Skip to main content
Log in

A numerical solution for lageos thermal thrust: The rapid-spin case

  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We report the results of detailed numerical calculations of the thermal thrust on the rapidly-spinning LAGEOS spacecraft. This thrust results from anisotropic emission of thermal radiation from its surface. LAGEOS is a good test case for such calculations because of its relatively simple structure and because precise orbit determinations based on laser ranging give observed thrust effects for comparison.

The numerical integration includes the varying heating over spacecraft-surface latitude from earth infrared radiation (for the earth-Yarkovsky force) and the varying solar heating as the spacecraft moves in and out of the earth's shadow (for the solar-Yarkovsky force). The computation allows for the poor thermal coupling between the spacecraft structure and individual surface elements (the fused-silica cube-corner reflectors and their aluminum retainer rings), and the poor conduction between structural hemispheres.

A Fourier analysis of the computed force with respect to orbital longitude gives the important frequency components for the computation of long-term orbit perturbations. Empirical formulas fit to the numerical results accurately express the component amplitudes as simple functions of spin axis orbital latitude, the sun aspect angle from the spin axis, and the fraction of the orbit period spent in the earth's shadow. These results. based on first principles, are similar to those from simplified theories of the thermal thrust. but add the following new feature: The decrease in orbit-averaged satellite temperature when the orbit intersects the earth's shadow decreases the earth-Yarkovsky drag by ∼ 0.14 pm/s2 from the no-eclipse value.

The development of spacecraft-element thermal parameters is the most difficult part of the analysis; the paper tabulates the parameters that should be directly measured before the launch of future geodynamic satellites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afonso, G., Barlier, F., Berger, C., Mignard, F. and Walch, J. J.: 1985, ‘Reassessment of the Charge and Neutral Drag of LAGEOS and its Geophysical Implications’. J. Geophys. Res. 90, 9381–9398.

    Google Scholar 

  • Afonso, G., Barlier, F., Carpino, M., Farinella, P., Mignard, F., Milani, A. and Nobili, A. M.: 1989. ‘Orbital Effects of LAGEOS Seasons and Eclipses’, Ann. Geophysicae 7, 501–514. The factor f0 should be deleted from their equation (36); the factor (K cos ζ) should be added to the right side of their equations (38).

    Google Scholar 

  • Anselmo, L., Farinella, P., Milani, A. and Nobili, A. M.: 1983. ‘Effects of the Earth-Reflected Sunlight on the Orbit of the LAGEOS Satellite’. Astron. Astrophys. 117, 3–8.

    Google Scholar 

  • Bendix Aerospace Systems Division: 1974. ‘Laser Geodynamic Satellite Thermal/Optical/Vibrational Analyses and Testing. Final Report. vol. II’, Tech. Rep. DR MA-04, Ann Arbor. MI, Oct.

  • nCohen, S. C. and Smith, D. E.: 1985. ‘LAGEOS Scientific Results: Introduction’. J Geophys. Res. 90, 9217–9220.

    Google Scholar 

  • Farinella, P., Nobili, A. M., Barlier, F. and Mignard, F.: 1990, ‘Effects of Thermal Thrust on the Node and Inclination of LAGEOS’, Astron. Astrophys. 234, 546–554.

    Google Scholar 

  • Fried, E. and Costello, F. A.: 1962, ‘Interface Thermal Contact Resistance Problem in Space Vehicles’. ARS Jour. 32, 237–243.

    Google Scholar 

  • Gray, D. E.: 1972, American Institute of Physics Handbook (3rd ed.), McGraw-Hill, New York.

    Google Scholar 

  • Hoffman, J. D.: 1952. ‘The Specific Heat and Degree of Crystallinity of Polychlorotrifluoroethylene’, Amer Chem. Soc. J. 74, 1696–1700.

    Google Scholar 

  • Hyman, N. L.: 1981, ‘Solar Absorptance Degradation of the COMSTAR Satellite Centimeter-Wave Beacon Thermal Radiators’. COMSAT Tech. Rev. 11, 159–177.

    Google Scholar 

  • Johnson, C. W., Lundquist, C. A. and Zurasky, J. L.: 1976. ‘The LAGEOS Satellite’. paper presented at the XXVIIth Congress. Int. Astronaut. Fed.. Anaheim. CA., 10–16 Oct.

  • Kelly, W. H. and Reisenweber, J. H.: 1985, ‘Experimental Measurement of Solar Absorptance of an Intelsat VI OSR Radiator as a Function of Incidence Angle’. COMSAT Tech. Rev. 15, 259–275.

    Google Scholar 

  • Milani, A., Nobili, A. M. and Farinella, P.: 1987. Non-Gravitational Perturbations and Satellite Geodesy. Adam Hilger, Bristol, UK, sec. 5.2. pp. 87–93.

    Google Scholar 

  • National Aeronautics and Space Administration: 1975, ‘LAGEOS Phase B Technical Report’, NASA Tech. Memo TM X-64915, 8 Feb.

  • NASA Press Kit: 1976, ‘LAGEOS’, Release No. 76–67, National Aeronautics and Space Administration, Washington. DC.

    Google Scholar 

  • Pence, W. K. and Grant, T. J.: 1982. ‘α s Measurements of Thermal Control Coatings of Navstar Global Positioning System Spacecraft’, Spacecraft Radiative Transfer and Temperature Control. Progress in Astronautics and Aeronautics, vol. 83 (Horton, T. E., Ed.). AIAA, New York. pp. 234–246.

    Google Scholar 

  • Rubincam, D. P.: 1980, ‘Atmospheric Drag as the Cause of the Secular Decrease in the Semimajor Axis of LAGEOS's Orbit’, Geophys. Res. Let. 7, 468–470.

    Google Scholar 

  • Rubincam, D. P.: 1982. ‘On the Secular Decrease in the Semimajor Axis of LAGEOS's Orbit’, Cel. Mech. 26, 361–382.

    Google Scholar 

  • Rubincam, D. P.: 1987, ‘LAGEOS Orbit Decay Due to Infrared Radiation from Earth’, J. Geophys. Res. 92, 1287–1294.

    Google Scholar 

  • Rubincam, D. P.: 1988, ‘Yarkovsky Thermal Drag on LAGEOS’, J. Geophys. Res. 93, 13,805–13,810.

    Google Scholar 

  • Rubincam, D. P.: 1990, ‘Drag on the LAGEOS Satellite’, J. Geophys. Res. 95, 4881–4886.

    Google Scholar 

  • Scharroo, R., Wakker, K. F., Ambrosius, B. A. C. and Noomen, R.: 1991, ‘On the Along-Track Acceleration of the LAGEOS Satellite’, J. Geophys. Res. 96, 729–740.

    Google Scholar 

  • Schramm, R. E., Clark. A. F. and Read, R. P.: 1973. A Compilation and Evaluation of Mechanical, Thermal; and Electrical Properties of Selected Polymers, National Bureau of Standards Monograph 132. US Department of Commerce, Sept. [NTIS COM-73-50886].

  • Slabinski, V. J.: 1988. ‘LAGEOS Acceleration Due to Intermittent Solar Heating During Eclipse Periods’, ‘Paper 3.9 presented at the 19th meeting of the Division on Dynamical Astronomy — American Astronomical Society. Gaithersburg, MD, 25–26 July 1988. Abstract in Bull. Am. Astron. Soc. 20, 902.

  • Stephens, G. L., Campbell, G. G. and Vonder Haar, T. H.: 1981, ‘Earth Radiation Budgets’, J. Geophys. Res. 86. 9739–9760.

    Google Scholar 

  • Torrence, M. H., Dunn, P. J. and Kolenkiewicz, R.: 1995, ‘Characteristics of the LAGEOS and Etalon Satellites Orbits’. Adv. Space Res. 16, No. 12, 21–24.

    Google Scholar 

  • Vespe, F.: 1993. ‘Direct- and Indirect-Solar-Radiation Effects Acting on LAGEOS and the Gravitomagnetic Experiment’. Il Nuovo Cimento 108B, 587–601.

    Google Scholar 

  • Wong, C.: 1978, ‘Watching the Earth Move from Space’. Sky and Tel. 55, 198–202.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slabinski, V.J. A numerical solution for lageos thermal thrust: The rapid-spin case. Celestial Mech Dyn Astr 66, 131–179 (1996). https://doi.org/10.1007/BF00054962

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00054962

Key words

Navigation