Skip to main content

General Roles of Phytochelatins and Other Peptides in Plant Defense Mechanisms Against Oxidative Stress/Primary and Secondary Damages Induced by Heavy Metals

  • Chapter
Reactive Oxygen Species and Oxidative Damage in Plants Under Stress

Abstract

Phytochelatins (PCs) are nonprotein cysteine-rich oligopeptides having the general structure of (γ-glutamyl-cysteinyl)n-glycine (n = 2–11). They are synthesized from the precursor glutathione (a reduced form, GSH) by the activity of phytochelatin synthase (PCS). The biosynthesis is stimulated by several heavy metals (HMs), especially Cd and metalloid As. PCs can bind to various HMs like Cd, As, Cu, Pb, Zn, and Ag, via their sulfhydryl (–SH) and carboxyl (–COOH) groups. The complexations become more stable and massive in vacuole where acid-labile sulfides (S2−) are incorporated to make the PCs–S–HMs conjugates. Both the thiols and S2− are originated from sulfate through a partially common energy-dependent metabolism (sulfur assimilation), which is again enhanced by Cd, besides essential metals (Co, Mg). To date, fundamental roles of PCs and also related iso-peptides such as hPCs in intracellular detoxification and/or transport of HMs are well demonstrated in various plants, especially in experiments targeting genes and enzymes for PC and GSH biosynthesis. However, how they function as a defense molecule in the oxidative stresses or other biological processes are still unknown or conceiving subtle problems. Some of the possible functions are highlighted in this chapter as tentative examples for further discussion: (1) PCs–S–HMs complex as a potent pool/stock of thiols or reducing powers to be reusable for further robustious responses by the tolerant plants against various abiotic and biotic stresses including oxidative stress and (2) PCs as a possible mediator for metal translocation or redistribution via phloem rather than xylem, regardless of a trait of “hyperaccumulator” for HMs in land plants. Apart from the positive roles of PCs in HM-tolerant plants, arguments still hot arise an issue (3) the roles of PCs, GSH, and other thiols as delicate barometer or indicators in the mineral and redox balance and/or homeostasis, in addition to their well-known functions being substrates and antidotes. In the absence of HMs, the levels of PCs are too minute to account for their sufficient bindings to the essential metals. Although GSH is ubiquitous and abundant, it is a multifunctional peptide that rapidly consumed or oxidized for numerous enzymic or nonenzymic antioxidants/redox systems as well as direct substrate for PCS. Eventually, importance of preservation of thiols and sulfide (S2−) as resource for reducing powers in sensitive sessile plants against various oxidative stresses is again emphasized in return for PCs in the HM-tolerant plants in metalliferous habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atal N, Saradhi PP, Mohanty P (1991) Inhibition of the chloroplast photochemical reactions by treatment of wheat seedlings with low concentrations of cadmium: analysis of electron transport activities and changes in fluorescence yield. Plant Cell Physiol 32:943–951

    CAS  Google Scholar 

  • Axelsen KB, Palmgren MG (2001) Inventory of the superfamily of P-Type ion pumps in Arabidopsis. Plant Physiol 126:696–706

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Batista BL, Nigar M, Mestrot A, Rocha BA, Júnior FB, Price AH, Raab A, Feldmann J (2014) Identification and quantification of phytochelatins in roots of rice to long-term exposure: evidence of individual role on arsenic accumulation and translocation. J Exp Bot 65:1467–1479

    Article  CAS  PubMed  Google Scholar 

  • Baxter I, Tchieu J, Sussman MR, Boutry M, Palmgren MG, Gribskov M, Harper JF, Axelsen KB (2003) Genomic comparison of P-Type ATPase ion pumps in Arabidopsis and rice. Plant Physiol 132:618–628

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Becana M, Matamoros MA, Udvardi M, Dalton DA (2010) Recent insights into antioxidant defenses of legume root nodules. New Phytol 188:960–976

    Article  CAS  PubMed  Google Scholar 

  • Bloem E, Haneklaus S, Salac I, Wichkenhauser P, Schnug E (2007) Facts and fiction about sulfur metabolism in relation to plant-pathogen interaction. Plant Biol 9:596–607

    Article  CAS  PubMed  Google Scholar 

  • Blokhina O, Fagerstedt K (2006) Oxidative stress and antioxidant defenses in plants. In: Singh KK (ed) Oxidative stress, disease and cancer. Imperial College Press, London

    Google Scholar 

  • Broadley MR, Willey NJ, Wilkins JC, Baker AJM, Mead A, White PJ (2001) Phylogenetic variation in heavy metal accumulation in angiosperms. New Phytol 152:9–27

    Article  CAS  Google Scholar 

  • Cataldo DA, Wildung RE (1983) The role of soil and plant metabolic processes in controlling trace element behavior and bioavailability to animals. Sci Total Environ 28:159–168

    Article  CAS  PubMed  Google Scholar 

  • CERCLA (2007) Priority list of hazardous substances. http://www.atsdr.cdc.gov/spl/supportdocs/appendix-d.pdf

  • Chatterjee S, Chattopadhyay B, Mukhopadhyay SK (2007) Sequestration and localization of metals in two common wetland plants of contaminated east Calcutta wetlands: a Ramsar Site in India. Land Contam Reclamat 15:437–452

    Article  Google Scholar 

  • Chatterjee S, Chetia M, Singh L, Chattopadhyay B, Datta S, Mukhopadhyay SK (2011) A study on the phytoaccumulation of waste elements in wetland plants of a Ramsar site in India. Environ Monit Assess 178:361–371

    Article  CAS  PubMed  Google Scholar 

  • Chen A (2005) Long distance transport of phytochelatins in Arabidopsis and the isolation and characterization of cadmium tolerant mutants in Arabidopsis. PhD thesis, UC San Diego Electronic Theses and Dissertations. http://escholarship.org/uc/item/0fm285zm

  • Clemens S, Antosiewicz DM, Ward JM, Schachtman DP, Schroeder JI (1998) The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast. Proc Natl Acad Sci USA 95:12043–12048

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clemens S, Kim EJ, Neumann D, Schroeder JI (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J 18:3325–3333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clemente MR, Bustos-Sanmamed P, Loscos J, James EK, Pérez-Rontomé C, Navascués J, Gay M, Becana M (2012) Thiol synthetases of legumes: immunogold localization and differential gene regulation by phytohormones. J Exp Bot 63:3923–3934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatin and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  PubMed  Google Scholar 

  • Colangelo EP, Guerinot ML (2006) Put the metal to the petal: metal uptake and transport throughout plants. Curr Opin Plant Biol 9:322–330

    Article  CAS  PubMed  Google Scholar 

  • Conn S, Gilliham M (2010) Comparative physiology of elemental distributions in plants. Ann Bot 105:1081–1102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Curie C, Alonso JM, Le Jean M, Ecker JR, Briat JF (2000) Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochem J 347:749–755

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Knecht JA, van Dillen M, Koevoets PLM, Schat H, Verkleij JAC, Ernst WHO (1994) Phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris: chain length distribution and sulfide incorporation. Plant Physiol 104:255–261

    PubMed Central  PubMed  Google Scholar 

  • DiDonato RJ Jr, Roberts LA, Sanderson T, Eisley RB, Walker EL (2004) Arabidopsis Yellow Stripe-Like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine–metal complexes. Plant J 39:403–414

    Article  CAS  PubMed  Google Scholar 

  • Dietz KJ, Baier M, Krämer U (1999) Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants: from molecules to ecosystems. Springer, Heidelberg

    Google Scholar 

  • Duan GL, Hu Y, Liu WJ, Kneer R, Zhao FJ, Zhu YG (2011) Evidence for a role of phytochelatins in regulating arsenic accumulation in rice grain. Environ Exp Bot 71:416–421

    CAS  Google Scholar 

  • Ducruix C, Junot C, Fiévet JB, Villiers F, Ezan E, Bourguignon J (2006) New insights into the regulation of phytochelatin biosynthesis in A. thaliana cells from metabolite profiling analyses. Biochimie 88:1733–1742

    Article  CAS  PubMed  Google Scholar 

  • Emery L, Whelan S, Hirschi KD, Pittman JK (2012) Protein phylogenetic analysis of Ca(2+)/cation Antiporters and insights into their evolution in plants. Front Plant Sci 3:1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176–2191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays 11:1091–1101

    Article  CAS  Google Scholar 

  • Gekeler W, Grill E, Winnacker EL, Zenk MH (1989) Survey of the plant kingdom for the ability to bind heavy metals through phytochelatins. Z Naturforsh 44:361–369

    CAS  Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1987) Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc Natl Acad Sci USA 84:439–443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grill E, Loffler S, Winnacker EL, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci USA 86:6838–6842

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465:190–198

    Article  CAS  PubMed  Google Scholar 

  • Gumaelius L, Lahner B, Salt DE, Banks JA (2004) Arsenic hyperaccumulation in gametophytes of Pteris vittata: a new model system for analysis of arsenic hyperaccumulation. Plant Physiol 136:3198–3208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gupta DK, Tohoyama H, Joho M, Inouhe M (2002) Possible roles of phytochelatins and glutathione metabolism in cadmium tolerance in chickpea roots. J Plant Res 115:429–437

    Article  CAS  PubMed  Google Scholar 

  • Gupta DK, Tohoyama H, Joho M, Inouhe M (2004) Changes in the levels of phytochelatins and related metal binding peptides in chickpea seedlings exposed to arsenic and different heavy metal ions. J Plant Res 117:253–256

    Article  CAS  PubMed  Google Scholar 

  • Gupta DK, Huang HG, Yang XE, Razafindrabe BHN, Inouhe M (2010) The detoxification of lead in Sedum alfredii H. is not related with phytochelatins but the glutathione. J Hazard Mater 177:437–444

    Article  CAS  PubMed  Google Scholar 

  • Gupta DK, Inouhe M, Rodríguez-Serrano M, Romero-Puerta MC, Sandalio LM (2013a) Oxidative stress and arsenic toxicity: role of NADPH oxidases. Chemosphere 90:1987–1996

    Article  CAS  PubMed  Google Scholar 

  • Gupta DK, Huang HG, Corpas FJ (2013b) Lead tolerance in plants: strategies for phytoremediation. Environ Sci Pollut Res 20:2150–2161

    Article  CAS  Google Scholar 

  • Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O’Connell MJ, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from Arabidopsis and the yeast, Schizosaccharomyces pombe. Plant Cell 11:1153–1164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hao F, Wang X, Chen J (2006) Involvement of plasma membrane NADPH oxidase in nickel-induced oxidative stress in roots of wheat seedling. Plant Sci 170:151–158

    Article  CAS  Google Scholar 

  • Hayashi Y, Nakagawa CW, Mutoh N, Isobe M, Goto T (1991) Two pathways in the biosynthesis of cadystins (gEC)nG in the cell-free system of the fission yeast. Biochem Cell Biol 69:115–121

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Hossain MZ, Fujita M (2009) Stress-induced changes of methylglyoxal level and glyoxalase I activity in pumpkin seedlings and cDNA cloning of glyoxalase I gene. Aust J Crop Sci 3:53–64

    CAS  Google Scholar 

  • Hossain MA, Hossain MD, Rohman MM, da Silva JAT, Fujita M (2012a) Onion major compounds (flavonoids, organosulfurs) and highly expressed glutathione-related enzymes: possible physiological interaction, gene cloning and abiotic stress response. In: Aguirre CB, Jaramillo LM (eds) Onion consumption and health. Nova, New York

    Google Scholar 

  • Hossain MA, Piyatida P, Teixeira da Silva JA, Fujita M (2012b) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and Methylglyoxal and in heavy metal chelation. J Bot 872875:37

    Google Scholar 

  • Huang HG, Li TX, Tian S, Gupta DK, Zhang X, Yang XE (2008) Role of EDTA in alleviating lead toxicity in accumulator species of Sedum alfredii H. Bioresour Technol 99:6088–6096

    Article  CAS  PubMed  Google Scholar 

  • Inaba T, Kobayashi E, Suwazono Y, Uetani M, Oishi M, Nakagawa H, Nogawa K (2005) Estimation of cumulative cadmium intake causing Itai-itai disease. Toxicol Lett 15:192–201

    Article  CAS  Google Scholar 

  • Ingwersen J, Streck T (2005) A regional-scale study on the crop uptake of cadmium from sandy soils: measurement and modeling. J Environ Qual 34:1026–1035

    Article  CAS  PubMed  Google Scholar 

  • Inouhe M (2005) Phytochelatins. Braz J Plant Physiol 17:65–78

    Article  CAS  Google Scholar 

  • Inouhe M, Sumiyoshi M, Tohoyama H, Joho M (1996) Resistance to cadmium ions and formation of a cadmium-binding complex in various wild-type yeasts. Plant Cell Physiol 37:341–346

    Article  CAS  PubMed  Google Scholar 

  • Inouhe M, Huang HG, Chaudhary SK, Gupta DK (2012) Heavy metal bindings and its interactions with thiol peptides and other biological ligands in plant cells. In: Gupta DK, Sandalio LM (eds) Metal toxicity in plants: perception, signaling and remediation. Springer, Heidelberg

    Google Scholar 

  • Kawachi M, Kobae Y, Mimura T, Maeshima M (2008) Deletion of a histidine-rich loop of AtMTP1, a vacuolar Zn2+/H+ antiporter of Arabidopsis thaliana, stimulates the transport activity. J Biol Chem 283:8374–8383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50:207–218

    Article  CAS  PubMed  Google Scholar 

  • Kirkby EA, Johnson AE (2008) Soil and fertilizer phosphorus in relation to crop nutrition. In: White PJ, Hammond JP (eds) The ecophysiology of plant-phosphorus interactions. Springer, Dordrecht

    Google Scholar 

  • Klapheck S, Fliegner W, Zimmer I (1994) Hydroxymethyl-phytochelatins [(gamma-glutamylcysteine)n-serine] are metal-induced peptides of the Poaceae. Plant Physiol 4:1325–1332

    Article  Google Scholar 

  • Kobae Y, Sekino T, Yoshioka H, Nakagawa T, Martinoia E, Maeshima M (2006) Loss of AtPDR8, a plasma membrane ABC transporter of Arabidopsis thaliana, causes hypersensitive cell death upon pathogen infection. Plant Cell Physiol 47:309–318

    Article  CAS  PubMed  Google Scholar 

  • Kopriva S, Rennenberg H (2004) Control of sulphate assimilation and glutathione synthesis: interaction with N and C metabolisms. J Exp Bot 55:1831–1842

    Article  CAS  PubMed  Google Scholar 

  • Korshunova YO, Eide D, Clark WG, Guerinot ML, Pakrasi HB (1999) The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol 40:37–44

    Article  CAS  PubMed  Google Scholar 

  • Krämer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Lett 581:2263–2272

    Article  PubMed  CAS  Google Scholar 

  • Lanquar V, Lelièvre F, Bolte S, Hamès C, Alcon C, Neumann D, Vansuyt G, Curie C, Schröder A, Krämer U, Barbier-Brygoo H, Thomine S (2005) Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J 24:4041–4051

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lappartient AG, Touraine B (1996) Demand-driven control of root ATP sulfurylase activity and SO42- uptake in intact canola. Plant Physiol 111:147–157

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lappartient AG, Vidmar JJ, Leustek T, Glass AMD, Touraine B (1999) Inter-organ signalling in plants: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound. Plant J 18:89–95

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Moon JS, Ko TS, Petros D, Goldsbrough PB, Korban SS (2003) Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol 131:656–663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leustek T, Martin MN, Bich JN, Davies JP (2000) Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Physiol Plant Mol Biol 51:141–165

    Article  CAS  PubMed  Google Scholar 

  • Leustek T (2002) Sulfate metabolism. In: Arabidopsis book. doi:10.1199/tab.0017

  • Liu F, Tang Y, Du R, Yang H, Wu Q, Qiu R (2010) Root for aging for zinc and cadmium requirement in the Zn/Cd hyperaccumulator plant Sedum alfredii. Plant Soil 327:365–375

    Article  CAS  Google Scholar 

  • Loeffler S, Hochberger A, Grill E, Winnacker EL, Zenk MH (1989) Termination of the phytochelatin synthase reaction through sequestration of heavy metals by the reaction product. FEBS Lett 258:42–46

    Article  CAS  Google Scholar 

  • Lux A, Martinka M, Vaculık M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37

    Article  CAS  PubMed  Google Scholar 

  • Maitani T, Kubota H, Sato K, Yamada T (1996) The composition of metals bound to class III metallothionein (phytochelatins and its desglycyl peptide) induced by various metals in root cultures of Rubia tinctorum. Plant Physiol 110:1145–1150

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maksymiec W (2007) Signaling responses in plants to heavy metal stress. Acta Physiol Plant 29:177–187

    Article  CAS  Google Scholar 

  • Manara A (2012) Plant responses to heavy metal toxicity. In: Furini A (ed) Plants and heavy metals, Springer briefs in biometals. Springer, New York. doi:10.1007/978-94-007-4441-7_2

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJM, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  PubMed Central  PubMed  Google Scholar 

  • Mehra RK, Winge DR (1990) Metal ion resistance in fungi: molecular mechanisms and their regulated expression. J Cell Biochem 45:1–11

    Google Scholar 

  • Mehra RK, Tran K, Scott GW, Mulchandani P, Sani SS (1996) Ag(I)-binding to phytochelatins. J Inorg Biochem 61:125–142

    Article  CAS  PubMed  Google Scholar 

  • Mengel K, Kirkby EA, Kosegarten H, Appel T (2001) Principles of plant nutrition. Kluwer, Dordrecht

    Book  Google Scholar 

  • Meyer AJ, Hell R (2005) Glutathione homeostasis and redox regulation by sulfhydryl groups. Photosynth Res 86:435–457

    Article  CAS  PubMed  Google Scholar 

  • Montanini B, Blaudez D, Jeandroz S, Sanders D, Chalot M (2007) Phylogenetic and functional analysis of the cation diffusion facilitator (CDF) family: improved signature and prediction of substrate specificity. BMC Genomics 8:107

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murasugi A (2008) Cadystin (phytochelatin) synthesis induced by cadmium and resulted formation of cadmium sulphide nanoparticles in Schizosaccharomyces pombe. Curr Top Biotechnol 4:65–73

    CAS  Google Scholar 

  • Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol 5:388–395

    Article  CAS  PubMed  Google Scholar 

  • Nies DH (1992) Resistance to cadmium, cobalt, zinc, and nickel in microbes. Plasmid 27:17–28

    Article  CAS  PubMed  Google Scholar 

  • Nishida S, Mizuno T, Obata H (2008) Involvement of histidine-rich domain of ZIP family transporter TjZNT1 in metal ion specificity. Plant Physiol Biochem 46:601–606

    Article  CAS  PubMed  Google Scholar 

  • Nishida S, Tsuzuki C, Kato A, Aisu A, Yoshida J, Mizuno T (2011) AtIRT1, the primary iron uptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana. Plant Cell Physiol 52:1433–1442

    Article  CAS  PubMed  Google Scholar 

  • Nocito FF, Lancilli C, Giacomini B, Sacchi GA (2007) Sulfur metabolism and cadmium stress in higher plants. Plant Stress 1:142–156, © Global Science Books (downloaded on 21-2-2013 from: http://globalsciencebooks.info/JournalsSup/images/Sample/PS_1(2)142-156.pdf)

    Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Queval G, Mhamdi A, Chaouch S, Foyer CH (2011) Glutathione. The Arabidopsis book. American Society of Plant Biologists, Rockville, MD. doi:10.1199/tab.0142, e0142

    Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484

    Article  CAS  PubMed  Google Scholar 

  • Papoyan A, Kochian LV (2004) Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance: characterization of a novel heavy metal transporting ATPase. Plant Physiol 136:3814–3823

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peiter E, Montanini B, Gobert A, Pedas P, Husted S, Maathuis FJM, Blaudez D, Chalot M, Sanders D (2007) A secretory pathway-localized cation diffusion facilitator confers plant manganese tolerance. Proc Natl Acad Sci USA 104:8532–8537

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pomponi M, Censi V, Di Girolamo V, De Paolis A, Di Toppi LS, Aromolo R, Costantino P, Cardarelli M (2006) Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd2+ tolerance and accumulation but not translocation to the shoot. Planta 223:180–190

    Article  CAS  PubMed  Google Scholar 

  • Pourrut B, Perchet G, Silvestre J, Cecchi M, Guiresse M, Pinelli E (2008) Potential role of NADPH-oxidase in early steps of lead-induced oxidative burst in Vicia faba roots. J Plant Physiol 165:571–579

    Article  CAS  PubMed  Google Scholar 

  • Prasad MNV, Freitas HMO (2003) Metal hyperaccumulation in plants-biodiversity prospecting for phytoremediation technology. Electron J Biotechol 6:285–321

    Google Scholar 

  • Ramos J, Naya L, Gay M, Abián J, Becana M (2008) Functional characterization of an unusual phytochelatin synthase, LjPCS3, of Lotus japonicus. Plant Physiol 148:536–545

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rausch T, Wachter A (2005) Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci 10:503–509

    Article  CAS  PubMed  Google Scholar 

  • Rauser WE (1999) Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin and metallothioneins. Cell Biochem Biophys 31:19–48

    Article  CAS  PubMed  Google Scholar 

  • Rea PA (2012) Phytochelatin synthase: of a protease a peptide polymerase made. Physiol Plant 145:154–164

    Article  CAS  PubMed  Google Scholar 

  • Remans T, Opdenakker K, Smeets K, Mathijsen D, Vangronsveld J, Cuypers A (2010) Metal-specific and NADPH oxidase dependent changes in lipoxygenase and NADPH oxidase gene expression in Arabidopsis thaliana exposed to cadmium or excess copper. Funct Plant Biol 37:532–544

    Article  CAS  Google Scholar 

  • Rodrıguez-Serrano M, Romero-Puertas MC, Zabalza A, Corpas FJ, Gomez M, Del Rio LA, Sandalio LM (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ 29:1532–1544

    Article  PubMed  CAS  Google Scholar 

  • Romero-Puertas MC, McCarthy I, Sandalio LM, Palma JM, Corpas FJ, Gómez M, del Río LA (1999) Cadmium toxicity and oxidative metabolism of pea leaf peroxisomes. Free Radic Res 31(Suppl 1):25–31

    Article  Google Scholar 

  • Saito K (2004) Sulfur assimilatory metabolism: the long and smelling road. Plant Physiol 136:2443–2450

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433

    PubMed Central  CAS  PubMed  Google Scholar 

  • Salt DE, Kato N, Krämer U, Smith RD, Raskin I (2000) The role of root exudates in nickel hyperaccumulation and tolerance in accumulator and nonaccumulator species of Thlaspi. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soils and waters. CRC, Boca Raton, FL

    Google Scholar 

  • Schaaf G, Ludewig U, Erenoglu BE, Mori S, Kitahara T, von Wirén N (2004) ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals. J Biol Chem 279:9091–9096

    Article  CAS  PubMed  Google Scholar 

  • Schat H, Kalff MMA (1992) Are phytochelatins involved in differential metal tolerance or do they merely reflect metal-imposed strain? Plant Physiol 99:1475–1480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scheller HV, Huang B, Hatch E, Goldsbrough PB (1987) Phytochelatin synthesis and glutathione levels in response to heavy metals in tomato cells. Plant Physiol 85:1031–1035

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  PubMed  Google Scholar 

  • Sengupta D, Ramesh G, Mudalkar S, Kumar KRR, Kirti PB, Reddy AR (2012) Molecular cloning and characterization of γ-glutamyl cysteine synthetase (VrγECS) from roots of Vigna radiate (L.) Wilczek under progressive drought stress and recovery. Plant Mol Biol Rep 30:894–903

    Article  CAS  Google Scholar 

  • Seregin IV, Kozhevnikova AD (2008) Roles of root and shoot tissues in transport and accumulation of cadmium, lead, nickel, and strontium. Russ J Plant Physiol 55:1–22

    Article  CAS  Google Scholar 

  • Shahid M, Pourrut B, Dumat C, Nadeem M, Aslam M, Pinel E (2014) Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Rev Environ Contam Toxicol 232:1–44

    CAS  PubMed  Google Scholar 

  • Sherratt PJ, Hayes JD (2001) Glutathione S-transferases. In: Ioannides C (ed) Enzyme systems that metabolise drugs and other xenobiotics. Willey, New York

    Google Scholar 

  • Shigaki T, Rees I, Nakhleh L, Hirschi KD (2006) Identification of three distinct phylogenetic groups of CAX cation/proton antiporters. J Mol Evol 63:815–825

    Article  CAS  PubMed  Google Scholar 

  • Siedlecka A, Baszynaski T (1993) Inhibition of electron flow around photosystem I in chloroplasts of Cd-treated maize plants is due to Cd-induced iron deficiency. Physiol Plant 87:199–202

    Article  CAS  Google Scholar 

  • Sobrino-Plata J, Ortega-Villasante C, Flores-Cáceres ML, Escobar C, Del Campo FF, Hernández LE (2009) Differential alterations of antioxidant defenses as bioindicators of mercury and cadmium toxicity in alfalfa. Chemosphere 77:946–954

    Article  CAS  PubMed  Google Scholar 

  • Socha AL, Guerinot ML (2014) Mn-euvering manganese: the role of transporter gene family members in manganese uptake and mobilization in plants. Front Plant Sci 5:106

    Article  PubMed Central  PubMed  Google Scholar 

  • Sterckeman T, Perriguey J, Caël M, Schwartz C, Morel JL (2004) Applying a mechanistic model to cadmium uptake by Zea mays and Thlaspi caerulescens: consequences for the assessment of the soil quantity and quality factors. Plant Soil 262:289–302

    Article  CAS  Google Scholar 

  • Takahashi S, Murata N (2008) How do environmental stresses accelerate photo inhibition? Trends Plant Sci 13:178–182

    Article  CAS  PubMed  Google Scholar 

  • Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporters family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci USA 97:4991–4996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thomine S, Lelievre F, Debarbieux E, Schroeder JI, Barbier-Brygoo H (2003) AtNRAMP3, a multi specific vacuolar metal transporter involved in plant responses to iron deficiency. Plant J 34:685–695

    Article  CAS  PubMed  Google Scholar 

  • Vatamaniuk OK, Mari S, Lu YP, Rea PA (1999) AtPCS1, a phytochelatins synthase from Arabidopsis: isolation and in vitro reconstitution. Proc Natl Acad Sci USA 96:7110–7115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vert G, Grotz N, Dédaldéchamp F, Gaymard F, Guerinot ML, Briat JF, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Viehweger K (2014) How plants cope with heavy metals. Bot Stud 55:35

    Article  CAS  Google Scholar 

  • Wachter A, Wolf S, Steininger H, Bogs J, Rausch T (2005) Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: implications for the compartmentation of glutathione biosynthesis in the Brassicaceae. Plant J 41:15–30

    Article  CAS  PubMed  Google Scholar 

  • Wagner GJ (1993) Accumulation of cadmium in crop plants and its consequences to human health. Adv Agron 51:173–212

    Article  CAS  Google Scholar 

  • Wenzel WW, Bunkowski M, Puschenreiter M, Horak O (2003) Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil. Environ Pollut 123:131–138

    Article  CAS  PubMed  Google Scholar 

  • Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 77803:1–23

    Google Scholar 

  • Zagorchev L, Seal CE, Kranner I, Odjakova M (2013) A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 14:7405–7432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zechmann B, Müller M (2010) Subcellular compartmentation of glutathione in dicotyledonous plants. Protoplasma 246:15–24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang J, Zhao QZ, Duan GL, Huan YC (2010) Influence of sulphur on arsenic accumulation and metabolism in rice seedlings. Environ Exp Bot 72:34–40

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors apologize for the many colleagues who are not referenced in this work due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Inouhe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Inouhe, M. et al. (2015). General Roles of Phytochelatins and Other Peptides in Plant Defense Mechanisms Against Oxidative Stress/Primary and Secondary Damages Induced by Heavy Metals. In: Gupta, D., Palma, J., Corpas, F. (eds) Reactive Oxygen Species and Oxidative Damage in Plants Under Stress. Springer, Cham. https://doi.org/10.1007/978-3-319-20421-5_9

Download citation

Publish with us

Policies and ethics