Skip to main content

The Effects of Anesthetic Agents on Cardiac Function

  • Chapter
Handbook of Cardiac Anatomy, Physiology, and Devices

Abstract

The perioperative management of patients with complex medical conditions, while providing cardiovascular stability, continues to offer both challenges and new developments. Furthermore, patients with cardiovascular disease or associated comorbidities such as obesity, diabetes, or pulmonary disease may require special attention during general anesthesia. Advancements in the field of anesthesiology include new anesthesia medications, medical equipment and/or surgical technology, and anesthetic and surgical techniques. The goal of this chapter is to familiarize the reader with commonly employed clinical methodologies and anesthetics, with particular attention to the potential influences on the cardiovascular system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. American Society of Anesthesiologists Task Force (2011) Practice guidelines for preoperative fasting and the use of pharmacologic agents to reduce the risk of pulmonary aspiration: application to healthy patients undergoing elective procedures. Anesthesiology 114:495–511

    Article  Google Scholar 

  2. Continuum of Depth of Sedation: Definition of General Anesthesia and Levels of Sedation/Analgesia. ASA Standards, Guidelines and Statements. American Society of Anesthesiologists. (2014)

    Google Scholar 

  3. Eger EI II (1974) Uptake of inhaled anesthetics: the alveolar to impaired anesthetic difference. In: Eger EI II (ed) Anesthetic uptake and action. Williams & Wilkins, Baltimore, p 77

    Google Scholar 

  4. Stevens W, Cromwell T, Halsey M et al (1971) The cardiovascular effects of a new inhalation anesthetic, forane, in human volunteers at constant arterial carbon dioxide tension. Anesthesiology 35:8–16

    Article  CAS  PubMed  Google Scholar 

  5. Eger EI II, Smith N, Stoelting R (1970) Cardiovascular effects of halothane in man. Anesthesiology 32:396–409

    Article  PubMed  Google Scholar 

  6. Weiskopf R, Cahalan M, Eger EI II et al (1991) Cardiovascular actions of desflurane in normocarbic volunteers. Anesth Analg 73:143–156

    CAS  PubMed  Google Scholar 

  7. Holaday D, Smith F (1981) Clinical characteristics and biotransformation of sevoflurane in healthy human volunteers. Anesthesiology 54:100–106

    Article  CAS  PubMed  Google Scholar 

  8. Pavlin EG, Su JY (1994) Cardiopulmonary pharmacology. In: Miller RD (ed) Anesthesia. Churchill Livingstone, Philadelphia, p 145

    Google Scholar 

  9. Muzi M, Ebert TJ (1995) A comparison of baroreflex sensitivity during isoflurane and desflurane anesthesia in humans. Anesthesiology 82:919–925

    Article  CAS  PubMed  Google Scholar 

  10. Duke PC, Townes D, Wade JG (1977) Halothane depresses baroreflex control of heart rate in man. Anesthesiology 46:184–187

    Article  CAS  PubMed  Google Scholar 

  11. Korly KJ, Ebert TJ, Vucins E et al (1984) Baroreceptor reflex control of heart rate during isoflurane anesthesia in humans. Anesthesiology 60:173–179

    Article  Google Scholar 

  12. Atlee JL, Bosnjak ZJ (1990) Mechanisms for cardiac dysrhythmias during anesthesia. Anesthesiology 72:347–374

    Article  PubMed  Google Scholar 

  13. Navarro R, Weiskopf RB, Moore MA et al (1994) Humans anesthetized with sevoflurane or isoflurane have similar arrhythmic response to epinephrine. Anesthesiology 80:545–549

    Article  CAS  PubMed  Google Scholar 

  14. Moore MA, Weiskopf RB, Eger EI et al (1994) Arrhythmogenic doses of epinephrine are similar during desflurane or isoflurane anesthesia in humans. Anesthesiology 79:943–947

    Article  Google Scholar 

  15. Johnston PR, Eger EI, Wilson C (1976) A comparative interaction of epinephrine with enflurane, isoflurane, and halothane in man. Anesth Analg 55:709–712

    Article  CAS  PubMed  Google Scholar 

  16. Crystal GJ, Khoury E, Gurevicius J, Salem MR (1995) Direct effects of halothane on coronary blood flow, myocardial oxygen consumption, and myocardial segmental shortening in in situ canine hearts. Anesth Analg 80:256–262

    CAS  PubMed  Google Scholar 

  17. Crystal GJ, Salem MR (2003) Isoflurane causes vasodilation in the coronary circulation. Anesthesiology 98:1030

    Article  PubMed  Google Scholar 

  18. Priebe H, Foex P (1987) Isoflurane causes regional myocardial dysfunction in dogs with critical coronary artery stenoses. Anesthesiology 66:293–300

    Article  CAS  PubMed  Google Scholar 

  19. Cason BA, Verrier ED, London MJ et al (1987) Effects of isoflurane and halothane on coronary vascular resistance and collateral myocardial blood flow: their capacity to induce coronary steal. Anesthesiology 67:665–675

    Article  CAS  PubMed  Google Scholar 

  20. Kersten JR, Brayer AP, Pagel PS et al (1994) Perfusion of ischemic myocardium during anesthesia with sevoflurane. Anesthesiology 81:995–1004

    Article  CAS  PubMed  Google Scholar 

  21. Eger E (1994) New inhaled anesthetics. Anesthesiology 80:906–922

    Article  CAS  PubMed  Google Scholar 

  22. Pagel PS, Kersten JR, Farber NE, Warltier DC (2005) Cardiovascular Pharmacology. In: Miller RD (ed) Miller’s Anesthesia. Churchill Livingstone, Philadelphia, p 194

    Google Scholar 

  23. Rivenes SM, Lewin MB, Stayer SA et al (2001) Cardiovascular effects of sevoflurane, isoflurane, halothane, and fentanyl-midazolam in children with congenital heart disease. Anesthesiology 94:223–229

    Article  CAS  PubMed  Google Scholar 

  24. Stoelting RK (ed) (1999) Pharmacology and physiology in anesthetic practice, 3rd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  25. Muzi M, Ebert TJ, Hope WG et al (1996) Site(s) mediating sympathetic activation with desflurane. Anesthesiology 85:737–747

    Article  CAS  PubMed  Google Scholar 

  26. Shankar V, Churchwell KB, Deshpande JK (2006) Isoflurane therapy for severe refractory status asthmaticus in children. Intensive Care Med 32:927–933

    Article  CAS  PubMed  Google Scholar 

  27. Warltier DC, Wathiqui MH, Kampine JP et al (1988) Recovery of contractile function of stunned myocardium in chronically instrumented dogs is enhanced by halothane or isoflurane. Anesthesiology 69:552–565

    Article  CAS  PubMed  Google Scholar 

  28. Marijic J, Stowe DF, Turner LA et al (1990) Differential protective effects of halothane and isoflurane against hypoxic and reoxygenation injury in the isolated guinea pig heart. Anesthesiology 73:976–983

    Article  CAS  PubMed  Google Scholar 

  29. Novalija E, Fujita S, Kampine JP et al (1999) Sevoflurane mimics ischemic preconditioning effects on coronary flow and nitric oxide release in isolated hearts. Anesthesiology 91:701–712

    Article  CAS  PubMed  Google Scholar 

  30. Conzen PF, Fischer S, Detter C et al (2003) Sevoflurane provides greater protection of myocardium than propofol in patients undergoing off-pump coronary artery bypass surgery. Anesthesiology 99:826–833

    Article  CAS  PubMed  Google Scholar 

  31. Murray CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136

    Article  Google Scholar 

  32. Zaugg M, Lucchinetti E, Spahn DR et al (2002) Volatile anesthetics mimic cardiac preconditioning by priming the activation of mitochondrial KATP channels via multiple signaling pathways. Anesthesiology 97:4–14

    Article  CAS  PubMed  Google Scholar 

  33. Cullen SC, Gross EG (1951) The anesthetic properties of xenon in animals and human beings with additional observation on krypton. Science 1113:580–582

    Article  Google Scholar 

  34. Rossaint R, Reyle-Hahn R, Schulte J et al (2003) Multicenter randomized comparison of the efficacy and safety of xenon and isoflurane in patients undergoing elective surgery. Anesthesiology 98:6–13

    Article  CAS  PubMed  Google Scholar 

  35. Lachmann B, Armbruster S, Schairer W et al (1990) Safety and efficacy of xenon in routine use as an inhalational anesthetic. Lancet 335:1413–1415

    Article  CAS  PubMed  Google Scholar 

  36. Luttrop HH, Romner B, Perhag L et al (1993) Left ventricular performance and cerebral hemodynamics during xenon anesthesia: a transesophageal echocardiography and transcranial Doppler sonography study. Anesthesia 48:1045–1049

    Article  Google Scholar 

  37. Stowe DF, Rehmert GC, Wai-Meng K et al (2000) Xenon does not alter cardiac function or major cation currents in isolated guinea pig hearts of myocytes. Anesthesiology 92:516–522

    Article  CAS  PubMed  Google Scholar 

  38. Dingley J, Findlay GP, Bernard AF et al (2001) A closed xenon anesthesia delivery system. Anesthesiology 94:173–176

    Article  CAS  PubMed  Google Scholar 

  39. Franks NP, Lieb WR (1994) Molecular and cellular mechanisms of general anaesthesia. Nature 367:607–614

    Article  CAS  PubMed  Google Scholar 

  40. Seltzer JL, Gerson JI, Allen FB (1980) Comparison of the cardiovascular effects of bolus vs. incremental administration of thiopentone. Br J Anaesth 52:527–529

    Article  CAS  PubMed  Google Scholar 

  41. Sunzel M, Paalzow L, Berggren L et al (1988) Respiratory and cardiovascular effects in relation to plasma levels of midazolam and diazepam. Br J Clin Pharmacol 25:561–569

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. McCammon RL, Hilgenberg JC, Stoelting RK (1980) Hemodynamic effects of diazepam-nitrous oxide in patients with coronary artery disease. Anesth Analg 59:438–441

    Article  CAS  PubMed  Google Scholar 

  43. Hanouz J, Yvon A, Guesne G et al (2001) The in vitro effects of remifentanil, sufentanil, fentanyl, and alfentanil on isolated human right atria. Anesth Analg 93:543–549

    Article  CAS  PubMed  Google Scholar 

  44. Kanaya N, Kahary DR, Murray PA, Damron DS (1998) Differential effects of fentanyl and morphine on intracellular calcium transients and contraction in rate ventricular myocytes. Anesthesiology 89:1532–1542

    Article  CAS  PubMed  Google Scholar 

  45. Waxman K, Shoemaker WC, Lippmann M (1980) Cardiovascular effects of anesthetic induction with ketamine. Anesth Analg 58:355–358

    Google Scholar 

  46. Robinson JF, Ebert TJ, O’Brien TJ et al (1997) Mechanisms whereby propofol mediates peripheral vasodilation in humans. Sympathoinhibition or direct vascular relaxation? Anesthesiology 86:64–72

    Article  CAS  PubMed  Google Scholar 

  47. Bray RJ (1995) Fatal myocardial failure associated with a propofol infusion in a child. Anaesthesia 50:94

    Article  CAS  PubMed  Google Scholar 

  48. Tramer MR, Moore RA, McQuay HJ (1997) Propofol and bradycardia: causation, frequency and severity. Br J Anaesth 78:642–651

    Article  CAS  PubMed  Google Scholar 

  49. James MFM, Reyneke CJ, Whiffler K (1989) Heart block following propofol: a case report. Br J Anaesth 62:213–215

    Article  CAS  PubMed  Google Scholar 

  50. Sprun J, Lgletree-Hughes ML, McConnell BK et al (2001) The effects of propofol on the contractility of failing and nonfailing human heart muscles. Anesth Analg 93:550–559

    Article  Google Scholar 

  51. Kissin I, Motomura S, Aultman DF et al (1983) Inotropic and anesthetic potencies of etomidate and thiopental in dogs. Anesth Analg 62:961–965

    Article  CAS  PubMed  Google Scholar 

  52. Fragen RJ, Shanks CA, Molteni A et al (1984) Effects of etomidate on hormonal responses to surgical stress. Anesthesiology 61:652–656

    Article  CAS  PubMed  Google Scholar 

  53. Wagner RL, White PF, Kan PB et al (1984) Inhibition of adrenal steroidogenesis by anesthetic etomidate. N Engl J Med 310:1415–1421

    Article  CAS  PubMed  Google Scholar 

  54. Ivankovich AD, Miletich DJ, Albrecht RF et al (1975) The effect of pancuronium on myocardial contraction and catecholamine metabolism. J Pharm Pharmacol 27:837–841

    Article  CAS  PubMed  Google Scholar 

  55. Domenech JS, Garcia RC, Sastain JMR et al (1976) Pancuronium bromide: an indirect sympathomimetic agent. Br J Anaesth 48:1143–1148

    Article  CAS  PubMed  Google Scholar 

  56. Morris RB, Cahalan MK, Miller RD et al (1983) The cardiovascular effects of vecuronium (ORG NC45) and pancuronium in patients undergoing coronary artery bypass grafting. Anesthesiology 58:438–440

    Article  CAS  PubMed  Google Scholar 

  57. Hudson ME, Rothfield KP, Tullock WC, Firestone LL (1998) Haemodynamic effects of rocuronium bromide in adult cardiac surgical patients. Can J Anaesth 45:139–143

    Article  CAS  PubMed  Google Scholar 

  58. Bloor BC, Ward DS, Belleville JP, Maze M (1992) Effects of intravenous dexmedetomidine in humans. Anesthesiology 77:1134–1142

    Article  CAS  PubMed  Google Scholar 

  59. Han JS (1986) Physiologic and neurochemical basis of acupuncture analgesia. In: Cheng TO (ed) The international textbook of cardiology. Pergamon, New York, pp 1124–1126

    Google Scholar 

  60. Felhendler DPT, Lisander B (1996) Pressure on acupoints decreases postoperative pain. Clin J Pain 12:326–329

    Article  CAS  PubMed  Google Scholar 

  61. Li P, Pitsillides KF, Rendig SV et al (1998) Reversal of reflex-induced myocardial ischemia by median nerve stimulation: a feline model of electroacupuncture. Circulation 97:1186–1194

    Article  CAS  PubMed  Google Scholar 

  62. Stein DJ, Birnbach DJ, Danzer BI et al (1997) Acupressure versus intravenous metoclopramide to prevent nausea and vomiting during spinal anesthesia for cesarean section. Anesth Analg 84:342–345

    CAS  PubMed  Google Scholar 

  63. Acupunture. NIH Consensus Development Panel on Acupuncture JAMA. 1998;280(17):1518–1524

    Google Scholar 

  64. Sessler DI (1997) Mild perioperative hypothermia. N Engl J Med 336:1630–1637

    Article  Google Scholar 

  65. Mauermann WJ, Nemergut EC (2006) The anesthesiologist’s role in the prevention of surgical site infections. Anesthesiology 105:413–421

    Article  PubMed  Google Scholar 

  66. Hanouz J, Yvon A, Massetti M et al (2002) Mechanisms of desflurane-induced preconditioning in isolated human right atria in vitro. Anesthesiology 97:33–41

    Article  CAS  PubMed  Google Scholar 

  67. Kersten JR, Schmeling TJ, Hettrick DA et al (1996) Mechanism of myocardial protection by isoflurane: role of adenosine triphosphate-regulated potassium (KATP) channels. Anesthesiology 85:794–807

    Article  CAS  PubMed  Google Scholar 

  68. Belhomme D, Peynet J, Louzy M et al (1999) Evidence for preconditioning by isoflurane in coronary artery bypass graft surgery. Circulation 100:II340–II344

    Article  CAS  PubMed  Google Scholar 

  69. De Hert S, ten Broeck P, Mertens E et al (2002) Sevoflurane but not propofol preserves myocardial function in coronary surgery patients. Anesthesiology 97:42–49

    Article  PubMed  Google Scholar 

  70. Sigg DC, Coles JA Jr, Gallagher WJ, Oeltgen PR, Iaizzo PA (2001) Opioid preconditioning: myocardial function and energy metabolism. Ann Thorac Surg 72:1576–1582

    Article  CAS  PubMed  Google Scholar 

  71. Sigg DC, Coles JA Jr, Oeltgen PR, Iaizzo PA (2002) Role of delta-opioid receptors in infarct size reduction in swine. Am J Physiol Heart Circ Physiol 282:H1953–H1960

    Article  CAS  PubMed  Google Scholar 

  72. Hong J, Sigg DC, Upson K, Iaizzo PA (2002) Role of ∂-opioid receptors in preventing ischemic damage of isolated porcine skeletal muscle. Biophys J 82:610a (Abstract 2982)

    Google Scholar 

  73. Beebe DS, Shumway SJ, Maddock R (1994) Sinus arrest after intravenous neostigmine in two heart transplant recipients. Anesth Analg 78:779–782

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K. Loushin MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Johnson, J.S., Loushin, M.K. (2015). The Effects of Anesthetic Agents on Cardiac Function. In: Iaizzo, P. (eds) Handbook of Cardiac Anatomy, Physiology, and Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-19464-6_17

Download citation

Publish with us

Policies and ethics