Skip to main content

Fundamental Physics with the LAGEOS Satellites

  • Chapter
  • First Online:
Gravity: Where Do We Stand?
  • 1543 Accesses

Abstract

The space(time) around Earth is a good environment in order to perform tests of gravitational theories. According to Einstein’s view of gravitational phenomena, it is curved, mainly by the Earth mass–energy content. This (relatively) quiet dynamical environment enables a good reconstruction of a satellite (test mass) orbit, provided high-quality tracking data are available. This is the case of the LAGEOS satellites, built and launched mainly for geodetic and geodynamical purposes, but equally good for fundamental physics studies.

In this chapter a review will be presented of these studies, focusing on data, models and analysis strategies. Several recent and less recent results will be presented. General relativity once more appears as a very precise and effective theory for the gravitational phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a review of this very general issue see the chapter Gravity: Newtonian, post-Newtonian and General Relativistic by Clifford Will in this book and [5].

  2. 2.

    The weak-field condition considers the space-time curvature so small that the metric can be written as \(g_{\mu \nu } = \eta_{\mu \nu } + h_{\mu \nu }\) (Minkowski metric plus a “small” perturbation, \(|h_{\mu \nu }| \ll 1\)). The slow-motion condition requires \(v \ll c\). Given the relative smallness of the masses at play, as well as that of their speed when compared with that of light, this approximation of the theory is sufficient for the purpose.

  3. 3.

    This effect appears due to the chosen geocentric non-inertial reference system.

  4. 4.

    In first-order perturbation theory, two kinds of behavior for a given element can arise. The first is a term \(\propto \sin t\) or \(\cos t\); this is called periodic. The second is a term \(\propto t\) (or higher powers); this is called secular , since it tends to accumulate over time.

  5. 5.

    In any case, the secular (systematic) character of the relativistic signal causes it to appear above the noise upon integration in a sufficiently longer time.

  6. 6.

    LAGEOS has an almost circular orbit, with an eccentricity \(e_{I} \simeq 0.004\), a semimajor axis \(a_{I} \simeq 12270\) km, and an inclination over the Earth’s equator \(i_{I} \simeq 109.8^{\circ }\). The LAGEOS II corresponding elements are: \(e_{II} \simeq 0.014\), \(a_{II} \simeq 12162\) km and \(i_{II} \simeq 52.66^{\circ }\).

  7. 7.

    For the LAGEOSs the bin size amounts to 120 s.

  8. 8.

    In order to obtain a good reference orbit for the considered period, it has been performed a preliminary data reduction of laser range data with a modeling setup slightly different from the nominal one of Table 3. In particular, the radiation coefficient \(C_\textrm{R}\) has been estimated, together with corrections to polar motion and length of day. Moreover, empirical acceleration components in the three Gauss directions have been added. The combined estimate led to the reported 1–2 cm level in range. Of course, this slight overestimation comes at the price of some aliasing: Therefore, the results of the analysis could not be directly used for the relativity signal recovery.

  9. 9.

    IERS is the international organization in charge of maintaining the reference frames used in astronomy, geodesy, and geophysics.

  10. 10.

    We use here the normalized coefficients \(\bar {C}_{l0}\) instead of the non-normalized \(C_{l0}\) or the \(J_l\). We remember that \(J_2 = -C_{20} = -\sqrt {5}\bar {C}_{20}\).

  11. 11.

    We consider only the quadrupolar part of this classical precession.

  12. 12.

    In [24] it is shown that the residuals obtained with their method are in fact rates.

  13. 13.

    In writing this equation, we neglect higher-degree multipoles and other sources of perturbation for the node. We can safely do that since we assume them sufficiently well-modeled in the orbit determination setup, in such a way that the neglected effects are small. How well this assumption holds is determined by the measurement error budget.

  14. 14.

    In fact, in the post-Newtonian framework \(\mu \,=\,(1\,+\,\gamma )/2\), with \(\gamma \) the PPN parameter quantifying how much space curvature is produced by unit rest mass; see [5].

  15. 15.

    In fact, this equals to admit no a priori knowledge on the amplitude of Lense–Thirring effect.

  16. 16.

    The reported value has been obtained fitting the combined residuals with a secular trend plus ten periodic terms.

References

  1. Cohen SC, King RW, Kolenkiewicz R, Rosen RD, Schutz BE. LAGEOS scientific results. J Geophys Res. 1985;90:9215–438. doi:10.1029/JB090iB11p09215.

    Article  ADS  Google Scholar 

  2. Xu G. Sciences of geodesy - I; 2010.

    Google Scholar 

  3. Xu G. Sciences of geodesy - II. Innovations and future developments; 2013.

    Google Scholar 

  4. Ciufolini I, Wheeler JA. Gravitation and inertia. Princeton series in Physics. Princeton: Princeton University Press; 1995.

    MATH  Google Scholar 

  5. Will CM. The confrontation between general relativity and experiment. Living Rev Relativ. 2006;9:3.

    ADS  Google Scholar 

  6. Huang C, Ries JC, Tapley BD, Watkins MM. Relativistic effects for near-earth satellite orbit determination. Celest Mech Dyn Astron. 1990;48:167–85. doi:10.1007/BF00049512.

    ADS  MATH  Google Scholar 

  7. Einstein A. Die Grundlage der allgemeinen Relativitätstheorie. Ann Phys. 1916;354:769–822. doi:10.1002/andp.19163540702.

    Article  Google Scholar 

  8. Rubincam DP. General relativity and satellite orbits—the motion of a test particle in the Schwarzschild metric. Celest Mech. 1977;15:21–33. doi:10.1007/BF01229045.

    Article  ADS  Google Scholar 

  9. de Sitter W. On Einstein’s theory of gravitation and its astronomical consequences . Second paper. Mon Not R Astron Soc. 1916;77:155–84.

    Google Scholar 

  10. Lense J, Thirring H. Über den Einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Phys Z. 1918;19:156.

    Google Scholar 

  11. Mashhoon B, Hehl FW, Theiss DS. On the gravitational effects of rotating masses—the Thirring-Lense papers. Gen Rel Grav. 1984;16:711–50. doi:10.1007/BF00762913.

    Article  ADS  MathSciNet  Google Scholar 

  12. Soffel MH. Relativity in astrometry, celestial mechanics and geodesy; 1989. Berlin, Heidelberg, New York: Springer-Verlag

    Google Scholar 

  13. Damour T, Piazza F, Veneziano G. Violations of the equivalence principle in a dilaton-runaway scenario. Phys Rev. 2002;D66:046007. doi:10.1103/PhysRevD.66.046007.

    ADS  MathSciNet  Google Scholar 

  14. Fischbach E, Sudarsky D, Szafer A, Talmadge C, Aronson SH. Reanalysis of the Eotvos experiment. Phys Rev Lett. 1986;56:3–6. doi:10.1103/PhysRevLett.56.3.

    Article  ADS  Google Scholar 

  15. Fischbach E, Gillies GT, Krause DE, Schwan JG, Talmadge C. Non-Newtonian gravity and new weak forces: an index of measurements and theory. Metrologia. 1992;29:213–60. doi:10.1088/0026-1394/29/3/001.

    Article  ADS  Google Scholar 

  16. Goldhaber AS, Nieto MM. Photon and graviton mass limits. Rev Mod Phys. 2010;82:939–79. doi:10.1103/RevModPhys.82.939.

    Article  ADS  Google Scholar 

  17. Gundlach JH, Schlamminger S, Wagner T. Laboratory tests of the equivalence principle at the University of Washington. Space Sci Rev. 2009;148:201–16. doi:10.1007/s11214-009-9609-3.

    Article  ADS  Google Scholar 

  18. Lucchesi DM. LAGEOS II perigee shift and Schwarzschild gravitoelectric field. Phys Lett A. 2003;318:234–40. doi:10.1016/S0375-9601(03)01213-1.

    Article  ADS  Google Scholar 

  19. Lucchesi DM. The LAGEOS satellites orbit and Yukawa-like interactions. Adv Space Res. 2011;47:1232–37. doi:10.1016/j.asr.2010.11.029.

    Article  ADS  Google Scholar 

  20. Pearlman MR, Degnan JJ, Bosworth JM. The international laser ranging service. Adv Space Res. 2002;30:135–43.

    Article  ADS  Google Scholar 

  21. Degnan JJ. Satellite laser ranging: current status and future prospects. IEEE Trans Geosci Remote Sensing. 1985;23:398–413. doi:10.1109/TGRS.1985.289430.

    Article  ADS  Google Scholar 

  22. Milani A, Nobili AM, Farinella P. Non-gravitational perturbations and satellite geodesy. Bristol: Adam Hilger; 1987.

    MATH  Google Scholar 

  23. Milani A, Gronchi GF. Theory of orbit determination. Cambridge: Cambridge University Press; 2010.

    MATH  Google Scholar 

  24. Lucchesi DM, Balmino G. The LAGEOS satellites orbital residuals determination and the Lense Thirring effect measurement. Plan Space Sci. 2006;54:581–93. doi:10.1016/j.pss.2006.03.001.

    Article  ADS  Google Scholar 

  25. Pavlis DE, et al. GEODYN II operations manual. NASA GSFC; 1998.

    Google Scholar 

  26. Putney B, Kolenkiewicz R, Smith D, Dunn P, Torrence MH. Precision orbit determination at the NASA Goddard Space Flight Center. Adv Space Res. 1990;10:197–203. doi:10.1016/0273-1177(90)90350-9.

    Article  ADS  Google Scholar 

  27. Ciufolini I, Lucchesi D, Vespe F, Mandiello A. Measurement of dragging of inertial frames and gravitomagnetic field using laser-ranged satellites. Nuovo Cim A. 1996;109:575–90. doi:10.1007/BF02731140.

    Article  ADS  Google Scholar 

  28. Ciufolini I, Lucchesi D, Vespe F, Chieppa F. Measurement of gravitomagnetism. Europhys Lett. 1997;39:359–64. doi:10.1209/epl/i1997-00362-7.

    Article  ADS  Google Scholar 

  29. Ciufolini I, Pavlis E, Chieppa F, Fernandes-Vieira E, Perez-Mercader J. Test of general relativity and measurement of the Lense-Thirring effect with two Earth satellites. Science. 1998;279:2100–03. doi:10.1126/science.279.5359.2100.

    Article  ADS  Google Scholar 

  30. Ciufolini I, Pavlis EC. A confirmation of the general relativistic prediction of the Lense-Thirring effect. Nature. 2004;431:958–60. doi:10.1038/nature03007.

    Article  ADS  Google Scholar 

  31. Ciufolini I, Pavlis EC, Peron R. Determination of frame-dragging using Earth gravity models from CHAMP and GRACE. New Astron. 2006;11:527–50. doi:10.1016/j.newast.2006.02.001.

    Article  ADS  Google Scholar 

  32. Lucchesi DM, Peron R. Accurate measurement in the field of the Earth of the general-relativistic precession of the LAGEOS II pericenter and new constraints on non-Newtonian gravity. Phys Rev Lett. 2010;105(23):231103. doi:10.1103/PhysRevLett.105.231103.

    Article  ADS  Google Scholar 

  33. Peron R. Einstein is still right: new tests of gravitational dynamics in the field of the Earth. Nuovo Cim C. 2013;36:125–34. doi:10.1393/ncc/i2013-11493-6.

    Google Scholar 

  34. Lucchesi DM, Peron R. LAGEOS II pericenter general relativistic precession (1993–2005): error budget and constraints in gravitational physics. Phys Rev D. 2014;89(8):082002. doi:10.1103/PhysRevD.89.082002.

    Article  ADS  Google Scholar 

  35. Lucchesi DM. The LAGEOS satellites orbital residuals determination and the way to extract gravitational and non-gravitational unmodeled perturbing effects. Adv Space Res. 2007;39:1559–75. doi:10.1016/j.asr.2007.04.040.

    Article  ADS  Google Scholar 

  36. Sinclair AT. Data screening and normal point formation—restatement of Herstmonceux Normal Point Recommendation; 1997. http://ilrs.gsfc.nasa.gov/products_formats_procedures/normal_point/np_algo.html. Accessed 28 Sep 2015

  37. Montenbruck O, Gill E. Satellite orbits. Models, methods and applications. Berlin: Springer; 2000.

    Book  MATH  Google Scholar 

  38. Nordtvedt K. Equivalence principle for massive bodies. II. Theory. Phys Rev. 1968;169:1017–25. doi:10.1103/PhysRev.169.1017.

    Article  ADS  Google Scholar 

  39. Will CM. Theoretical frameworks for testing relativistic gravity. II. Parametrized post-Newtonian hydrodynamics, and the Nordtvedt effect. Astrophys J. 1971;163:611–28. doi:10.1086/150804.

    Article  ADS  MathSciNet  Google Scholar 

  40. Will CM, Nordtvedt K Jr. Conservation laws and preferred frames in relativistic gravity. I. Preferred-frame theories and an extended PPN formalism. Astrophys J. 1972;177:757–74. doi:10.1086/151754.

    Article  ADS  MathSciNet  Google Scholar 

  41. Nordtvedt K Jr., Will CM. Conservation laws and preferred frames in relativistic gravity. II. Experimental evidence to rule out preferred-frame theories of gravity. Astrophys J. 1972;177:775–92. doi:10.1086/151755.

    Article  ADS  MathSciNet  Google Scholar 

  42. McCarthy DD, Petit G. IERS conventions. IERS Technical Note 32, IERS 2004; 2003.

    Google Scholar 

  43. Reigber C, Schmidt R, Flechtner F, König R, Meyer U, Neumayer KH, Schwintzer P, Zhu SY. An Earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S. J Geodyn. 2005;39:1–10. doi:10.1016/j.jog.2004.07.001.

    Article  Google Scholar 

  44. Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR. The development of the joint nasa gsfc and the national imagery and mapping agency (nima) geopotential model egm96. Technical Paper NASA/TP-1998-206861. NASA GSFC; 1998.

    Google Scholar 

  45. Ray RD. A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99.2. Technical Paper NASA/TM-1999-209478. Maryland: Goddard Space Flight Center, Greenbelt; 1999.

    Google Scholar 

  46. Standish EM, Newhall XX, Williams JG, Folkner WM. JPL planetary and lunar ephemerides, DE403/LE403. Tech Rep JPL IOM 314.10-127; 1995.

    Google Scholar 

  47. Rubincam DP, Knocke P, Taylor VR, Blackwell S. Earth anisotropic reflection and the orbit of LAGEOS. J Geophys Res. 1987;92:11662–8. doi:10.1029/JB092iB11p11662.

    Article  ADS  Google Scholar 

  48. Altamimi Z, Sillard P, Boucher C. ITRF2000: a new release of the International Terrestrial Reference Frame for earth science applications. J Geophys Res. 2002;107:2214. doi:10.1029/2001JB000561.

    Article  Google Scholar 

  49. Boucher C, Altamimi Z, Sillard P, Feissel-Vernier M. The ITRF2000. IERS Technical Note 31, IERS; 2004.

    Google Scholar 

  50. International Earth Rotation Service. EOP Combined Series EOP C04. Tech rep. IERS.

    Google Scholar 

  51. Bertotti B, Farinella P, VokrouhlickĂ˝ D. Physics of the solar system. Dynamics and evolution, space physics, and spacetime structure. Astrophysics and Space Science Library. 2003;293. Dordrecht:Kluwer Academic Publishers

    Google Scholar 

  52. Hofmann-Wellenhof B, Moritz H. Physical geodesy. Berlin: Springer; 2006.

    Google Scholar 

  53. Melchior P. The tides of the planet Earth. New York:Pergamon Press; 1981.

    Google Scholar 

  54. Lambeck K. Tidal dissipation in the oceans: astronomical, geophysical and oceanographic consequences. Roy Soc Lon Philos Trans Ser A. 1977;287:545–94. doi:10.1098/rsta.1977.0159.

    Article  ADS  Google Scholar 

  55. Schwiderski EW. Ocean tides, part i: global ocean tidal equations. Mar Geodes. 1980;3(1–4):161–217. doi:10.1080/01490418009387997. http://www.tandfonline.com/doi/abs/10.1080/01490418009387997.

    Article  Google Scholar 

  56. Schwiderski EW. Ocean tides, part ii: a hydrodynamical interpolation model. Mar Geodes. 1980;3(1–4):219–55. doi:10.1080/01490418009387998. http://www.tandfonline.com/doi/abs/10.1080/01490418009387998.

    Article  Google Scholar 

  57. Wahr JM. A normal mode expansion for the forced response of a rotating earth. Geophys J R Astron Soc. 1981;64:651–75.

    Article  ADS  MATH  Google Scholar 

  58. Wahr JM. Body tides on an elliptical, rotating, elastic and oceanless earth. Geophys J R Astron Soc. 1981;64:677–703.

    Article  ADS  MATH  Google Scholar 

  59. Wang R. Effect of rotation and ellipticity on Earth tides. Geophys J R Astron Soc. 1994;117:562–5. doi:10.1111/j.1365-246X.1994.tb03953.x.

    Article  Google Scholar 

  60. Yoder CF, Williams JG, Parke ME. Tidal variations of Earth rotation. J Geophys Res. 1981;86:881–91. doi:10.1029/JB086iB02p00881.

    Article  ADS  Google Scholar 

  61. Cheng MK, Shum CK, Tapley BD. Determination of long-term changes in the Earth’s gravity field from satellite laser ranging observations. J Geophys Res. 1997;102:22377–90. doi:10.1029/97JB01740.

    Article  ADS  Google Scholar 

  62. Wu B, Bibo P, Zhu Y, Hsu H. Determination of love numbers using satellite laser ranging. J Geodetic Soc Jpn. 2001;47:174–80.

    Google Scholar 

  63. Lucchesi DM. Reassessment of the error modelling of non-gravitational perturbations on LAGEOS II and their impact in the Lense-Thirring determination. Part I. Plan Space Sci. 2001;49:447–63. doi:10.1016/S0032-0633(00)00168-9.

    Article  ADS  Google Scholar 

  64. Lucchesi DM. Reassessment of the error modelling of non-gravitational perturbations on LAGEOS II and their impact in the Lense-Thirring derivation-Part II. Plan Space Sci. 2002;50:1067–1100. doi:10.1016/S0032-0633(02)00052-1.

    Google Scholar 

  65. Andrés de la Fuente JI. Enhanced modelling of LAGEOS non-gravitational perturbations. Ph.D. thesis. Delft University Press; 2007.

    Google Scholar 

  66. Lucchesi DM, Ciufolini I, Andrés JI, Pavlis EC, Peron R, Noomen R, Currie DG. LAGEOS II perigee rate and eccentricity vector excitations residuals and the Yarkovsky-Schach effect. Plan Space Sci. 2004;52:699–710. doi:10.1016/j.pss.2004.01.007.

    Google Scholar 

  67. Afonso G, Barlier F, Mignard F, Carpino M, Farinella P. Orbital effects of LAGEOS seasons and eclipses. Ann Geophysicae. 1989;7:501–14.

    ADS  Google Scholar 

  68. Farinella P, Nobili AM, Barlier F, Mignard F. Effects of thermal thrust on the node and inclination of LAGEOS. Astron Astrophys. 1990;234:546–54.

    ADS  Google Scholar 

  69. Scharroo R, Wakker KF, Ambrosius BAC, Noomen R. On the along-track acceleration of the Lageos satellite. J Geophys Res. 1991;96:729–40. doi:10.1029/90JB02080.

    Article  ADS  Google Scholar 

  70. Slabinski VJ. A numerical solution for Lageos thermal thrust: the rapid-spin case. Celest Mech Dyn Astron. 1996;66:131–79. doi:10.1007/BF00054962.

    Article  ADS  Google Scholar 

  71. Rubincam DP, Currie DG, Robbins JW. LAGEOS I once-per-revolution force due to solar heating. J Geophys Res. 1997;102:585–90. doi:10.1029/96JB02851.

    Article  ADS  Google Scholar 

  72. Farinella P, Vokrouhlický D. Thermal force effects on slowly rotating, spherical artificial satellites-I. Solar Heating Plan Space Sci. 1996;44:1551–61. doi:10.1016/S0032-0633(96)00073-6.

    Article  ADS  Google Scholar 

  73. Rubincam DP. LAGEOS orbit decay due to infrared radiation from Earth. J Geophys Res. 1987;92:1287–94. doi:10.1029/JB092iB02p01287.

    Article  ADS  Google Scholar 

  74. Rubincam DP. Yarkovsky thermal drag on LAGEOS. J Geophys Res. 1988;93:13805–10. doi:10.1029/JB093iB11p13805.

    Article  ADS  Google Scholar 

  75. Rubincam DP. Drag on the Lageos satellite. J Geophys Res. 1990;95:4881–86. doi:10.1029/JB095iB04p04881.

    Article  ADS  Google Scholar 

  76. Bertotti B, Iess L. The rotation of Lageos. J Geophys Res. 1991;96:2431–40. doi:10.1029/90JB01949.

    Article  ADS  Google Scholar 

  77. Habib S, Holz DE, Kheyfets A, Matzner RA, Miller WA, Tolman BW. Spin dynamics of the LAGEOS satellite in support of a measurement of the Earth’s gravitomagnetism. Phys Rev D. 1994;50:6068–79. doi:10.1103/PhysRevD.50.6068.

    Article  ADS  Google Scholar 

  78. Williams SE. The Lageos satellite: a comprehensive spin model and analysis. Ph.D. thesis, NCSU PhD Dissertation, pp. i–xii. 2002;1-252.

    Google Scholar 

  79. Ries J, Eanes R, Watkins MM. Spin vector influence on LAGEOS ephemeris. Presented at the Second Meeting of IAG Special Study Group 2.130, Baltimore; 1993.

    Google Scholar 

  80. Farinella, P., Vokrouhlicky, D., Barlier, F.: The rotation of LAGEOS and its long-term semimajor axis decay: a self-consistent solution. J Geophys Res. 1996;101:17861–72.

    Article  ADS  Google Scholar 

  81. Vokrouhlický D. Non-gravitational effects and LAGEOS’ rotation. Geophys Res Lett. 1996;23:3079–82. doi:10.1029/96GL03025.

    Article  ADS  Google Scholar 

  82. Andrés JI, Noomen R, Bianco G, Currie DG, Otsubo T. Spin axis behavior of the LAGEOS satellites. J Geophys Res. 2004;109:6403. doi:10.1029/2003JB002692.

    Article  Google Scholar 

  83. Andrés JI, Noomen R, Vecellio None S. Numerical simulation of the LAGEOS thermal behavior and thermal accelerations. J Geophys Res. 2006;111:B09406. doi:10.1029/2005JB003928.

    ADS  Google Scholar 

  84. Kucharski D, Kirchner G, Schillak S, Cristea E. Spin determination of LAGEOS-1 from kHz laser observations. Adv Space Res. 2007;39:1576–81. doi:10.1016/j.asr.2007.02.045.

    Article  ADS  Google Scholar 

  85. Kucharski D, Kirchner G, Koidl F, Cristea E. 10 years of LAGEOS-1 and 15 years of LAGEOS-2 spin period determination from SLR data. Adv Space Res. 2009;43:1926–30. doi:10.1016/j.asr.2009.01.019.

    Article  ADS  Google Scholar 

  86. Vokroublický D, Farinella P. Thermal force effects on slowly rotating, spherical artificial satellites-II. Earth infrared heating. Plan Space Sci. 1997;45:419–25. doi:10.1016/S0032-0633(96)00147-X.

    Article  ADS  Google Scholar 

  87. Kaula WM. Theory of satellite geodesy. Applications of satellites to geodesy. Blaisdell; 1966.

    Google Scholar 

  88. Iorio L. The impact of the static part of the Earth’s gravity field on some tests of general relativity with satellite laser ranging. Celest Mech Dyn Astron. 2003;86:277–94.

    Google Scholar 

  89. Ciufolini I. On a new method to measure the gravitomagnetic field using two orbiting satellites. Nuovo Cim A. 1996;109:1709–20. doi:10.1007/BF02773551.

    Article  ADS  Google Scholar 

  90. Peron R. On the use of combinations of laser-ranged satellites orbital residuals to test relativistic effects around Earth. Mon Not Roy Astron Soc. 2013;432:2591–5. doi:10.1093/mnras/stt621.

    Article  ADS  Google Scholar 

  91. Cox CM, Chao BF. Detection of a large-scale mass redistribution in the terrestrial system since 1998. Science. 2002;297:831–3. doi:10.1126/science.1072188.

    Article  ADS  Google Scholar 

  92. Cugusi L, Proverbio E. Relativistic effects on the motion of Earth’s artificial satellites. Astron Astrophys. 1978;69:321–5.

    ADS  Google Scholar 

  93. Ciufolini I. Measurement of the Lense-Thirring drag on high-altitude, laser-ranged artificial satellites. Phys Rev Lett. 1986;56:278–81. doi:10.1103/PhysRevLett.56.278.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author would like to thank David M. Lucchesi (Istituto di Astrofisica e Planetologia Spaziali, IAPS-INAF). He acknowledges the ILRS for providing high-quality laser ranging data of the two LAGEOS satellites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Peron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Peron, R. (2016). Fundamental Physics with the LAGEOS Satellites. In: Peron, R., Colpi, M., Gorini, V., Moschella, U. (eds) Gravity: Where Do We Stand?. Springer, Cham. https://doi.org/10.1007/978-3-319-20224-2_4

Download citation

Publish with us

Policies and ethics