguez J, Sorger PK, Lauffenburger DA (2010) Logic-based models for the analysis of cell signaling networks. Biochemistry 49:3216–3224. doi:10.1021/bi902202q

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nägele T, Henkel S, Hörmiller I, Sauter T, Sawodny O, Ederer M, Heyer A (2010) Mathematical modeling of the central carbohydrate metabolism in Arabidopsis reveals a substantial regulatory influence of vacuolar invertase on whole plant carbon metabolism. Plant Physiol 153:260–272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakagawa H, Yamagishi J, Miyamoto N, Motoyama M, Yano M, Nemoto K (2005) Flowering response of rice to photoperiod and temperature: a QTL analysis using a phenological model. Theor Appl Genet 110:778–786

    Article  PubMed  CAS  Google Scholar 

  • Noble D (2002) Modeling the heart–from genes to cells to the whole organ. Science 295:1678–1682. doi:10.1126/science.1069881

    Article  PubMed  CAS  Google Scholar 

  • Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28:245–248. doi:10.1038/nbt.1614

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Papin JA, Price ND, Wiback SJ, Fell DA, Palsson BO (2003) Metabolic pathways in the post-genome era. Trends Biochem Sci 28:250–258

    Article  PubMed  CAS  Google Scholar 

  • Papin JA, Stelling J, Price ND, Klamt S, Schuster S, Palsson BO (2004) Comparison of network-based pathway analysis methods. Trends Biotechnol 22:400–405

    Article  PubMed  CAS  Google Scholar 

  • Podlich D, Cooper M (1998) QU-GENE: a simulation platform for quantitative analysis of genetic models. Bioinformatics 14:632–653

    Article  PubMed  CAS  Google Scholar 

  • Prudent M, Bertin N, Génard M, Munos S, Rolland S, Garcia V, Petit J, Baldet P, Rothan C, Causse M (2010) Biological processes and gene categories susceptible to carbon availability in tomato fruit. Plant Cell Environ 33:1186–1204

    PubMed  CAS  Google Scholar 

  • Prusinkiewicz P, Runions A (2012) Computational models of plant development and form. New Phytol 193:549–569. doi:10.1111/j.1469-8137.2011.04009.x

    Article  PubMed  CAS  Google Scholar 

  • Quilot B, Génard M, Lescourret F, Kervella J (2005a) Simulating genotypic variations of fruit quality in an advanced peach × Prunus davidiana cross. J Exp Bot 56:3071–3081

    Article  PubMed  CAS  Google Scholar 

  • Quilot B, Kervella J, Genard M, Lescourret F (2005b) Analysing the genetic control of peach fruit quality through an ecophysiological model combined with a QTL approach. J Exp Bot 56:3083–3092

    Article  PubMed  CAS  Google Scholar 

  • Radulescu O, Gorban A, Zinovyev A, Lilienbaum A (2008) Robust simplifications of multiscale biochemical networks. BMC Syst Biol 2:86. doi:10.1186/1752-0509-2-86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reymond M, Muller B, Leonardi A, Charcosset A, Tardieu F (2003) Combining quantitative trait loci analysis and an ecophysiological model to analyze the genetic variability of the responses of maize leaf growth to temperature and water deficit. Plant Physiol 131:664–675. doi:10.1104/pp. 013839

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Reymond M, Muller B, Tardieu F (2004) Dealing with the genotype × environment interaction via a modelling approach: a comparison of QTLs of maize leaf length or width with QTLs of model parameters. J Exp Bot 55:2461–2472. doi:10.1093/jxb/erh200

    Article  PubMed  CAS  Google Scholar 

  • Rios-Estepa R, Lange BM (2007) Experimental and mathematical approaches to modeling plant metabolic networks. Phytochemistry 68:2351–2374. doi:10.1016/j.phytochem.2007.04.021

    Article  PubMed  CAS  Google Scholar 

  • Schilling CH, Letscher D, Palsson BO (2000) Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J Theor Biol 203:229–248

    Article  PubMed  CAS  Google Scholar 

  • Schlitt T, Brazma A (2007) Current approaches to gene regulatory network modelling. BMC Bioinf 8:S9

    Article  CAS  Google Scholar 

  • Schuetz R, Kuepfer L, Uwe S (2007) Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol 3:119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schuster S, Fell DA, Dandekar T (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol 18:326–332

    Article  PubMed  CAS  Google Scholar 

  • Schuster S, Pfeiffer T, Moldenhauer F, Koch I, Dandekar T (2002) Exploring the pathway structure of metabolism: decomposition into subnetworks and application to mycoplasma pneumoniae. Bioinformatics 18:351–361

    Article  PubMed  CAS  Google Scholar 

  • Segrè D, Vitkup D, Church GM (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci U S A 99:15112–15117. doi:10.1073/pnas.232349399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seshasayee A, Fraser G, Babu MM, Luscombe N (2009) Principles of transcriptional regulation and evolution of the metabolic system in E. coli. Genome Res 19:79–91. doi:10.1101/gr.079715.108

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shlomi T, Eisenberg Y, Sharan R, Ruppin E (2007) A genome-scale computational study of the interplay between transcriptional regulation and metabolism. Mol Syst Biol 3:101

    Article  PubMed  PubMed Central  Google Scholar 

  • Sinclair TR, Purcell LC, Sneller CH (2004) Crop transformation and the challenge to increase yield potential. Trends Plant Sci 9:70–75

    Article  PubMed  CAS  Google Scholar 

  • Smallbone K, Simeonidis E, Broomhead DS, Kell DB (2007) Something from nothing–bridging the gap between constraint-based and kinetic modelling. FEBS J 274:5576–5585. doi:10.1111/j.1742-4658.2007.06076.x

    Article  PubMed  CAS  Google Scholar 

  • Snoussi EH (1989) Qualitative dynamics of piecewise-linear differential equations: a discrete mapping approach. Dyn Stab Syst 4:189–207

    Article  Google Scholar 

  • Southern J, Pitt-Francis J, Whiteley J, Stokeley D, Kobashi H, Nobes R, Kadooka Y, Gavaghan D (2008) Multi-scale computational modelling in biology and physiology. Prog Biophys Mol Bio 96:60–89. doi:10.1016/j.pbiomolbio.2007.07.019

    Article  CAS  Google Scholar 

  • Sridharan GV, Yi M, Hassoun S, Lee K (2012) Metabolic flux-based modularity using shortest retroactive distances. BMC Syst Biol 6:155. doi:10.1186/1752-0509-6-155

    Article  PubMed  PubMed Central  Google Scholar 

  • Stelling J, Klamt S, Bettenbrock K, Schuster S, Gilles ED (2002) Metabolic network structure determines key aspects of functionality and regulation. Nature 420:190–193. doi:10.1038/nature01166

    Article  PubMed  CAS  Google Scholar 

  • Stitt M, Sulpice R, Keurentjes JJB (2010) Metabolic networks: how to identify key components in the regulation of metabolism and growth. Plant Physiol 152:428–444. doi:10.1104/pp. 109.150821

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sweetlove L, Ratcliffe RG (2011) Flux-balance modeling of plant metabolism. Front Plant Sci 2:1–10. doi:10.3389/fpls.2011.00038

    Article  CAS  Google Scholar 

  • Tanay A, Sharan R, Kupiec M, Shamir R (2004) Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. Proc Natl Acad Sci U S A 101:2981–2986. doi:10.1073/pnas.0308661100

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tardieu F (2003) Virtual plants: modelling as a tool for the genomics of tolerance to water deficit. Trends Plant Sci 8:9–14

    Article  PubMed  CAS  Google Scholar 

  • Tisné S, Serrand Y, Bach L, Gilbault E, Ben Ameur R, Balasse H, Voisin R, Bouchez D, Durand-Tardif M, Guerche P, Chareyron G, Da Rugna J, Camilleri C, Loudet O (2013) Phenoscope: an automated large-scale phenotyping platform offering high spatial homogeneity. Plant J 74:534–544. doi:10.1111/tpj.12131

    Article  PubMed  CAS  Google Scholar 

  • Tomita M, Hashimoto K, Takahashi K, Shimizu TS, Matsuzaki Y, Miyoshi F, Saito K, Tanida S, Yugi K, Venter JC, Hutchison CA (1999) E-CELL: software environment for whole-cell simulation. Bioinformatics 15:72–84

    Article  PubMed  CAS  Google Scholar 

  • Uys L, Botha FC, Hofmeyr J-HS, Rohwer JM (2007) Kinetic model of sucrose accumulation in maturing sugarcane culm tissue. Phytochemistry 68:2375–2392

    Article  PubMed  CAS  Google Scholar 

  • van Eeuwijk F, Bink M, Chenu K, Chapman S (2010) Detection and use of QTL for complex traits in multiple environments. Curr Opin Plant Biol 13:193–205. doi:10.1016/j.pbi.2010.01.001

    Article  PubMed  CAS  Google Scholar 

  • Visser D, Heijnen J (2003) Dynamic simulation and metabolic re-design of a branched pathway using linlog kinetics. Metab Eng 5:164–176. doi:10.1016/S1096-7176(03)00025-9

    Article  PubMed  CAS  Google Scholar 

  • Wagner G, Pavlicev M, Cheverud J (2007) The road to modularity. Nat Rev Genet 8:921–931. doi:10.1038/nrg2267

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Dalkic E, Wu M, Chan C (2008) Gene module level analysis: identification to networks and dynamics. Curr Opin Biotechnol 19:482–491. doi:10.1016/j.copbio.2008.07.011

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Welch SM, Roe JL, Dong Z (2003) A genetic neural network model of flowering time control in arabidopsis thaliana. Agron J 95:71–81

    Article  Google Scholar 

  • Welch SM, Dong Z, Roe JL (2004) Modelling gene networks controlling transition to flowering in arabidopsis. In: Fischer A, Turner N, Angus JF, McIntyre L, Robertson MJ,. Borrell AK, Lloyd D (eds) New directions for a diverse planet: proceedings for the 4th international crop science congress, Brisbane. pp 1–20

    Google Scholar 

  • Welcker C, Boussuge B, Bencivenni C, Ribaut J-M, Tardieu F (2007) Are source and sink strengths genetically linked in maize plants subjected to water deficit? A QTL study of the responses of leaf growth and of anthesis-silking Interval to water deficit. J Exp Bot 58:339–349

    Article  PubMed  CAS  Google Scholar 

  • White JW, Hoogenboom G (1996) Simulating effects of genes for physiological traits in a process-oriented crop model. Agron J 88:416–422

    Article  Google Scholar 

  • White JW, Hoogenboom G (2003) Gene-based approaches to crop simulation: past experiences and future opportunities. Agron J 95:52–64

    Article  Google Scholar 

  • Wittmann DM, Krumsiek J, Saez-Rodriguez J, Da L, Klamt S, Theis FJ (2009) Transforming Boolean models to continuous models: methodology and application to T-cell receptor signaling. BMC Syst Biol 3:98. doi:10.1186/1752-0509-3-98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu W, Zhou Y, Li W, Mao D, Chen Q (2002) Mapping of quantitative trait loci based on growth models. Theor Appl Genet 105:1043–1049

    Article  PubMed  Google Scholar 

  • Wu R, Ma C-X, Zhao W, Casella G (2003) Functional mapping for quantitative trait loci governing growth rates: a parametric model. Physiol Genomics 14:241–249. doi:10.1152/physiolgenomics.00013.2003

    Article  PubMed  CAS  Google Scholar 

  • Yin X, Struik PC (2008) Applying modelling experiences from the past to shape crop systems biology: the need to converge crop physiology and functional genomics. New Phytol 179:629–642

    Article  PubMed  CAS  Google Scholar 

  • Yin X, Struik PC (2010) Modelling the crop: from system dynamics to systems biology. J Exp Bot 61:2171–2183. doi:10.1093/jxb/erp375

    Article  PubMed  CAS  Google Scholar 

  • Yin X, Kropff MJ, Stam P (1999) The role of ecophysiological models in QTL analysis: the example of specific leaf area in barley. Heredity 82:415–421

    Article  PubMed  Google Scholar 

  • Yin X, Chasalow SC, Dourleijn CJ, Stam P, Kropff MJ (2000a) Coupling estimated effects of QTLs for physiological traits to a crop growth model: predicting yield variation among recombinant inbred lines in barley. Heredity 85:539–549

    Article  PubMed  CAS  Google Scholar 

  • Yin X, Kropff MJ, Goudriaan J, Stam P (2000b) A model analysis of yield differences among recombinant inbred lines in barley. Agron J 92:114–120

    Article  Google Scholar 

  • Yin X, Struik PC, Tang J, Qi C, Liu T (2005) Model analysis of flowering phenology in recombinant inbred lines of barley. J Exp Bot 56:959–965

    Article  PubMed  CAS  Google Scholar 

  • Zeng Z-B (1993) Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc Natl Acad Sci U S A 90:10972–10976

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Baldazzi .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Qualitative Modelling

Qualitative approaches aim to characterize key properties of the dynamics of the system as the existence of steady states, limit cycles (oscillation) but also specific dynamical patterns, like for instance the subsequent activation of two network components. Due to their qualitative nature, these approaches are generally non-deterministic: the result of a qualitative simulation is a state transition graph containing all possible dynamical pathways that are coherent with the initial model definition. In this perspective, model checking tools provide an useful complement, allowing the automated verification of dynamical properties of the system, regardless of the specific trajectory (Monteiro et al. 2007).

In the following we present the basics of three common qualitative models; the interested reader can find relevant references for more information.

1.1.1 Logical and Boolean Model

Variables (usually genes or signaling molecules) are represented as discrete entities that can assume a set of integer values (0 and 1 in the Boolean case, 0,1,2, … in logical models) describing which variable is present and, in the case of logical models, at which concentration (state of the system). The temporal evolution of the system, i.e. the transition between system states, is determined by the interactions among variables. A steady state is reached when the output state is equal to the input one. A combination of logical functions (AND, OR, NOT) or, alternatively, a table of truth can be used to define the interaction rules. In the case of logical models, the interaction between two variables can be submitted to an additional constraint on the concentration of the regulatory variables. So for instance, in the example in Fig. 1.1 gene C is activated by protein B if and only if the latter is present at high concentration (variable level 2). The dynamics of Boolean and logical models (but not their steady states) depends on the specific updating scheme employed. Two main kinds of update are possible, either synchronous or asynchronous. In the synchronous scheme, all nodes are updated simultaneously according to their values at previous time, whereas in the asynchronous update a single node, selected at random, is changed at time, according to the current state of the network. For more information on logical models and their application, see de Jong (2002), Fauré et al. (2006) and Morris et al. (2010).

Fig. 1.1
figure 1

Example of qualitative modelling of a gene regulatory network using a Boolean, logical and piece-wise linear formalism. (a): example of gene regulatory network. (b): Boolean equations and corresponding table of truth, for network in panel (a). Boolean operators OR, AND and NOT are used to describe the logic of gene interactions. The steady states of the system are indicated with a star. (c): Graph representation of the network in A, where the edges are labelled to express the rank number of the interaction, and corresponding table of truth in the logical formalism. (d): Piece-wise linear equations corresponding to the network in panel A. kA, kB and kC are synthesis rates, γA, γB and γC are degradation rates and θA, θB, and θC are threshold concentrations for proteins A, B and C, respectively

1.1.2 Piece-wise Linear (PL) Model

PL model, introduced by Glass and Kauffman (1973), lies in between ODE and logical models (Davidich and Bornholdt 2008): a continuous step function describes the activation (inhibition) of a gene, whenever the concentration of a regulatory variable xj is above given threshold ϴj (Fig. 1.2).

Fig. 1.2
figure 2

Piece-wise linear approximation of a sigmoid function into a step function

$$ {s}^{+}\left(xj,\theta j\right)=\Big\{\begin{array}{cc}1& xj>\theta j\\ {}0& xj<\theta j\end{array} $$
$$ {s}^{-}\left(xj,\theta j\right)=1-{s}^{+}\left(xj,\theta j\right) $$

Threshold concentration thus defines a rectangular partition of the phase space, such that in every region not located on a threshold, the PL model reduces to a linear system of differential equations. Moreover, in every such region the derivatives (trends) of the concentration variables have a determinate sign, which is shown to be invariant for rather weak constraints (inequalities) on the parameter values. In a qualitative analysis, each of these regions corresponds to a qualitative state of the network, analogous to the n-tuple of zero and ones of Boolean model s.

PL models are often used to describe gene regulatory networks, based on the observation that gene expression rates are often a sigmoid function of the transcription factor concentration. Step-functions are thus seen as an approximation of this sigmoidal behaviour. For more information on PL formalism and its application to biological systems see Baldazzi et al. (2011) and de Jong et al. (2004).

1.1.3 Petri Net Model

Petri nets contain two kinds of nodes: places and transitions. Places (graphically described as circle) represent the resources or variables of the system (e.g., metabolites in a metabolic network) whereas transitions (rectangles) correspond to events (e.g., reactions) that can change the state of the variables. At any time, each place contains a zero or positive number of tokens (small black dots): when the number of tokens is sufficient, the transition is enabled and the reaction can take place. The firing of an enabled transition results in the consumption of tokens in the input place and the creation of a given number of tokens in the output place, according to edge weight (Fig. 1.3). Due to their structure, Petri nets are usually employed to describe signalling and metabolic networks. Indeed, following a metabolic analogy, the number of tokens in a given place can be associated with metabolite concentrations whereas edge weights correspond to reaction stoichiometry. For a more complete review we refer to Chaouiya (2007).

Fig. 1.3
figure 3

Firing of a Petri net. At time t, places A and B both contain one token (small black dot), enough to allow the reaction A + B– > 2C to take place, as indicated by the edge weights (small numbers on the arrows). At time t + 1, tokens in A and B have been consumed whereas two tokens have been created in place C

Appendix 2: Constraint-based Models

1.2.1 Metabolic Pathway Analysis

The idea is to study the solution space (flux vector v) of the following system at steady-state:

$$ \begin{array}{l}N\cdot v=0\hfill \\ {}v\in C\hfill \end{array} $$

where N is the stoichiometric matrix and C is the set of constraints. In the simplest version C are thermodynamics constraints, defining irreversible reactions (i.e., vi > 0 for some flux i), but it can also include flux capacity constraints (i.e., v_min < vi < v_max) or experimental data (measured flux values, i.e., vi = mi). In this framework, omics data can be used directly to reduce the search area (in blue in Fig. 1.4).

Fig. 1.4
figure 4

Schematic representation of Constraint-Based Analysis of metabolic network (inspired by Orth et al. (2010)). In absence of constraints, the flux distribution of a metabolic network can be everywhere in the solution space. Stoichiometry, thermodynamics and limitations to fluxes capacity act as constraints that reduce the allowable space of solutions (blue surface). An optimization principle allows selecting one optimal solution, at one edge of the solution space

Within constraints C, any admissible flux distribution is represented as a nonnegative combination of a valid set of pathways that is (a) unique and (b) minimal, for each network topology. In particular each pathway is “non decomposable”, i.e., it consists of the minimum number of reactions needed to exist as a functional unit. Two alternative definitions of these pathways exist, elementary modes (Stelling et al. 2002) and extreme pathways (Schuster et al. 2000), that can provide slightly different information (see Papin et al. (2004) for a comparison between the two).

1.2.2 Flux Balance Analysis and Related Techniques

Within the solution space defined by the Metabolic Pathway Analysis, Flux Balance Analysis aims at identifying the most likely flux distribution as the ones that maximize a given objective Z, i.e.:

$$ \begin{array}{l}N\cdot v=0\hfill \\ {}v\in C\Big|Z(v) \max \hfill \end{array} $$

Several choices are possible regarding the objective function Z and the formulation of an appropriate one is still subject of research, especially in the case of higher organisms (Schuetz et al. 2007). Among the most popular cost functions in literature are the biomass or ATP productions, growth rate or the production of specific metabolites.

Whatever the objective function, a common problem with FBA is the possible existence of multiple optimal solutions, i.e. several flux distributions with same cost score. In this case the prediction is not unique, and some conclusions may change depending on the selected solution. However, alternative solutions may have a biological meaning: biological systems show a high degree of redundancy that is often associated with a certain functional robustness. Mahadevan and Schilling (2003) explicitly use the existence of multiple optima to investigate redundancies in the network and to derive a flux range in which the optimality is guaranteed. In the case of engineered organisms (e.g., mutants or knock-outs), MOMA technique predicts the expected flux distribution by assuming that it is the closest to the wild type one (principle of minimal modification), irrespectively of its optimality (Segrè et al. 2002).

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baldazzi, V., Bertin, N., Génard, M., Gautier, H., Desnoues, E., Quilot-Turion, B. (2016). Challenges in Integrating Genetic Control in Plant and Crop Models. In: Yin, X., Struik, P. (eds) Crop Systems Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-20562-5_1

Download citation

Publish with us

Policies and ethics