Skip to main content

Plant-Fungal Interactions: Special Secondary Metabolites of the Biotrophic, Necrotrophic, and Other Specific Interactions

Fungal Metabolites

Abstract

Our environment is pervaded by a plethora of small exotic molecules, which are released without intermission by almost all organisms, like plants, microbes, or even animals. Plants and fungi are especially rich sources of these low-molecular-weight compounds, which are called secondary metabolites, and whose physiological functions are still mysterious in many cases. The number of the described compounds exceeds 100,000, and these molecules do not possess apparent importance in the producer’s life but regulate, modulate, induce, hinder, or even kill organisms other than the producer. Of course, these often unexpected substantial biological effects make these molecules so interesting and valuable. In this chapter, secondary metabolites from a plant and fungal interactions are surveyed considering hormones, antifungal metabolites, as well as the metabolites of mutualistic interactions observed between plants. Special secondary metabolites from biotrophic, necrotrophic, and specific interactions are also presented here, and their physiological and ecological roles and significances are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ABA:

Abscisic acid

AF:

Aflatoxin

AF B1:

Aflatoxin B1

AF B2:

Aflatoxin B2

AF G1:

Aflatoxin G1

AM:

Arbuscular mycorrhiza

DMATS:

Dimethylallyl tryptophan synthetase

DON:

Deoxynivalenol

ET:

Ethylene

FB1:

Fumonisin B1

FB2:

Fumonisin B2

JA:

Jasmonic acid

IAA:

Indole-3-acetic acid

ISR:

Induced systemic resistance

HST:

Host-selective toxin

MAPK:

Mitogen-activated protein kinase

NHST:

Non-host-selective toxin

NRPS:

Nonribosomal protein synthase

PCD:

Programmed cell death

PKS:

Polyketide synthase

PR:

Pathogenesis related

ROS:

Reactive oxygen species

SA:

Salicylic acid

SAR:

Systemic acquired resistance

SM:

Secondary metabolite

TS:

Tryptophan synthetase

VOC:

Volatile organic compound

ZEA:

Zearalenone

References

  1. Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19

    Article  CAS  Google Scholar 

  2. Van der Ent S, Van Wees SCM, Pieterse CMJ (2009) Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry 70:1581–1588. doi:10.1016/j.phytochem.2009.06.009

    Article  CAS  Google Scholar 

  3. Palencia ER, Hinton DM, Bacon CW (2010) The black Aspergillus species of maize and peanuts and their potential for mycotoxin production. Toxins (Basel) 2:399–416. doi:10.3390/toxins2040399

    Article  CAS  Google Scholar 

  4. Howlett BJ (2006) Secondary metabolite toxins and nutrition of plant pathogenic fungi. Curr Opin Plant Biol 9:371–375. doi:10.1016/j.pbi.2006.05.004

    Article  CAS  Google Scholar 

  5. Mendgen K, Hahn M (2002) Plant infection and the establishment of fungal biotrophy. Trends Plant Sci 7:352–356. doi:10.1016/S1360-1385(02)02297-5

    Article  CAS  Google Scholar 

  6. Schulze-Lefert P, Panstruga R (2003) Establishment of biotrophy by parasitic fungi and reprogramming of host cells for disease resistance. Annu Rev Phytopathol 41:641–667. doi:10.1146/annurev.phyto.41.061002.083300

    Article  CAS  Google Scholar 

  7. Janda M, Ruelland E (2014) Magical mystery tour: salicylic acid signalling. Environ Exp Bot 114:117–128. doi:10.1016/j.envexpbot.2014.07.003

    Article  CAS  Google Scholar 

  8. Ton J, Van Pelt JA, Van Loon LC, Pieterse CMJ (2002) Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Mol Plant Microbe Interact 15:27–34. doi:10.1094/MPMI.2002.15.1.27

    Article  CAS  Google Scholar 

  9. Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697. doi:10.1093/aob/mcm079

    Article  CAS  Google Scholar 

  10. Hauser F, Waadt R, Schroeder JI (2011) Evolution of abscisic acid synthesis and signaling mechanisms. Curr Biol 21:R346–R355. doi:10.1016/j.cub.2011.03.015

    Article  CAS  Google Scholar 

  11. Ludwig-Müller J (2011) Auxin conjugates: their role for plant development and in the evolution of land plants. J Exp Bot 62:1757–1773. doi:10.1093/jxb/erq412

    Article  CAS  Google Scholar 

  12. Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227. doi:10.1146/annurev.phyto.43.040204.135923

    Article  CAS  Google Scholar 

  13. Shah J, Chaturvedi R, Chowdhury Z, Venables B, Petros RA (2014) Signaling by small metabolites in systemic acquired resistance. Plant J 79:645–658. doi:10.1111/tpj.12464

    Article  CAS  Google Scholar 

  14. Kilaru A, Bailey BA, Hasenstein KH (2007) Moniliophthora perniciosa produces hormones and alters endogenous auxin and salicylic acid in infected cocoa leaves. FEMS Microbiol Lett 274:238–244. doi:10.1111/j.1574-6968.2007.00837.x

    Article  CAS  Google Scholar 

  15. Tamaoki D, Seo S, Yamada S, Kano A, Miyamoto A, Shishido H, Miyoshi S, Taniguchi S, Akimitsu K, Gomi K (2013) Jasmonic acid and salicylic acid activate a common defense system in rice. Plant Signal Behav 8, e24260. doi:10.4161/psb.24260

    Article  CAS  Google Scholar 

  16. Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209. doi:10.1146/annurev.phyto.42.040803.140421

    Article  CAS  Google Scholar 

  17. Van der Ent S, Verhagen BWM, Van Doorn R, Bakker D, Verlaan MG, Pel MJC, Joosten RG, Proveniers MCG, Van Loon LC, Ton J, Pieterse CMJ (2008) MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis. Plant Physiol 146:1293–1304. doi:10.1104/pp.107.113829

    Google Scholar 

  18. Segarra G, Van der Ent S, Trillas I, Pieterse CMJ (2009) MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe. Plant Biol (Stuttg) 11:90–96. doi:10.1111/j.1438-8677.2008.00162.x

    Article  CAS  Google Scholar 

  19. Yan Z, Reddy MS, Ryu C-M, McInroy JA, Wilson M, Kloepper JW (2002) Induced systemic protection against tomato late blight elicited by plant growth-promoting rhizobacteria. Phytopathology 92:1329–1333. doi:10.1094/PHYTO.2002.92.12.1329

    Article  CAS  Google Scholar 

  20. Kazan K, Lyons R (2014) Intervention of phytohormone pathways by pathogen effectors. Plant Cell 26:2285–2309. doi:10.1105/tpc.114.125419

    Article  CAS  Google Scholar 

  21. van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162. doi:10.1146/annurev.phyto.44.070505.143425

    Article  CAS  Google Scholar 

  22. Derksen H, Rampitsch C, Daayf F (2013) Signaling cross-talk in plant disease resistance. Plant Sci 207:79–87. doi:10.1016/j.plantsci.2013.03.004

    Article  CAS  Google Scholar 

  23. Yao H, Tian S (2005) Effects of pre- and post-harvest application of salicylic acid or methyl jasmonate on inducing disease resistance of sweet cherry fruit in storage. Postharvest Biol Technol 35:253–262. doi:10.1016/j.postharvbio.2004.09.001

    Article  CAS  Google Scholar 

  24. Ren YY, West CA (1992) Elicitation of diterpene biosynthesis in rice (Oryza sativa L.) by chitin. Plant Physiol 99:1169–1178

    Article  CAS  Google Scholar 

  25. Walker TS, Bais HP, Halligan KM, Stermitz FR, Vivanco JM (2003) Metabolic profiling of root exudates of Arabidopsis thaliana. J Agric Food Chem 51:2548–2554. doi:10.1021/jf021166h

    Article  CAS  Google Scholar 

  26. Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64. doi:10.1146/annurev-arplant-042809-112308

    Article  CAS  Google Scholar 

  27. Ludwig-Müller J (2015) Bacteria and fungi controlling plant growth by manipulating auxin: balance between development and defense. J Plant Physiol 172:4–12. doi:10.1016/j.jplph.2014.01.002

    Article  CAS  Google Scholar 

  28. Tanaka E, Koga H, Mori MM (2011) Auxin production by the rice blast fungus and its localization in host tissue. J Phytopathol 159:522–530. doi:10.1111/j.1439-0434.2011.01799.x

    Article  CAS  Google Scholar 

  29. Li Y, Huang F, Lu Y, Shi Y, Zhang M, Fan J, Wang W (2013) Mechanism of plant–microbe interaction and its utilization in disease-resistance breeding for modern agriculture. Physiol Mol Plant Pathol 83:51–58. doi:10.1016/j.pmpp.2013.05.001

    Article  Google Scholar 

  30. Petti C, Reiber K, Ali SS, Berney M, Doohan FM (2012) Auxin as a player in the biocontrol of Fusarium head blight disease of barley and its potential as a disease control agent. BMC Plant Biol 12:224. doi:10.1186/1471-2229-12-224

    Article  CAS  Google Scholar 

  31. Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism – from biochemistry to genomics. Nat Rev Microbiol 3:937–947. doi:10.1038/nrmicro1286

    Article  CAS  Google Scholar 

  32. Khan AL, Hamayun M, Kim Y-H, Kang S-M, Lee J-H, Lee I-J (2011) Gibberellins producing endophytic Aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels, isoflavonoids production and plant growth in salinity stress. Process Biochem 46:440–447. doi:10.1016/j.procbio.2010.09.013

    Article  CAS  Google Scholar 

  33. Bömke C, Tudzynski B (2009) Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry 70:1876–1893. doi:10.1016/j.phytochem.2009.05.020

    Article  CAS  Google Scholar 

  34. Wiemann P, Sieber CMK, von Bargen KW, Studt L, Niehaus E-M, Espino JJ, Huß K, Michielse CB, Albermann S, Wagner D, Bergner SV, Connolly LR, Fischer A, Reuter G, Kleigrewe K, Bald T, Wingfield BD, Ophir R, Freeman S, Hippler M, Smith KM, Brown DW, Proctor RH, Münsterkötter M, Freitag M, Humpf H-U, Güldener U, Tudzynski B (2013) Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathog 9, e1003475

    Article  CAS  Google Scholar 

  35. Bömke C, Rojas MC, Hedden P, Tudzynski B (2008) Loss of gibberellin production in Fusarium verticillioides (Gibberella fujikuroi MP-A) is due to a deletion in the gibberellic acid gene cluster. Appl Environ Microbiol 74:7790–7801. doi:10.1128/AEM.01819-08

    Article  CAS  Google Scholar 

  36. Hedden P, Phillips AL, Rojas MC, Carrera E, Tudzynski B (2001) Gibberellin biosynthesis in plants and fungi: a case of convergent evolution? J Plant Growth Regul 20:319–331. doi:10.1007/s003440010037

    Article  CAS  Google Scholar 

  37. Atkinson P, Blakeman JP (1982) Seasonal occurrence of an antimicrobial flavanone, sakuranetin, associated with glands on leaves of Ribes nigrum. New Phytol 92:63–74. doi:10.1111/j.1469-8137.1982.tb03363.x

    Article  CAS  Google Scholar 

  38. Perry NB, Foster LM (1994) Antiviral and antifungal flavonoids, plus a triterpene from Hebe cupressoides. Plant Med 60:491–492

    Article  CAS  Google Scholar 

  39. Kodama O, Miyakawa J, Akatsuka T, Kiyosawa S (1992) Sakuranetin, a flavanone phytoalexin from ultraviolet-irradiated rice leaves. Phytochemistry 31:3807–3809. doi:10.1016/S0031-9422(00)97532-0

    Article  CAS  Google Scholar 

  40. Dewick PM (2002) The biosynthesis of C5-C25 terpenoid compounds. Nat Prod Rep 19:181–222

    Article  CAS  Google Scholar 

  41. Takanashi K, Takahashi H, Sakurai N, Sugiyama A, Suzuki H, Shibata D, Nakazono M, Yazaki K (2012) Tissue-specific transcriptome analysis in nodules of Lotus japonicus. Mol Plant Microbe Interact 25:869–876. doi:10.1094/MPMI-01-12-0011-R

    Article  CAS  Google Scholar 

  42. Yazaki K (2006) ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett 580:1183–1191. doi:10.1016/j.febslet.2005.12.009

    Article  CAS  Google Scholar 

  43. Yazaki K, Sugiyama A, Morita M, Shitan N (2008) Secondary transport as an efficient membrane transport mechanism for plant secondary metabolites. Phytochem Rev 7:513–524

    Article  CAS  Google Scholar 

  44. Hasegawa M, Mitsuhara I, Seo S, Imai T, Koga J, Okada K, Yamane H, Ohashi Y (2010) Phytoalexin accumulation in the interaction between rice and the blast fungus. Mol Plant Microbe Interact 23:1000–1011. doi:10.1094/MPMI-23-8-1000

    Article  CAS  Google Scholar 

  45. Stefanato FL, Abou-Mansour E, Buchala A, Kretschmer M, Mosbach A, Hahn M, Bochet CG, Métraux J-P, Schoonbeek H (2009) The ABC transporter BcatrB from Botrytis cinerea exports camalexin and is a virulence factor on Arabidopsis thaliana. Plant J 58:499–510. doi:10.1111/j.1365-313X.2009.03794.x

    Article  CAS  Google Scholar 

  46. Gupta A, Chattoo BB (2008) Functional analysis of a novel ABC transporter ABC4 from Magnaporthe grisea. FEMS Microbiol Lett 278:22–28. doi:10.1111/j.1574-6968.2007.00937.x

    Article  CAS  Google Scholar 

  47. Sun CB, Suresh A, Deng YZ, Naqvi NI (2006) A multidrug resistance transporter in Magnaporthe is required for host penetration and for survival during oxidative stress. Plant Cell 18:3686–3705. doi:10.1105/tpc.105.037861

    Article  CAS  Google Scholar 

  48. Peters RJ (2006) Uncovering the complex metabolic network underlying diterpenoid phytoalexin biosynthesis in rice and other cereal crop plants. Phytochemistry 67:2307–2317. doi:10.1016/j.phytochem.2006.08.009

    Article  CAS  Google Scholar 

  49. Cartwright DW, Langcake P, Pryce RJ, Leworthy DP, Ride JP (1981) Isolation and characterization of two phytoalexins from rice as momilactones A and B. Phytochemistry 20:535–537. doi:10.1016/S0031-9422(00)84189-8

    Article  CAS  Google Scholar 

  50. Kodama O, Suzuki T, Miyakawa J, Akatsuka T (1988) Ultraviolet-induced accumulation of phytoalexins in rice leaves. Agric Biol Chem 52:2469–2473

    CAS  Google Scholar 

  51. Kato-Noguchi H, Ino T, Sata N, Yamamura S (2002) Isolation and identification of a potent allelopathic substance in rice root exudates. Physiol Plant 115:401–405. doi:10.1034/j.1399-3054.2002.1150310.x

    Article  CAS  Google Scholar 

  52. Akatsuka T, Kodama O, Sekido H, Kono Y, Takeuchi S (1985) Novel phytoalexins (Oryzalexins A, B and C) isolated from rice blast leaves infected with Pyricularia oryzae. Agric Biol Chem 49:1689–1701. doi:10.1080/00021369.1985.10866951

    CAS  Google Scholar 

  53. Kato H, Kodama O, Akatsuka T (1993) Oryzalexin E, A diterpene phytoalexin from UV-irradiated rice leaves. Phytochemistry 33:79–81. doi:10.1016/0031-9422(93)85399-C

    Article  CAS  Google Scholar 

  54. Kato H, Kodama O, Akatsuka T (1994) Oryzalexin F, a diterpene phytoalexin from UV-irradiated rice leaves. Phytochemistry 36:299–301. doi:10.1016/S0031-9422(00)97064-X

    Article  CAS  Google Scholar 

  55. Tamogani S, Mitani M, Kodama O, Akatsuka T (1993) Oryzalexin S structure: a new stemarane-type rice plant phytoalexin and its biogenesis. Tetrahedron 49:2025–2032. doi:10.1016/S0040-4020(01)86302-X

    Article  Google Scholar 

  56. Koga J, Shimura M, Oshima K, Ogawa N, Yamauchi T, Ogasawara N (1995) Phytocassanes A, B, C and D, novel diterpene phytoalexins from rice, Oryza sativa L. Tetrahedron 51:7907–7918. doi:10.1016/0040-4020(95)00423-6

    Article  CAS  Google Scholar 

  57. Koga J, Ogawa N, Yamauchi T, Kikuchi M, Ogasawara N, Shimura M (1997) Functional moiety for the antifungal activity of phytocassane E, a diterpene phytoalexin from rice. Phytochemistry 44:249–253. doi:10.1016/S0031-9422(96)00534-1

    Article  CAS  Google Scholar 

  58. Kim J-A, Cho K, Singh R, Jung Y-H, Jeong S-H, Kim S-H, Lee J-E, Cho Y-S, Agrawal GK, Rakwal R, Tamogami S, Kersten B, Jeon J-S, An G, Jwa N-S (2009) Rice OsACDR1 (Oryza sativa accelerated cell death and resistance 1) is a potential positive regulator of fungal disease resistance. Mol Cells 28:431–439. doi:10.1007/s10059-009-0161-5

    Article  CAS  Google Scholar 

  59. Pedras MSC, Montaut S, Suchy M (2004) Phytoalexins from the crucifer rutabaga: structures, syntheses, biosyntheses, and antifungal activity. J Org Chem 69:4471–4476. doi:10.1021/jo049648a

    Article  CAS  Google Scholar 

  60. Pedras MSC, Montaut S (2003) Probing crucial metabolic pathways in fungal pathogens of crucifers: biotransformation of indole-3-acetaldoxime, 4-hydroxyphenylacetaldoxime, and their metabolites. Bioorg Med Chem 11:3115–3120

    Article  CAS  Google Scholar 

  61. Pedras MSC, Sarwar MG, Suchy M, Adio AM (2006) The phytoalexins from cauliflower, caulilexins A, B and C: isolation, structure determination, syntheses and antifungal activity. Phytochemistry 67:1503–1509. doi:10.1016/j.phytochem.2006.05.020

    Article  CAS  Google Scholar 

  62. Pedras MSC, Ahiahonu PWK (2005) Metabolism and detoxification of phytoalexins and analogs by phytopathogenic fungi. Phytochemistry 66:391–411. doi:10.1016/j.phytochem.2004.12.032

    Article  CAS  Google Scholar 

  63. Langcake P, Pryce RJ (1976) The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol Plant Pathol 9:77–86. doi:10.1016/0048-4059(76)90077-1

    Article  CAS  Google Scholar 

  64. Jeandet P, Douillet-Breuil A-C, Bessis R, Debord S, Sbaghi M, Adrian M (2002) Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J Agric Food Chem 50:2731–2741. doi:10.1021/jf011429s

    Article  CAS  Google Scholar 

  65. Mueller-Riebau F, Berger B, Yegen O (1995) Chemical composition and fungitoxic properties to phytopathogenic fungi of essential oils of selected aromatic plants growing wild in Turkey. J Agric Food Chem 43:2262–2266. doi:10.1021/jf00056a055

    Article  CAS  Google Scholar 

  66. Tsao R, Zhou T (2000) Antifungal activity of monoterpenoids against postharvest pathogens Botrytis cinerea and Monilinia fructicola. J Essent Oil Res 12:113–121. doi:10.1080/10412905.2000.9712057

    Article  CAS  Google Scholar 

  67. Camele I, Altieri L, De Martino L, De Feo V, Mancini E, Rana GL (2012) In vitro control of post-harvest fruit rot fungi by some plant essential oil components. Int J Mol Sci 13:2290–2300. doi:10.3390/ijms13022290

    Article  CAS  Google Scholar 

  68. Fiers M, Lognay G, Fauconnier M-L, Jijakli MH (2013) Volatile compound-mediated interactions between barley and pathogenic fungi in the soil. PLoS One 8, e66805. doi:10.1371/journal.pone.0066805

    Article  CAS  Google Scholar 

  69. Ameye M, Audenaert K, De Zutter N, Steppe K, Van Meulebroek L, Vanhaecke L, De Vleesschauwer D, Haesaert G, Smagghe G (2015) Priming of wheat with the green leaf volatile Z-3-hexenyl acetate enhances defense against Fusarium graminearum but boosts deoxynivalenol production. Plant Physiol 167:1671–1684. doi:10.1104/pp.15.00107

    Article  CAS  Google Scholar 

  70. Bohlmann J, Keeling CI (2008) Terpenoid biomaterials. Plant J 54:656–669. doi:10.1111/j.1365-313X.2008.03449.x

    Article  CAS  Google Scholar 

  71. Espinosa-García FJ, Langenheim JH (1991) Effects of sabinene and γ-terpinene from coastal redwood leaves acting singly or in mixtures on the growth of some of their fungus endophytes. Biochem Syst Ecol 19:643–650. doi:10.1016/0305-1978(91)90080-J

    Article  Google Scholar 

  72. Saddiq AA, Khayyat SA (2010) Chemical and antimicrobial studies of monoterpene: citral. Pestic Biochem Physiol 98:89–93. doi:10.1016/j.pestbp.2010.05.004

    Article  CAS  Google Scholar 

  73. Wilson CL, Solar JM, El Ghaouth A, Wisniewski ME (1997) Rapid evaluation of plant extracts and essential oils for antifungal activity against Botrytis cinerea. Plant Dis 81:204–210

    Article  CAS  Google Scholar 

  74. Buzi A, Chilosi G, Timperio AM, Zolla L, Rossall S, Magro P (2003) Polygalacturonase produced by Botrytis fabae as elicitor of two furanoacetylenic phytoalexins in Vicia faba pods. J Plant Pathol 85:111–116

    Google Scholar 

  75. Ito S-I, Ihara T, Tamura H, Tanaka S, Ikeda T, Kajihara H, Dissanayake C, Abdel-Motaal FF, El-Sayed MA (2007) alpha-Tomatine, the major saponin in tomato, induces programmed cell death mediated by reactive oxygen species in the fungal pathogen Fusarium oxysporum. FEBS Lett 581:3217–3222. doi:10.1016/j.febslet.2007.06.010

    Article  CAS  Google Scholar 

  76. Osbourn A (1996) Saponins and plant defence – a soap story. Trends Plant Sci 1:4–9. doi:10.1016/S1360-1385(96)80016-1

    Article  Google Scholar 

  77. Crozier A, Jaganath IB, Clifford MN (2008) Phenols, polyphenols and tannins: an overview. In: Crozier A, Clifford MN, Ashihara A (eds) Plant secondary metabolites: occurrence, structure and role in the human diet. Blackwell, Oxford, UK, pp 1–24

    Google Scholar 

  78. Pierpoint WS (2000) Why should plants make medicine – don’t they do enough for mankind already? Biochem (Lond) 22:37–40

    CAS  Google Scholar 

  79. Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint J-P, Vierheilig H (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules 12:1290–1306

    Article  CAS  Google Scholar 

  80. Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem 99:191–203. doi:10.1016/j.foodchem.2005.07.042

    Article  CAS  Google Scholar 

  81. de Oliveira TLC, de Araújo SR, Ramos EM, das Graças Cardoso M, Alves E, Piccoli RH (2011) Antimicrobial activity of Satureja montana L. essential oil against Clostridium perfringens type A inoculated in mortadella-type sausages formulated with different levels of sodium nitrite. Int J Food Microbiol 144:546–555. doi:10.1016/j.ijfoodmicro.2010.11.022

    Article  CAS  Google Scholar 

  82. El-Mogy MM, Alsanius BW (2012) Cassia oil for controlling plant and human pathogens on fresh strawberries. Food Control 28:157–162. doi:10.1016/j.foodcont.2012.04.036

    Article  CAS  Google Scholar 

  83. Hassan S, Mathesius U (2012) The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. J Exp Bot 63:3429–3444. doi:10.1093/jxb/err430

    Article  CAS  Google Scholar 

  84. Ruan Y, Kotraiah V, Straney DC (1995) Flavonoids stimulate spore germination in Fusarium solani pathogenic on legumes in a manner sensitive to inhibitors of cAMP-dependent protein kinase. MPMI 8:929–938

    Article  CAS  Google Scholar 

  85. Khan R, Tan R, Mariscal AG, Straney D (2003) A binuclear zinc transcription factor binds the host isoflavonoid-responsive element in a fungal cytochrome p450 gene responsible for detoxification. Mol Microbiol 49:117–130

    Article  CAS  Google Scholar 

  86. Turrà D, Di Pietro A (2015) Chemotropic sensing in fungus-plant interactions. Curr Opin Plant Biol 26:135–140. doi:10.1016/j.pbi.2015.07.004

    Article  CAS  Google Scholar 

  87. Turrà D, El Ghalid M, Rossi F, Di Pietro A (2015) Fungal pathogen uses sex pheromone receptor for chemotropic sensing of host plant signals. Nature 527:521–524. doi:10.1038/nature15516

    Article  CAS  Google Scholar 

  88. Huffaker A, Kaplan F, Vaughan MM, Dafoe NJ, Ni X, Rocca JR, Alborn HT, Teal PEA, Schmelz EA (2011) Novel acidic sesquiterpenoids constitute a dominant class of pathogen-induced phytoalexins in maize. Plant Physiol 156:2082–2097. doi:10.1104/pp.111.179457

    Article  CAS  Google Scholar 

  89. Du Fall LA, Solomon PS (2011) Role of cereal secondary metabolites involved in mediating the outcome of plant-pathogen interactions. Metabolites 1:64–78. doi:10.3390/metabo1010064

    Article  CAS  Google Scholar 

  90. Grayer RJ, Kokubun T (2001) Plant–fungal interactions: the search for phytoalexins and other antifungal compounds from higher plants. Phytochemistry 56:253–263. doi:10.1016/S0031-9422(00)00450-7

    Article  CAS  Google Scholar 

  91. Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17:73–90. doi:10.1016/j.tplants.2011.11.002

    Article  CAS  Google Scholar 

  92. Tsuji J, Jackson EP, Gage DA, Hammerschmidt R, Somerville SC (1992) Phytoalexin accumulation in Arabidopsis thaliana during the hypersensitive reaction to Pseudomonas syringae pv syringae. Plant Physiol 98:1304–1309

    Article  CAS  Google Scholar 

  93. Schuhegger R, Rauhut T, Glawischnig E (2007) Regulatory variability of camalexin biosynthesis. J Plant Physiol 164:636–644. doi:10.1016/j.jplph.2006.04.012

    Article  CAS  Google Scholar 

  94. Kliebenstein DJ, Rowe HC, Denby KJ (2005) Secondary metabolites influence Arabidopsis/Botrytis interactions: variation in host production and pathogen sensitivity. Plant J 44:25–36. doi:10.1111/j.1365-313X.2005.02508.x

    Article  CAS  Google Scholar 

  95. Thomma BPHJ, Nelissen I, Eggermont K, Broekaert WF (1999) Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alternaria brassicicola. Plant J 19:163–171. doi:10.1046/j.1365-313X.1999.00513.x

    Article  CAS  Google Scholar 

  96. Pedras MSC, Minic Z, Abdoli A (2014) The phytoalexin camalexin induces fundamental changes in the proteome of Alternaria brassicicola different from those caused by brassinin. Fungal Biol 118:83–93. doi:10.1016/j.funbio.2013.11.005

    Article  CAS  Google Scholar 

  97. Velluti A, Marın S, Gonzalez P, Ramos AJ, Sanchis V (2004) Initial screening for inhibitory activity of essential oils on growth of Fusarium verticillioides, F. proliferatum and F. graminearum on maize-based agar media. Food Microbiol 21:649–656. doi:10.1016/j.fm.2004.03.009

    Article  CAS  Google Scholar 

  98. Dambolena JS, Zygadlo JA, Rubinstein HR (2011) Antifumonisin activity of natural phenolic compounds. A structure-property-activity relationship study. Int J Food Microbiol 145:140–146. doi:10.1016/j.ijfoodmicro.2010.12.001

    Google Scholar 

  99. Boddu J, Cho S, Kruger WM, Muehlbauer GJ (2006) Transcriptome analysis of the barley-Fusarium graminearum interaction. Mol Plant Microbe Interact 19:407–417. doi:10.1094/MPMI-19-0407

    Article  CAS  Google Scholar 

  100. Beekrum S, Govinden R, Padayachee T, Odhav B (2003) Naturally occurring phenols: a detoxification strategy for fumonisin B1. Food Addit Contam 20:490–493. doi:10.1080/0265203031000098678

    Article  CAS  Google Scholar 

  101. Stępień L, Waśkiewicz A, Wilman K (2015) Host extract modulates metabolism and fumonisin biosynthesis by the plant-pathogenic fungus Fusarium proliferatum. Int J Food Microbiol 193:74–81. doi:10.1016/j.ijfoodmicro.2014.10.020

    Article  CAS  Google Scholar 

  102. Bagheri-Gavkosh S, Bigdeli M, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M (2009) Inhibitory effects of Ephedra major host on Aspergillus parasiticus growth and aflatoxin production. Mycopathologia 168:249–255. doi:10.1007/s11046-009-9220-x

    Google Scholar 

  103. dos Santos MO, Furlong EB (2008) Screening of antifungal and antimycotoxigenic activity of plant phenolic extracts. World Mycotoxin J 1:139–146

    Article  Google Scholar 

  104. Jermnak U, Yoshinari T, Sugiyama Y, Tsuyuki R, Nagasawa H, Sakuda S (2012) Isolation of methyl syringate as a specific aflatoxin production inhibitor from the essential oil of Betula alba and aflatoxin production inhibitory activities of its related compounds. Int J Food Microbiol 153:339–344. doi:10.1016/j.ijfoodmicro.2011.11.023

    Article  CAS  Google Scholar 

  105. Bednarek P, Kwon C, Schulze-Lefert P (2010) Not a peripheral issue: secretion in plant-microbe interactions. Curr Opin Plant Biol 13:378–387. doi:10.1016/j.pbi.2010.05.002

    Article  CAS  Google Scholar 

  106. Kolattukudy PE, Rogers LM, Li D, Hwang CS, Flaishman MA (1995) Surface signaling in pathogenesis. Proc Natl Acad Sci U S A 92:4080–4087

    Article  CAS  Google Scholar 

  107. Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Sasse F, Jansen R, Murali TS (2009) Fungal endophytes and bioprospecting. Fungal Biol Rev 23:9–19. doi:10.1016/j.fbr.2009.07.001

    Article  Google Scholar 

  108. Baetz U, Martinoia E (2014) Root exudates: the hidden part of plant defense. Trends Plant Sci 19:90–98. doi:10.1016/j.tplants.2013.11.006

    Article  CAS  Google Scholar 

  109. Dakora F, Phillips D (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47

    Article  CAS  Google Scholar 

  110. Tanimoto E (2005) Regulation of root growth by plant hormones – roles for auxin and gibberellins. Crit Rev Plant Sci 24:249–265. doi:10.1080/07352680500196108

    Article  CAS  Google Scholar 

  111. Crowley DE, Kraemer SM (2007) Function of siderophores in the plant rhizosphere. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere, biochemistry and organic substances at the soil–plant interface, 2nd edn. CRC Press, Boca Raton, pp 173–200

    Google Scholar 

  112. Akiyama K, Hayashi H (2006) Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. Ann Bot 97:925–931. doi:10.1093/aob/mcl063

    Article  CAS  Google Scholar 

  113. Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48. doi:10.1038/ncomms1046

    Article  CAS  Google Scholar 

  114. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827. doi:10.1038/nature03608

    Article  CAS  Google Scholar 

  115. Koltai H (2014) Implications of non-specific strigolactone signaling in the rhizosphere. Plant Sci 225:9–14. doi:10.1016/j.plantsci.2014.04.019

    Article  CAS  Google Scholar 

  116. Wehner J, Antunes PM, Powell JR, Mazukatow J, Rillig MC (2010) Plant pathogen protection by arbuscular mycorrhizas: a role for fungal diversity? Pedobiologia (Jena) 53:197–201. doi:10.1016/j.pedobi.2009.10.002

    Article  Google Scholar 

  117. Azcón-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens. An overview of the mechanisms involved. Mycorrhiza 6:457–464

    Article  Google Scholar 

  118. Nakagawa T, Imaizumi-Anraku H (2015) Rice arbuscular mycorrhiza as a tool to study the molecular mechanisms of fungal symbiosis and a potential target to increase productivity. Rice (N Y) 8:32. doi:10.1186/s12284-015-0067-0

    Google Scholar 

  119. Colla G, Rouphael Y, Di Mattia E, El-Nakhel C, Cardarelli M (2015) Co-inoculation of Glomus intraradices and Trichoderma atroviride acts as a biostimulant to promote growth, yield and nutrient uptake of vegetable crops. J Sci Food Agric 95:1706–1715. doi:10.1002/jsfa.6875

    Article  CAS  Google Scholar 

  120. Li C, Bai Y, Jacobsen E, Visser R, Lindhout P, Bonnema G (2006) Tomato defense to the powdery mildew fungus: differences in expression of genes in susceptible, monogenic- and polygenic resistance responses are mainly in timing. Plant Mol Biol 62:127–140. doi:10.1007/s11103-006-9008-z

    Article  CAS  Google Scholar 

  121. Thomma BPHJ, Van Esse HP, Crous PW, de Wit PJGM (2005) Cladosporium fulvum (syn. Passalora fulva), a highly specialized plant pathogen as a model for functional studies on plant pathogenic Mycosphaerellaceae. Mol Plant Pathol 6:379–393. doi:10.1111/j.1364-3703.2005.00292.x

    Google Scholar 

  122. Palmer C-L, Skinner W (2002) Mycosphaerella graminicola: latent infection, crop devastation and genomics. Mol Plant Pathol 3:63–70. doi:10.1046/j.1464-6722.2002.00100.x

    Article  CAS  Google Scholar 

  123. Deller S, Hammond-Kosack KE, Rudd JJ (2011) The complex interactions between host immunity and non-biotrophic fungal pathogens of wheat leaves. J Plant Physiol 168:63–71. doi:10.1016/j.jplph.2010.05.024

    Article  CAS  Google Scholar 

  124. Talbot NJ (2003) On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu Rev Microbiol 57:177–202. doi:10.1146/annurev.micro.57.030502.090957

    Article  CAS  Google Scholar 

  125. Panstruga R (2003) Establishing compatibility between plants and obligate biotrophic pathogens. Curr Opin Plant Biol 6:320–326

    Article  CAS  Google Scholar 

  126. Biemelt S, Sonnewald U (2006) Plant-microbe interactions to probe regulation of plant carbon metabolism. J Plant Physiol 163:307–318. doi:10.1016/j.jplph.2005.10.011

    Article  CAS  Google Scholar 

  127. Duplessis S, Cuomo CA, Lin Y-C, Aerts A, Tisserant E, Veneault-Fourrey C, Joly DL, Hacquard S, Amselem J, Cantarel BL, Chiu R, Coutinho PM, Feau N, Field M, Frey P, Gelhaye E, Goldberg J, Grabherr MG, Kodira CD, Kohler A, Kües U, Lindquist EA, Lucas SM, Mago R, Mauceli E, Morin E, Murat C, Pangilinan JL, Park R, Pearson M, Quesneville H, Rouhier N, Sakthikumar S, Salamov AA, Schmutz J, Selles B, Shapiro H, Tanguay P, Tuskan GA, Henrissat B, Van de Peer Y, Rouzé P, Ellis JG, Dodds PN, Schein JE, Zhong S, Hamelin RC, Grigoriev IV, Szabo LJ, Martin F (2011) Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proc Natl Acad Sci U S A 108:9166–9171. doi:10.1073/pnas.1019315108

    Article  CAS  Google Scholar 

  128. Spanu PD, Abbott JC, Amselem J, Burgis TA, Soanes DM, Stüber K, Ver Loren van Themaat E, Brown JKM, Butcher SA, Gurr SJ, Lebrun M-H, Ridout CJ, Schulze-Lefert P, Talbot NJ, Ahmadinejad N, Ametz C, Barton GR, Benjdia M, Bidzinski P, Bindschedler LV, Both M, Brewer MT, Cadle-Davidson L, Cadle-Davidson MM, Collemare J, Cramer R, Frenkel O, Godfrey D, Harriman J, Hoede C, King BC, Klages S, Kleemann J, Knoll D, Koti PS, Kreplak J, López-Ruiz FJ, Lu X, Maekawa T, Mahanil S, Micali C, Milgroom MG, Montana G, Noir S, O’Connell RJ, Oberhaensli S, Parlange F, Pedersen C, Quesneville H, Reinhardt R, Rott M, Sacristán S, Schmidt SM, Schön M, Skamnioti P, Sommer H, Stephens A, Takahara H, Thordal-Christensen H, Vigouroux M, Wessling R, Wicker T, Panstruga R (2010) Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science 330:1543–1546. doi:10.1126/science.1194573

    Article  CAS  Google Scholar 

  129. de Wit PJGM, van der Burgt A, Ökmen B, Stergiopoulos I, Abd-Elsalam KA, Aerts AL, Bahkali AH, Beenen HG, Chettri P, Cox MP, Datema E, de Vries RP, Dhillon B, Ganley AR, Griffiths SA, Guo Y, Hamelin RC, Henrissat B, Kabir MS, Jashni MK, Kema G, Klaubauf S, Lapidus A, Levasseur A, Lindquist E, Mehrabi R, Ohm RA, Owen TJ, Salamov A, Schwelm A, Schijlen E, Sun H, van den Burg HA, van Ham RCHJ, Zhang S, Goodwin SB, Grigoriev IV, Collemare J, Bradshaw RE (2012) The genomes of the fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures of common ancestry. PLoS Genet 8, e1003088. doi:10.1371/journal.pgen.1003088

    Article  CAS  Google Scholar 

  130. Collemare J, Griffiths S, Iida Y, Karimi Jashni M, Battaglia E, Cox RJ, de Wit PJGM (2014) Secondary metabolism and biotrophic lifestyle in the tomato pathogen Cladosporium fulvum. PLoS One 9, e85877. doi:10.1371/journal.pone.0085877

    Article  CAS  Google Scholar 

  131. Couch BC, Kohn LM (2002) A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia 94:683–693

    Article  CAS  Google Scholar 

  132. Skamnioti P, Gurr SJ (2009) Against the grain: safeguarding rice from rice blast disease. Trends Biotechnol 27:141–150. doi:10.1016/j.tibtech.2008.12.002

    Article  CAS  Google Scholar 

  133. Kawahara Y, Oono Y, Kanamori H, Matsumoto T, Itoh T, Minami E (2012) Simultaneous RNA-seq analysis of a mixed transcriptome of rice and blast fungus interaction. PLoS One 7, e49423. doi:10.1371/journal.pone.0049423

    Article  CAS  Google Scholar 

  134. Tudzynski P, Hölter K, Correia T, Arntz C, Grammel N, Keller U (1999) Evidence for an ergot alkaloid gene cluster in Claviceps purpurea. Mol Gen Genet MGG 261:133–141. doi:10.1007/s004380050950

    Article  CAS  Google Scholar 

  135. Haarmann T, Machado C, Lübbe Y, Correia T, Schardl CL, Panaccione DG, Tudzynski P (2005) The ergot alkaloid gene cluster in Claviceps purpurea: extension of the cluster sequence and intra species evolution. Phytochemistry 66:1312–1320. doi:10.1016/j.phytochem.2005.04.011

    Article  CAS  Google Scholar 

  136. Ebata Y, Yamamoto H, Uchiyama T (1998) Chemical composition of the glue from appressoria of Magnaporthe grisea. Biosci Biotechnol Biochem 62:672–674

    Article  CAS  Google Scholar 

  137. Todd JS, Zimmerman RC, Crews P, Alberte RS (1993) The antifouling activity of natural and synthetic phenol acid sulphate esters. Phytochemistry 34:401–404. doi:10.1016/0031-9422(93)80017-M

    Article  CAS  Google Scholar 

  138. Stanley MS, Callow ME, Perry R, Alberte RS, Smith R, Callow JA (2002) Inhibition of fungal spore adhesion by zosteric acid as the basis for a novel, nontoxic crop protection technology. Phytopathology 92:378–383. doi:10.1094/PHYTO.2002.92.4.378

    Article  CAS  Google Scholar 

  139. Gilbert RD, Johnson AM, Dean RA (1996) Chemical signals responsible for appressorium formation in the rice blast fungus Magnaporthe grisea. Physiol Mol Plant Pathol 48:335–346. doi:10.1006/pmpp.1996.0027

    Article  CAS  Google Scholar 

  140. Liu W, Zhou X, Li G, Li L, Kong L, Wang C, Zhang H, Xu J-R (2011) Multiple plant surface signals are sensed by different mechanisms in the rice blast fungus for appressorium formation. PLoS Pathog 7, e1001261. doi:10.1371/journal.ppat.1001261

    Article  CAS  Google Scholar 

  141. Flaishman MA, Kolattukudy PE (1994) Timing of fungal invasion using host’s ripening hormone as a signal. Proc Natl Acad Sci U S A 91:6579–6583

    Article  CAS  Google Scholar 

  142. Podila GK, Rogers LM, Kolattukudy PE (1993) Chemical signals from avocado surface wax trigger germination and appressorium formation in Colletotrichum gloeosporioides. Plant Physiol 103:267–272

    CAS  Google Scholar 

  143. Hwang CS, Kolattukudy PE (1995) Isolation and characterization of genes expressed uniquely during appressorium formation by Colletotrichum gloeosporioides conidia induced by the host surface wax. Mol Gen Genet 247:282–294

    Article  CAS  Google Scholar 

  144. Hegde Y, Kolattukudy P (1997) Cuticular waxes relieve self-inhibition of germination and appressorium formation by the conidia of Magnaporthe grisea. Physiol Mol Plant Pathol 51:75–84. doi:10.1006/pmpp.1997.0105

    Article  CAS  Google Scholar 

  145. Howard RJ, Ferrari MA, Roach DH, Money NP (1991) Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc Natl Acad Sci 88:11281–11284. doi:10.1073/pnas.88.24.11281

    Article  CAS  Google Scholar 

  146. Howard RJ, Valent B (1996) Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu Rev Microbiol 50:491–512. doi:10.1146/annurev.micro.50.1.491

    Article  CAS  Google Scholar 

  147. Thines E, Daußmann T, Semar M, Sterner O, Anke A (1995) Fungal melanin biosynthesis inhibitors: introduction of a test system based on the production of dihydroxynaphthalene (DHN) melanin in agar cultures. Z Naturforsch 50:813–819

    CAS  Google Scholar 

  148. Wheeler MH, Bell AA (1988) Melanins and their importance in pathogenic fungi. In: M.R. McGinnis (ed) Current topics in medical mycology. Springer-Verlag New York, pp 338–387

    Google Scholar 

  149. Thines E, Anke H, Sterner O (1998) Scytalols A, B, C, and D and other modulators of melanin biosynthesis from Scytalidium sp. 36–93. J Antibiot (Tokyo, Japan Antibiotics Research Assn.) 51:387–393

    Google Scholar 

  150. Laskay G, Farkas T, Lehoczki E (1985) Cerulenin-induced changes in lipid and fatty acid content of chloroplasts in detached greening barley leaves. J Plant Physiol 118:267–275. doi:10.1016/S0176-1617(85)80228-5

    Article  CAS  Google Scholar 

  151. Bills GF, Platas G, Gams W (2004) Conspecificity of the cerulenin and helvolic acid producing “Cephalosporium caerulens”, and the hypocrealean fungus Sarocladium oryzae. Mycol Res 108:1291–1300. doi:10.1017/S0953756204001297

    Article  CAS  Google Scholar 

  152. Nesher I, Barhoom S, Sharon A (2008) Cell cycle and cell death are not necessary for appressorium formation and plant infection in the fungal plant pathogen Colletotrichum gloeosporioides. BMC Biol 6:9. doi:10.1186/1741-7007-6-9

    Article  CAS  Google Scholar 

  153. Meyer W, Lax A, Templeton G, Brannon M (1983) The structure of gloeosporone, a novel germination self-inhibitor from conidia of Colletotrichum gloeosporioides. Tetrahedron Lett 24:5059–5062

    Article  CAS  Google Scholar 

  154. Tsurushima T, Ueno T, Fukami H, Irie H, Inoue M (1995) Germination self-inhibitors from Colletotrichum gloeosporioides f. sp. jussiaea. MPMI 8:652–657

    Article  CAS  Google Scholar 

  155. Leite B, Nicholson RL (1992) Mycosporine-alanine: a self-inhibitor of germination from the conidial mucilage of Colletotrichum graminicola. Exp Mycol 16:76–86. doi:10.1016/0147-5975(92)90043-Q

    Article  CAS  Google Scholar 

  156. Sinha RP, Singh SP, Häder D-P (2007) Database on mycosporines and mycosporine-like amino acids (MAAs) in fungi, cyanobacteria, macroalgae, phytoplankton and animals. J Photochem Photobiol B 89:29–35. doi:10.1016/j.jphotobiol.2007.07.006

    Article  CAS  Google Scholar 

  157. Kono Y, Sekido S, Yamaguchi I, Kondo H, Suzuki Y, Neto GC, Sakurai A, Yaegashi H (1991) Structures of two novel pyriculol-related compounds and identification of naturally produced epipyriculol from Pyricularia oryzae. Agric Biol Chem 55:2785–2791

    CAS  Google Scholar 

  158. Thines E, Anke H, Weber RWS (2004) Fungal secondary metabolites as inhibitors of infection-related morphogenesis in phytopathogenic fungi. Mycol Res 108:14–25. doi:10.1017/S0953756203008943

    Article  CAS  Google Scholar 

  159. Yun C-S, Motoyama T, Osada H (2015) Biosynthesis of the mycotoxin tenuazonic acid by a fungal NRPS-PKS hybrid enzyme. Nat Commun 6:8758. doi:10.1038/ncomms9758

    Article  CAS  Google Scholar 

  160. Horbach R, Navarro-Quesada AR, Knogge W, Deising HB (2011) When and how to kill a plant cell: infection strategies of plant pathogenic fungi. J Plant Physiol 168:51–62. doi:10.1016/j.jplph.2010.06.014

    Article  CAS  Google Scholar 

  161. Condon BJ, Leng Y, Wu D, Bushley KE, Ohm RA, Otillar R, Martin J, Schackwitz W, Grimwood J, MohdZainudin N, Xue C, Wang R, Manning VA, Dhillon B, Tu ZJ, Steffenson BJ, Salamov A, Sun H, Lowry S, LaButti K, Han J, Copeland A, Lindquist E, Barry K, Schmutz J, Baker SE, Ciuffetti LM, Grigoriev IV, Zhong S, Turgeon BG (2013) Comparative genome structure, secondary metabolite, and effector coding capacity across Cochliobolus pathogens. PLoS Genet 9, e1003233. doi:10.1371/journal.pgen.1003233

    Article  CAS  Google Scholar 

  162. Ding L, Xu H, Yi H, Yang L, Kong Z, Zhang L, Xue S, Jia H, Ma Z (2011) Resistance to hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways. PLoS One 6:e19008. doi: 10.1371/journal.pone.0019008

    Google Scholar 

  163. Gottwald S, Samans B, Lück S, Friedt W (2012) Jasmonate and ethylene dependent defence gene expression and suppression of fungal virulence factors: two essential mechanisms of Fusarium head blight resistance in wheat? BMC Genomics 13:369. doi:10.1186/1471-2164-13-369

    Article  CAS  Google Scholar 

  164. Lanubile A, Ferrarini A, Maschietto V, Delledonne M, Marocco A, Bellin D (2014) Functional genomic analysis of constitutive and inducible defense responses to Fusarium verticillioides infection in maize genotypes with contrasting ear rot resistance. BMC Genomics 15:710. doi:10.1186/1471-2164-15-710

    Article  CAS  Google Scholar 

  165. Abendroth LJ, Elmore RW, Boyer MJ, Marlay SK (2011) Corn growth and development. PMR 1009. Iowa State University Extension, Ames, Iowa.

    Google Scholar 

  166. Bluhm BH, Woloshuk CP (2005) Amylopectin induces fumonisin B1 production by Fusarium verticillioides during colonization of maize kernels. Mol Plant Microbe Interact 18:1333–1339. doi:10.1094/MPMI-18-1333

    Article  CAS  Google Scholar 

  167. Abbas HK, Tanaka T, Duke SO, Porter JK, Wray EM, Hodges L, Sessions AE, Wang E, Merrill AH, Riley RT (1994) Fumonisin- and AAL-toxin-induced disruption of sphingolipid metabolism with accumulation of free sphingoid bases. Plant Physiol 106:1085–1093

    CAS  Google Scholar 

  168. Picot A, Barreau C, Pinson-Gadais L, Piraux F, Caron D, Lannou C, Richard-Forget F (2011) The dent stage of maize kernels is the most conducive for fumonisin biosynthesis under field conditions. Appl Environ Microbiol 77:8382–8390. doi:10.1128/AEM.05216-11

    Article  CAS  Google Scholar 

  169. Dall’Asta C, Falavigna C, Galaverna G, Battilani P (2012) Role of maize hybrids and their chemical composition in Fusarium infection and fumonisin production. J Agric Food Chem 60:3800–3808. doi:10.1021/jf300250z

    Article  CAS  Google Scholar 

  170. Xu L, Zhu L, Tu L, Liu L, Yuan D, Jin L, Long L, Zhang X (2011) Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. J Exp Bot 62:5607–5621. doi:10.1093/jxb/err245

    Article  CAS  Google Scholar 

  171. Robb J, Lee B, Nazar RN (2007) Gene suppression in a tolerant tomato-vascular pathogen interaction. Planta 226:299–309. doi:10.1007/s00425-007-0482-6

    Article  CAS  Google Scholar 

  172. Tan G, Liu K, Kang J, Xu K, Zhang Y, Hu L, Zhang J, Li C (2015) Transcriptome analysis of the compatible interaction of tomato with Verticillium dahliae using RNA-sequencing. Front Plant Sci 6:428. doi:10.3389/fpls.2015.00428

    Google Scholar 

  173. De Cremer K, Mathys J, Vos C, Froenicke L, Michelmore RW, Cammue BPA, De Coninck B (2013) RNAseq-based transcriptome analysis of Lactuca sativa infected by the fungal necrotroph Botrytis cinerea. Plant Cell Environ 36:1992–2007. doi:10.1111/pce.12106

    Google Scholar 

  174. Teixeira PJPL, Thomazella DP de T, Reis O, do Prado PFV, do Rio MCS, Fiorin GL, José J, Costa GGL, Negri VA, Mondego JMC, Mieczkowski P, Pereira GAG (2014) High-resolution transcript profiling of the atypical biotrophic interaction between Theobroma cacao and the fungal pathogen Moniliophthora perniciosa. Plant Cell 26:4245–4269. doi: 10.1105/tpc.114.130807

    Google Scholar 

  175. O’Connell RJ, Thon MR, Hacquard S, Amyotte SG, Kleemann J, Torres MF, Damm U, Buiate EA, Epstein L, Alkan N, Altmüller J, Alvarado-Balderrama L, Bauser CA, Becker C, Birren BW, Chen Z, Choi J, Crouch JA, Duvick JP, Farman MA, Gan P, Heiman D, Henrissat B, Howard RJ, Kabbage M, Koch C, Kracher B, Kubo Y, Law AD, Lebrun M-H, Lee Y-H, Miyara I, Moore N, Neumann U, Nordström K, Panaccione DG, Panstruga R, Place M, Proctor RH, Prusky D, Rech G, Reinhardt R, Rollins JA, Rounsley S, Schardl CL, Schwartz DC, Shenoy N, Shirasu K, Sikhakolli UR, Stüber K, Sukno SA, Sweigard JA, Takano Y, Takahara H, Trail F, van der Does HC, Voll LM, Will I, Young S, Zeng Q, Zhang J, Zhou S, Dickman MB, Schulze-Lefert P, Ver Loren van Themaat E, Ma L-J, Vaillancourt LJ (2012) Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat Genet 44:1060–1065. doi:10.1038/ng.2372

    Article  CAS  Google Scholar 

  176. St Leger RJ, Screen SE, Shams-Pirzadeh B (2000) Lack of host specialization in Aspergillus flavus. Appl Environ Microbiol 66:320–324. doi:10.1128/AEM.66.1.320-324.2000

    Article  CAS  Google Scholar 

  177. Marsh SF, Payne GA (1984) Preharvest infection of corn silks and kernels by Aspergillus flavus. Phytopathology 74:1284–1289

    Article  Google Scholar 

  178. Dolezal AL, Shu X, OBrian GR, Nielsen DM, Woloshuk CP, Boston RS, Payne GA (2014) Aspergillus flavus infection induces transcriptional and physical changes in developing maize kernels. Front Microbiol 5:384. doi:10.3389/fmicb.2014.00384

    Article  Google Scholar 

  179. Maggio-Hall LA, Wilson RA, Keller NP (2005) Fundamental contribution of beta-oxidation to polyketide mycotoxin production in planta. Mol Plant Microbe Interact 18:783–793. doi:10.1094/MPMI-18-0783

    Article  CAS  Google Scholar 

  180. Marín S, Sanchis V, Rull F, Ramos AJ, Magan N (1998) Colonization of maize grain by Fusarium moniliforme and Fusarium proliferatum in the presence of competing fungi and their impact on fumonisin production. J Food Prot 61:1489–1496

    Google Scholar 

  181. Smart MG, Wicklow DT, Caldwell RW (1990) Pathogenesis in Aspergillus ear rot of maize – light microscopy of fungal spread from wounds. Phytopathology 80:1287–1294. doi:10.1094/Phyto-80-1287

    Article  Google Scholar 

  182. Mideros SX, Windham GL, Williams WP, Nelson RJ (2009) Aspergillus flavus biomass in maize estimated by quantitative real-time polymerase chain reaction is strongly correlated with aflatoxin concentration. Plant Dis 93:1163–1170. doi:10.1094/PDIS-93-11-1163

    Article  CAS  Google Scholar 

  183. Magbanua ZV, De Moraes CM, Brooks TD, Williams WP, Luthe DS (2007) Is catalase activity one of the factors associated with maize resistance to Aspergillus flavus? Mol Plant Microbe Interact 20:697–706. doi:10.1094/MPMI-20-6-0697

    Article  CAS  Google Scholar 

  184. Fountain JC, Scully BT, Ni X, Kemerait RC, Lee RD, Chen Z-Y, Guo B (2014) Environmental influences on maize-Aspergillus flavus interactions and aflatoxin production. Front Microbiol 5:40. doi:10.3389/fmicb.2014.00040

    Article  Google Scholar 

  185. Collemare J, Billard A, Böhnert HU, Lebrun M-H (2008) Biosynthesis of secondary metabolites in the rice blast fungus Magnaporthe grisea: the role of hybrid PKS-NRPS in pathogenicity. Mycol Res 112:207–215. doi:10.1016/j.mycres.2007.08.003

    Article  CAS  Google Scholar 

  186. Oide S, Moeder W, Krasnoff S, Gibson D, Haas H, Yoshioka K, Turgeon BG (2006) NPS6, encoding a nonribosomal peptide synthetase involved in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic ascomycetes. Plant Cell 18:2836–2853. doi:10.1105/tpc.106.045633

    Article  CAS  Google Scholar 

  187. Hansen FT, Gardiner DM, Lysøe E, Fuertes PR, Tudzynski B, Wiemann P, Sondergaard TE, Giese H, Brodersen DE, Sørensen JL (2015) An update to polyketide synthase and non-ribosomal synthetase genes and nomenclature in Fusarium. Fungal Genet Biol 75:20–29. doi:10.1016/j.fgb.2014.12.004

    Google Scholar 

  188. Kroken S, Glass NL, Taylor JW, Yoder OC, Turgeon BG (2003) Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci USA 100:15670–15675. doi:10.1073/pnas.2532165100

    Article  CAS  Google Scholar 

  189. Gaffoor I, Trail F (2006) Characterization of two polyketide synthase genes involved in zearalenone biosynthesis in Gibberella zeae. Appl Environ Microbiol 72:1793–1799. doi:10.1128/AEM.72.3.1793-1799.2006

    Article  CAS  Google Scholar 

  190. Ma L-J, Geiser DM, Proctor RH, Rooney AP, O’Donnell K, Trail F, Gardiner DM, Manners JM, Kazan K (2013) Fusarium pathogenomics. Annu Rev Microbiol 67:399–416. doi:10.1146/annurev-micro-092412-155650

    Google Scholar 

  191. Sieber CMK, Lee W, Wong P, Münsterkötter M, Mewes H-W, Schmeitzl C, Varga E, Berthiller F, Adam G, Güldener U (2014) The Fusarium graminearum genome reveals more secondary metabolite gene clusters and hints of horizontal gene transfer. PLoS One 9, e110311. doi:10.1371/journal.pone.0110311

    Article  CAS  Google Scholar 

  192. Tokai T, Koshino H, Takahashi-Ando N, Sato M, Fujimura M, Kimura M (2007) Fusarium Tri4 encodes a key multifunctional cytochrome P450 monooxygenase for four consecutive oxygenation steps in trichothecene biosynthesis. Biochem Biophys Res Commun 353:412–417. doi:10.1016/j.bbrc.2006.12.033

    Google Scholar 

  193. Islam MS, Haque MS, Islam MM, Emdad EM, Halim A, Hossen QMM, Hossain MZ, Ahmed B, Rahim S, Rahman MS, Alam MM, Hou S, Wan X, Saito JA, Alam M (2012) Tools to kill: genome of one of the most destructive plant pathogenic fungi Macrophomina phaseolina. BMC Genomics 13:493. doi:10.1186/1471-2164-13-493

    Article  CAS  Google Scholar 

  194. Panaccione DG (1993) The fungal genus Cochliobolus and toxin-mediated plant disease. Trends Microbiol 1:14–20

    Article  CAS  Google Scholar 

  195. Walton JD (2006) HC-toxin. Phytochemistry 67:1406–1413. doi:10.1016/j.phytochem.2006.05.033

    Article  CAS  Google Scholar 

  196. Yaegashi J, Oakley BR, Wang CCC (2014) Recent advances in genome mining of secondary metabolite biosynthetic gene clusters and the development of heterologous expression systems in Aspergillus nidulans. J Ind Microbiol Biotechnol 41:433–442. doi:10.1007/s10295-013-1386-z

    Article  CAS  Google Scholar 

  197. Amselem J, Cuomo CA, van Kan JAL, Viaud M, Benito EP, Couloux A, Coutinho PM, de Vries RP, Dyer PS, Fillinger S, Fournier E, Gout L, Hahn M, Kohn L, Lapalu N, Plummer KM, Pradier J-M, Quévillon E, Sharon A, Simon A, ten Have A, Tudzynski B, Tudzynski P, Wincker P, Andrew M, Anthouard V, Beever RE, Beffa R, Benoit I, Bouzid O, Brault B, Chen Z, Choquer M, Collémare J, Cotton P, Danchin EG, Da Silva C, Gautier A, Giraud C, Giraud T, Gonzalez C, Grossetete S, Güldener U, Henrissat B, Howlett BJ, Kodira C, Kretschmer M, Lappartient A, Leroch M, Levis C, Mauceli E, Neuvéglise C, Oeser B, Pearson M, Poulain J, Poussereau N, Quesneville H, Rascle C, Schumacher J, Ségurens B, Sexton A, Silva E, Sirven C, Soanes DM, Talbot NJ, Templeton M, Yandava C, Yarden O, Zeng Q, Rollins JA, Lebrun M-H, Dickman M (2011) Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet 7, e1002230. doi:10.1371/journal.pgen.1002230

    Article  CAS  Google Scholar 

  198. Saha D, Fetzner R, Burkhardt B, Podlech J, Metzler M, Dang H, Lawrence C, Fischer R (2012) Identification of a polyketide synthase required for alternariol (AOH) and alternariol-9-methyl ether (AME) formation in Alternaria alternata. PLoS One 7, e40564. doi:10.1371/journal.pone.0040564

    Article  CAS  Google Scholar 

  199. Kimura N, Tsuge T (1993) Gene cluster involved in melanin biosynthesis of the filamentous fungus Alternaria alternata. J Bacteriol 175:4427–4435

    CAS  Google Scholar 

  200. Chen L-H, Lin C-H, Chung K-R (2013) A nonribosomal peptide synthetase mediates siderophore production and virulence in the citrus fungal pathogen Alternaria alternata. Mol Plant Pathol 14:497–505. doi:10.1111/mpp.12021

    Article  CAS  Google Scholar 

  201. Manamgoda DS, Rossman AY, Castlebury LA, Crous PW, Madrid H, Chukeatirote E, Hyde KD (2014) The genus Bipolaris. Stud Mycol 79:221–288. doi:10.1016/j.simyco.2014.10.002

    Article  CAS  Google Scholar 

  202. Gao S, Li Y, Gao J, Suo Y, Fu K, Li Y, Chen J (2014) Genome sequence and virulence variation-related transcriptome profiles of Curvularia lunata, an important maize pathogenic fungus. BMC Genomics 15:627. doi:10.1186/1471-2164-15-627

    Article  CAS  Google Scholar 

  203. Baker SE, Kroken S, Inderbitzin P, Asvarak T, Li B-Y, Shi L, Yoder OC, Turgeon BG (2006) Two polyketide synthase-encoding genes are required for biosynthesis of the polyketide virulence factor, T-toxin, by Cochliobolus heterostrophus. Mol Plant Microbe Interact 19:139–149. doi:10.1094/MPMI-19-0139

    Article  CAS  Google Scholar 

  204. Inderbitzin P, Asvarak T, Turgeon BG (2010) Six new genes required for production of T-toxin, a polyketide determinant of high virulence of Cochliobolus heterostrophus to maize. Mol Plant Microbe Interact 23:458–472. doi:10.1094/MPMI-23-4-0458

    Article  CAS  Google Scholar 

  205. Wight WD, Labuda R, Walton JD (2013) Conservation of the genes for HC-toxin biosynthesis in Alternaria jesenskae. BMC Microbiol 13:165. doi:10.1186/1471-2180-13-165

    Article  CAS  Google Scholar 

  206. Khaldi N, Seifuddin FT, Turner G, Haft D, Nierman WC, Wolfe KH, Fedorova ND (2010) SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol 47:736–741. doi:10.1016/j.fgb.2010.06.003

    Article  CAS  Google Scholar 

  207. Bömke C, Rojas MC, Gong F, Hedden P, Tudzynski B (2008) Isolation and functional characterization of the gibberellin biosynthetic gene cluster in Sphaceloma manihoticola. Appl Environ Microbiol 74:5325–5339

    Article  CAS  Google Scholar 

  208. Kawaide H (2006) Biochemical and molecular analyses of gibberellin biosynthesis in fungi. Biosci Biotechnol Biochem 70:583–590. doi:10.1271/bbb.70.583

    Article  CAS  Google Scholar 

  209. Karányi Z, Holb I, Hornok L, Pócsi I, Miskei M (2013) FSRD: fungal stress response database. Database (Oxford) 2013:bat037. doi: 10.1093/database/bat037

    Google Scholar 

  210. Govrin EM, Levine A (2002) Infection of Arabidopsis with a necrotrophic pathogen, Botrytis cinerea, elicits various defense responses but does not induce systemic acquired resistance (SAR). Plant Mol Biol 48:267–276

    Article  CAS  Google Scholar 

  211. Avalos J, Estrada AF (2010) Regulation by light in Fusarium. Fungal Genet Biol 47:930–938. doi:10.1016/j.fgb.2010.05.001

    Article  CAS  Google Scholar 

  212. Amare MG, Keller NP (2014) Molecular mechanisms of Aspergillus flavus secondary metabolism and development. Fungal Genet Biol 66:11–18. doi:10.1016/j.fgb.2014.02.008

    Article  CAS  Google Scholar 

  213. Yang Q, Chen Y, Ma Z (2013) Involvement of BcVeA and BcVelB in regulating conidiation, pigmentation and virulence in Botrytis cinerea. Fungal Genet Biol 50:63–71. doi:10.1016/j.fgb.2012.10.003

    Article  CAS  Google Scholar 

  214. Jiang J, Liu X, Yin Y, Ma Z (2011) Involvement of a velvet protein FgVeA in the regulation of asexual development, lipid and secondary metabolisms and virulence in Fusarium graminearum. PLoS One 6, e28291. doi:10.1371/journal.pone.0028291

    Article  CAS  Google Scholar 

  215. Merhej J, Urban M, Dufresne M, Hammond-Kosack KE, Richard-Forget F, Barreau C (2012) The velvet gene, FgVe1, affects fungal development and positively regulates trichothecene biosynthesis and pathogenicity in Fusarium graminearum. Mol Plant Pathol 13:363–374. doi:10.1111/j.1364-3703.2011.00755.x

    Article  CAS  Google Scholar 

  216. Jiang J, Yun Y, Liu Y, Ma Z (2012) FgVELB is associated with vegetative differentiation, secondary metabolism and virulence in Fusarium graminearum. Fungal Genet Biol 49:653–662. doi:10.1016/j.fgb.2012.06.005

    Article  CAS  Google Scholar 

  217. Wiemann P, Brown DW, Kleigrewe K, Bok JW, Keller NP, Humpf H-U, Tudzynski B (2010) FfVel1 and FfLae1, components of a velvet-like complex in Fusarium fujikuroi, affect differentiation, secondary metabolism and virulence. Mol Microbiol 77:972–994. doi:10.1111/j.1365-2958.2010.07263

    CAS  Google Scholar 

  218. Butchko RAE, Brown DW, Busman M, Tudzynski B, Wiemann P (2012) Lae1 regulates expression of multiple secondary metabolite gene clusters in Fusarium verticillioides. Fungal Genet Biol 49:602–612. doi:10.1016/j.fgb.2012.06.003

    Article  CAS  Google Scholar 

  219. Tudzynski B (2014) Nitrogen regulation of fungal secondary metabolism in fungi. Front Microbiol 5:656. doi:10.3389/fmicb.2014.00656

    Article  Google Scholar 

  220. Feng GH, Leonard TJ (1998) Culture conditions control expression of the genes for aflatoxin and sterigmatocystin biosynthesis in Aspergillus parasiticus and A. nidulans. Appl Environ Microbiol 64:2275–2277

    CAS  Google Scholar 

  221. Talbot NJ, McCafferty HRK, Ma M, Moore K, Hamer JE (1997) Nitrogen starvation of the rice blast fungus Magnaporthe grisea may act as an environmental cue for disease symptom expression. Physiol Mol Plant Pathol 50:179–195. doi:10.1006/pmpp.1997.0081

    Article  CAS  Google Scholar 

  222. Kroll K, Pähtz V, Kniemeyer O (2014) Elucidating the fungal stress response by proteomics. J Proteomics 97:151–163. doi:10.1016/j.jprot.2013.06.001

    Article  CAS  Google Scholar 

  223. Desjardins AE, Hohn TM, McCormick SP (1993) Trichothecene biosynthesis in Fusarium species: chemistry, genetics, and significance. Microbiol Rev 57:595–604

    CAS  Google Scholar 

  224. Audenaert K, Vanheule A, Höfte M, Haesaert G (2014) Deoxynivalenol: a major player in the multifaceted response of Fusarium to its environment. Toxins (Basel) 6:1–19. doi:10.3390/toxins6010001

    Article  CAS  Google Scholar 

  225. Turgeon BG, Baker SE (2007) Genetic and genomic dissection of the Cochliobolus heterostrophus Tox1 locus controlling biosynthesis of the polyketide virulence factor T-toxin. Adv Genet 57:219–261. doi:10.1016/S0065-2660(06)57006-3

    Article  CAS  Google Scholar 

  226. Markham JE, Hille J (2001) Host-selective toxins as agents of cell death in plant-fungus interactions. Mol Plant Pathol 2:229–239. doi:10.1046/j.1464-6722.2001.00066.x

    Article  CAS  Google Scholar 

  227. Kim H, Woloshuk CP (2008) Role of AREA, a regulator of nitrogen metabolism, during colonization of maize kernels and fumonisin biosynthesis in Fusarium verticillioides. Fungal Genet Biol 45:947–953. doi:10.1016/j.fgb.2008.03.007

    Article  CAS  Google Scholar 

  228. Wu J, Ge X (2004) Oxidative burst, jasmonic acid biosynthesis, and taxol production induced by low-energy ultrasound in Taxus chinensis cell suspension cultures. Biotechnol Bioeng 85:714–721. doi:10.1002/bit.10911

    Article  CAS  Google Scholar 

  229. Brodhagen M, Tsitsigiannis DI, Hornung E, Goebel C, Feussner I, Keller NP (2008) Reciprocal oxylipin-mediated cross-talk in the Aspergillus-seed pathosystem. Mol Microbiol 67:378–391. doi:10.1111/j.1365-2958.2007.06045.x

    Article  CAS  Google Scholar 

  230. Brodhun F, Cristobal-Sarramian A, Zabel S, Newie J, Hamberg M, Feussner I (2013) An iron 13S-lipoxygenase with an α-linolenic acid specific hydroperoxidase activity from Fusarium oxysporum. PLoS One 8, e64919. doi:10.1371/journal.pone.0064919

    Article  CAS  Google Scholar 

  231. Maschietto V, Marocco A, Malachova A, Lanubile A (2015) Resistance to Fusarium verticillioides and fumonisin accumulation in maize inbred lines involves an earlier and enhanced expression of lipoxygenase (LOX) genes. J Plant Physiol 188:9–18. doi:10.1016/j.jplph.2015.09.003

    Article  CAS  Google Scholar 

  232. Horowitz Brown S, Zarnowski R, Sharpee WC, Keller NP (2008) Morphological transitions governed by density dependence and lipoxygenase activity in Aspergillus flavus. Appl Environ Microbiol 74:5674–5685. doi:10.1128/AEM.00565-08

    Article  CAS  Google Scholar 

  233. Affeldt KJ, Brodhagen M, Keller NP (2012) Aspergillus oxylipin signaling and quorum sensing pathways depend on G protein-coupled receptors. Toxins (Basel) 4:695–717. doi:10.3390/toxins4090695

    Article  CAS  Google Scholar 

  234. Calvo AM, Hinze LL, Gardner HW, Keller NP (1999) Sporogenic effect of polyunsaturated fatty acids on development of Aspergillus spp. Appl Environ Microbiol 65:3668–3673

    CAS  Google Scholar 

  235. Scarpari M, Punelli M, Scala V, Zaccaria M, Nobili C, Ludovici M, Camera E, Fabbri AA, Reverberi M, Fanelli C (2014) Lipids in Aspergillus flavus-maize interaction. Front Microbiol 5:74. doi:10.3389/fmicb.2014.00074

    Article  Google Scholar 

  236. Huang J-Q, Jiang H-F, Zhou Y-Q, Lei Y, Wang S-Y, Liao B-S (2009) Ethylene inhibited aflatoxin biosynthesis is due to oxidative stress alleviation and related to glutathione redox state changes in Aspergillus flavus. Int J Food Microbiol 130:17–21. doi:10.1016/j.ijfoodmicro.2008.12.027

    Article  CAS  Google Scholar 

  237. Barna B, Fodor J, Harrach BD, Pogány M, Király Z (2012) The Janus face of reactive oxygen species in resistance and susceptibility of plants to necrotrophic and biotrophic pathogens. Plant Physiol Biochem 59:37–43. doi:10.1016/j.plaphy.2012.01.014

    Article  CAS  Google Scholar 

  238. Wang X, Jiang N, Liu J, Liu W, Wang G-L (2014) The role of effectors and host immunity in plant-necrotrophic fungal interactions. Virulence 5:722–732. doi:10.4161/viru.29798

    Article  CAS  Google Scholar 

  239. Lee Y, Min K, Son H, Park AR, Kim J-C, Choi GJ, Lee Y-W (2014) ELP3 is involved in sexual and asexual development, virulence, and the oxidative stress response in Fusarium graminearum. Mol Plant Microbe Interact 27:1344–1355. doi:10.1094/MPMI-05-14-0145-R

    Article  CAS  Google Scholar 

  240. Hausladen A, Kunert KJ (1990) Effects of artificially enhanced levels of ascorbate and glutathione on the enzymes monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase in spinach (Spinacia oleracea). Physiol Plant 79:384–388. doi:10.1111/j.1399-3054.1990.tb06757.x

    Article  CAS  Google Scholar 

  241. Paciolla C, Dipierro N, Mulè G, Logrieco A, Dipierro S (2004) The mycotoxins beauvericin and T-2 induce cell death and alteration to the ascorbate metabolism in tomato protoplasts. Physiol Mol Plant Pathol 65:49–56. doi:10.1016/j.pmpp.2004.07.006

    Article  CAS  Google Scholar 

  242. Nishiuchi T, Masuda D, Nakashita H, Ichimura K, Shinozaki K, Yoshida S, Kimura M, Yamaguchi I, Yamaguchi K (2006) Fusarium phytotoxin trichothecenes have an elicitor-like activity in Arabidopsis thaliana, but the activity differed significantly among their molecular species. Mol Plant Microbe Interact 19:512–520. doi:10.1094/MPMI-19-0512

    Google Scholar 

  243. Daub ME, Ehrenshaft M (2000) The photoactivated Cercospora toxin cercosporin: contributions to plant disease and fundamental biology. Ann Rev Phytopathol 38:461–490

    Article  CAS  Google Scholar 

  244. Shim WB, Dunkle LD (2003) CZK3, a MAP kinase homolog in Cercospora zeae-maydis, regulates cercosporin biosynthesis, fungal development, and pathogenesis. Mol Plant-Microbe Interact 16:760–768

    Google Scholar 

  245. Daub ME, Chung K-R (2009) Photoactivated perylenequinone toxins in plant pathogenesis. In: Deising HB (ed) Plant relationships V. Springer, Berlin/Heidelberg, pp 201–219

    Google Scholar 

  246. Heiser I, Heß M, Schmidtke K-U, Vogler U, Miethbauer S, Liebermann B (2004) Fatty acid peroxidation by rubellin B, C and D, phytotoxins produced by Ramularia collo-cygni (Sutton and Waller). Physiol Mol Plant Pathol 64:135–143

    Article  CAS  Google Scholar 

  247. Möbius N, Hertweck C (2009) Fungal phytotoxins as mediators of virulence. Curr Opin Plant Biol 12:390–398

    Article  CAS  Google Scholar 

  248. Tiedemann AV (1997) Evidence for a primary role of active oxygen species in induction of host cell death during infection of bean leaves with Botrytis cinerea. Physiol Mol Plant Pathol 50:151–166. doi:10.1006/pmpp.1996.0076

    Article  CAS  Google Scholar 

  249. Tudzynski P, Kokkelink L (2009) Botrytis cinerea: molecular aspects of a necrotrophic life style. In: Deising HB (ed) Plant relationships, 2nd edn. Springer, Berlin/Heidelberg, pp 29–50

    Google Scholar 

  250. Peng X-L, Xu W-T, Wang Y, Huang K-L, Liang Z-H, Zhao W-W, Luo Y-B (2010) Mycotoxin Ochratoxin A-induced cell death and changes in oxidative metabolism of Arabidopsis thaliana. Plant Cell Rep 29:153–161. doi:10.1007/s00299-009-0808-x

    Article  CAS  Google Scholar 

  251. Paranidharan V, Palaniswami A, Vidhyasekaran P, Velazhahan R (2005) A host-specific toxin of Rhizoctonia solani triggers superoxide dismutase (SOD) activity in rice. Arch Phytopathol Plant Prot 38:151–157. doi:10.1080/03235400500094159

    Article  CAS  Google Scholar 

  252. Tada Y, Kusaka K, Betsuyaku S, Shinogi T, Sakamoto M, Ohura Y, Hata S, Mori T, Tosa Y, Mayama S (2005) Victorin triggers programmed cell death and the defense response via interaction with a cell surface mediator. Plant Cell Physiol 46:1787–1798. doi:10.1093/pcp/pci193

    Article  CAS  Google Scholar 

  253. Zhang L, Jia C, Liu L, Zhang Z, Li C, Wang Q (2011) The involvement of jasmonates and ethylene in Alternaria alternata f. sp. lycopersici toxin-induced tomato cell death. J Exp Bot 62:5405–5418. doi:10.1093/jxb/err217

    Article  CAS  Google Scholar 

  254. Spassieva SD, Markham JE, Hille J (2002) The plant disease resistance gene Asc-1 prevents disruption of sphingolipid metabolism during AAL-toxin-induced programmed cell death. Plant J 32:561–572

    Article  CAS  Google Scholar 

  255. Raffaele S, Leger A, Roby D (2009) Very long chain fatty acid and lipid signaling in the response of plants to pathogens. Plant Signal Behav 4:94–99

    Article  CAS  Google Scholar 

  256. López-Cruz J, Crespo-Salvador Ó, Fernández-Crespo E, García-Agustín P, González-Bosch C (2016) Absence of Cu-Zn-superoxide dismutase BCSOD1 reduces Botrytis cinerea virulence in Arabidopsis and in tomato plants, which reveals interplay among ROS, callose and signaling pathways. Mol Plant Pathol. doi:10.1111/mpp.12370

    Google Scholar 

  257. Otani H, Kohmoto K, Kodama M (1995) Alternaria toxins and their effects on host plants. Can J Bot 73:453–458. doi:10.1139/b95-282

    Google Scholar 

  258. Walton JD (1996) Host-selective toxins: agents of compatibility. Plant Cell 8:1723–1733. doi:10.1105/tpc.8.10.1723

    Article  CAS  Google Scholar 

  259. Tsuge T, Harimoto Y, Akimitsu K, Ohtani K, Kodama M, Akagi Y, Egusa M, Yamamoto M, Otani H (2013) Host-selective toxins produced by the plant pathogenic fungus Alternaria alternata. FEMS Microbiol Rev 37:44–66. doi:10.1111/j.1574-6976.2012.00350.x

    Article  CAS  Google Scholar 

  260. Friesen TL, Faris JD, Solomon PS, Oliver RP (2008) Host-specific toxins: effectors of necrotrophic pathogenicity. Cell Microbiol 10:1421–1428. doi:10.1111/j.1462-5822.2008.01153.x

    Article  CAS  Google Scholar 

  261. Stergiopoulos I, Collemare J, Mehrabi R, De Wit PJGM (2013) Phytotoxic secondary metabolites and peptides produced by plant pathogenic Dothideomycete fungi. FEMS Microbiol Rev 37:67–93. doi:10.1111/j.1574-6976.2012.00349.x

    Article  CAS  Google Scholar 

  262. Hatta R, Ito K, Hosaki Y, Tanaka T, Tanaka A, Yamamoto M, Akimitsu K, Tsuge T (2002) A conditionally dispensable chromosome controls host-specific pathogenicity in the fungal plant pathogen Alternaria alternata. Genetics 161:59–70

    CAS  Google Scholar 

  263. Wolpert TJ, Dunkle LD, Ciuffetti LM (2002) Host-selective toxins and avirulence determinants: what’s in a name? Annu Rev Phytopathol 40:251–285. doi:10.1146/annurev.phyto.40.011402.114210

    Article  CAS  Google Scholar 

  264. Amagasa T, Paul RN, Heitholt JJ, Duke SO (1994) Physiological effects of cornexistin on Lemna paucicostata. Pestic Biochem Physiol 49:37–52. doi:10.1006/pest.1994.1032

    Article  CAS  Google Scholar 

  265. Halloin JM, De Zoeten GA, Walker JC (1970) The effects of tentoxin on chlorophyll synthesis and plastid structure in cucumber and cabbage. Plant Physiol 45:310–314

    Article  CAS  Google Scholar 

  266. Thomma BPHJ (2003) Alternaria spp.: from general saprophyte to specific parasite. Mol Plant Pathol 4:225–236. doi:10.1046/j.1364-3703.2003.00173.x

    Article  CAS  Google Scholar 

  267. Nishimura S, Kohmoto K (1983) Host-specific toxins and chemical structures from Alternaria species. Annu Rev Phytopathol 21:87–116. doi:10.1146/annurev.py.21.090183.000511

    Article  CAS  Google Scholar 

  268. Izumi Y, Ohtani K, Miyamoto Y, Masunaka A, Fukumoto T, Gomi K, Tada Y, Ichimura K, Peever TL, Akimitsu K (2012) A polyketide synthase gene, ACRTS2, is responsible for biosynthesis of host-selective ACR-toxin in the rough lemon pathotype of Alternaria alternata. Mol Plant Microbe Interact 25:1419–1429. doi:10.1094/MPMI-06-12-0155-R

    Article  CAS  Google Scholar 

  269. Thuleau P, Graziana A, Rossignol M, Kauss H, Auriol P, Ranjeva R (1988) Binding of the phytotoxin zinniol stimulates the entry of calcium into plant protoplasts. Proc Natl Acad Sci U S A 85:5932–5935

    Article  CAS  Google Scholar 

  270. Scott PM (2001) Analysis of agricultural commodities and foods for Alternaria mycotoxins. J AOAC Int 84:1809–1817

    CAS  Google Scholar 

  271. Demuner AJ, Barbosa LCA, Miranda ACM, Geraldo GC, da Silva CM, Giberti S, Bertazzini M, Forlani G (2013) The fungal phytotoxin alternariol 9-methyl ether and some of its synthetic analogues inhibit the photosynthetic electron transport chain. J Nat Prod 76:2234–2245. doi:10.1021/np4005882

    Article  CAS  Google Scholar 

  272. Groth G (2002) Structure of spinach chloroplast F1-ATPase complexed with the phytopathogenic inhibitor tentoxin. Proc Natl Acad Sci USA 99:3464–3468. doi:10.1073/pnas.052546099

    Article  CAS  Google Scholar 

  273. Meiss E, Konno H, Groth G, Hisabori T (2008) Molecular processes of inhibition and stimulation of ATP synthase caused by the phytotoxin tentoxin. J Biol Chem 283:24594–24599. doi:10.1074/jbc.M802574200

    Article  CAS  Google Scholar 

  274. Paiardini A, Aducci P, Cervoni L, Cutruzzolà F, Di Lucente C, Janson G, Pascarella S, Rinaldo S, Visconti S, Camoni L (2014) The phytotoxin fusicoccin differently regulates 14-3-3 proteins association to mode III targets. IUBMB Life 66:52–62. doi:10.1002/iub.1239

    Article  CAS  Google Scholar 

  275. Chivasa S, Ndimba BK, Simon WJ, Lindsey K, Slabas AR (2005) Extracellular ATP functions as an endogenous external metabolite regulating plant cell viability. Plant Cell 17:3019–3034. doi:10.1105/tpc.105.036806

    Article  CAS  Google Scholar 

  276. Gutleb AC, Morrison E, Murk AJ (2002) Cytotoxicity assays for mycotoxins produced by Fusarium strains: a review. Environ Toxicol Pharmacol 11:309–320

    Article  CAS  Google Scholar 

  277. Ueno Y (1985) The toxicology of mycotoxins. Crit Rev Toxicol 14:99–133

    Article  CAS  Google Scholar 

  278. Abbas HK, Yoshizawa T, Shier WT (2013) Cytotoxicity and phytotoxicity of trichothecene mycotoxins produced by Fusarium spp. Toxicon 74:68–75. doi:10.1016/j.toxicon.2013.07.026

    Article  CAS  Google Scholar 

  279. Lee T, Oh DW, Kim HS, Lee J, Kim YH, Yun SH, Lee YW (2001) Identification of deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae by using PCR. Appl Environ Microbiol 67:2966–2972. doi:10.1128/AEM.67.7.2966-2972.2001

    Article  CAS  Google Scholar 

  280. Chandler EA, Simpson DR, Thomsett MA, Nicholson P (2003) Development of PCR assays to Tri7 and Tri13 trichothecene biosynthetic genes, and characterisation of chemotypes of Fusarium graminearum, Fusarium culmorum and Fusarium cerealis. Physiol Mol Plant Pathol 62:355–367. doi:10.1016/S0885-5765(03)00092-4

    Article  CAS  Google Scholar 

  281. Weaver MA, Jin X, Hoagland RE, Boyette CD (2009) Improved bioherbicidal efficacy by Myrothecium verrucaria via spray adjuvants or herbicide mixtures. Biol Control 50:150–156. doi:10.1016/j.biocontrol.2009.03.007

    Article  CAS  Google Scholar 

  282. Goswami RS, Kistler HC (2004) Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol 5:515–525. doi:10.1111/J.1364-3703.2004.00252.X

    Article  CAS  Google Scholar 

  283. Foroud NA, Eudes F (2009) Trichothecenes in cereal grains. Int J Mol Sci 10:147–173

    Article  CAS  Google Scholar 

  284. Desjardins AE, Munkvold GP, Plattner RD, Proctor RH (2002) FUM1 – a gene required for fumonisin biosynthesis but not for maize ear rot and ear infection by Gibberella moniliformis in field tests. Mol Plant Microbe Interact 15:1157–1164. doi:10.1094/MPMI.2002.15.11.1157

    Article  CAS  Google Scholar 

  285. Gardiner DM, Kazan K, Praud S, Torney FJ, Rusu A, Manners JM (2010) Early activation of wheat polyamine biosynthesis during Fusarium head blight implicates putrescine as an inducer of trichothecene mycotoxin production. BMC Plant Biol 10:289. doi:10.1186/1471-2229-10-289

    Article  CAS  Google Scholar 

  286. Shimada T, Otani M (1990) Effects of Fusarium mycotoxins on the growth of shoots and roots at germination in some Japanese wheat cultivars. Cereal Res Commun 18:229–232

    Google Scholar 

  287. Langseth W, Ghebremeskel M, Kosiak B, Kolsaker P, Miller D (2001) Production of culmorin compounds and other secondary metabolites by Fusarium culmorum and F. graminearum strains isolated from Norwegian cereals. Mycopathologia 152:23–34

    Article  CAS  Google Scholar 

  288. Wang YZ, Miller JD (1988) Effects of Fusarium graminearum metabolites on wheat tissue in relation to fusarium head blight resistance. J Phytopathol 122:118–125. doi:10.1111/j.1439-0434.1988.tb00998.x

    Article  CAS  Google Scholar 

  289. Ghebremeskel M, Langseth W (2001) The occurrence of culmorin and hydroxy-culmorins in cereals. Mycopathologia 152:103–108

    Article  CAS  Google Scholar 

  290. Herrmann M, Zocher R, Haese A (1996) Effect of disruption of the enniatin synthetase gene on the virulence of Fusarium avenaceum. Mol Plant Microbe Interact 9:226–232

    Article  CAS  Google Scholar 

  291. Vellejos RH, Andreo CS, Ravizzini RA (1975) Divalent-cation ionophores and Ca2+ transport in spinach chloroplasts. FEBS Lett 50:245–249

    Article  CAS  Google Scholar 

  292. Wicklow DT, Rogers KD, Dowd PF, Gloer JB (2011) Bioactive metabolites from Stenocarpella maydis, a stalk and ear rot pathogen of maize. Fungal Biol 115:133–142. doi:10.1016/j.funbio.2010.11.003

    Article  CAS  Google Scholar 

  293. Rogers KD, Cannistra JC, Gloer JB, Wicklow DT (2014) Diplodiatoxin, chaetoglobosins, and diplonine associated with a field outbreak of Stenocarpella ear rot in Illinois. Mycotoxin Res 30:61–70. doi:10.1007/s12550-014-0188-0

    Article  CAS  Google Scholar 

  294. Levings CS III, Rhoads DM, Siedow JN (1995) Molecular interactions of Bipolaris maydis T-toxin and maize. Can J Bot 73:483–489. doi:10.1139/b95-286

    Article  Google Scholar 

  295. Rocha O, Ansari K, Doohan FM (2005) Effects of trichothecene mycotoxins on eukaryotic cells: a review. Food Addit Contam 22:369–378. doi:10.1080/02652030500058403

    Article  CAS  Google Scholar 

  296. Gonzalez Garcia V, Portal Onco MA, Rubio Susan V (2006) Review. Biology and systematics of the form genus Rhizoctonia. Spanish. J Agric Res 4:55. doi:10.5424/sjar/2006041-178

    Google Scholar 

  297. Carling DE, Baird RE, Gitaitis RD, Brainard KA, Kuninaga S (2002) Characterization of AG-13, a newly reported anastomosis group of Rhizoctonia solani. Phytopathology 92:893–899. doi:10.1094/PHYTO.2002.92.8.893

    Article  CAS  Google Scholar 

  298. Stodart BJ, Harvey PR, Neate SM, Melanson DL, Scott ES (2007) Genetic variation and pathogenicity of anastomosis group 2 isolates of Rhizoctonia solani in Australia. Mycol Res 111:891–900. doi:10.1016/j.mycres.2007.05.008

    Article  Google Scholar 

  299. Zheng A, Lin R, Zhang D, Qin P, Xu L, Ai P, Ding L, Wang Y, Chen Y, Liu Y, Sun Z, Feng H, Liang X, Fu R, Tang C, Li Q, Zhang J, Xie Z, Deng Q, Li S, Wang S, Zhu J, Wang L, Liu H, Li P (2013) The evolution and pathogenic mechanisms of the rice sheath blight pathogen. Nat Commun 4:1424. doi:10.1038/ncomms2427

    Article  CAS  Google Scholar 

  300. Wibberg D, Jelonek L, Rupp O, Kröber M, Goesmann A, Grosch R, Pühler A, Schlüter A (2014) Transcriptome analysis of the phytopathogenic fungus Rhizoctonia solani AG1-IB 7/3/14 applying high-throughput sequencing of expressed sequence tags (ESTs). Fungal Biol 118:800–813. doi:10.1016/j.funbio.2014.06.007

    Article  CAS  Google Scholar 

  301. Kwon YS, Kim SG, Chung WS, Bae H, Jeong SW, Shin SC, Jeong M-J, Park S-C, Kwak Y-S, Bae D-W, Lee YB (2014) Proteomic analysis of Rhizoctonia solani AG-1 sclerotia maturation. Fungal Biol 118:433–443. doi:10.1016/j.funbio.2014.02.001

    Article  CAS  Google Scholar 

  302. Vidhyasekaran P, Ponmalar TR, Samiyappan R, Velazhahan R, Vimala R, Ramanathan A, Paranidharan V, Muthukrishnan S (1997) Host-specific toxin production by Rhizoctonia solani, the rice sheath blight pathogen. Phytopathology 87:1258–1263. doi:10.1094/PHYTO.1997.87.12.1258

    Article  CAS  Google Scholar 

  303. Brooks SA (2007) Sensitivity to a phytotoxin from Rhizoctonia solani correlates with sheath blight susceptibility in rice. Phytopathology 97:1207–1212. doi:10.1094/PHYTO-97-10-1207

    Article  CAS  Google Scholar 

  304. Bartz FE, Glassbrook NJ, Danehower DA, Cubeta MA (2013) Modulation of the phenylacetic acid metabolic complex by quinic acid alters the disease-causing activity of Rhizoctonia solani on tomato. Phytochemistry 89:47–52. doi:10.1016/j.phytochem.2012.09.018

    Article  CAS  Google Scholar 

  305. Xu L, Wang X, Luo R, Lu S, Guo Z, Wang M, Liu Y, Zhou L (2015) Secondary metabolites of rice sheath blight pathogen Rhizoctonia solani Kühn and their biological activities. J Integr Agric 14:80–87. doi:10.1016/S2095-3119(14)60905-9

    Article  CAS  Google Scholar 

  306. Colmenares A, Aleu J, Durán-Patrón R, Collado IG, Hernández-Galán R (2002) The putative role of botrydial and related metabolites in the infection mechanism of Botrytis cinerea. J Chem Ecol 28:997–1005

    Article  CAS  Google Scholar 

  307. Tani H, Koshino H, Sakuno E, Cutler HG, Nakajima H (2006) Botcinins E and F and Botcinolide from Botrytis cinerea and structural revision of botcinolides. J Nat Prod 69:722–725. doi:10.1021/np060071x

    Article  CAS  Google Scholar 

  308. Deighton N, Muckenschnabel I, Colmenares AJ, Collado IG, Williamson B (2001) Botrydial is produced in plant tissues infected by Botrytis cinerea. Phytochemistry 57:689–692

    Article  CAS  Google Scholar 

  309. Guo M, Huang K, Chen S, Qi X, He X, Cheng W-H, Luo Y, Xia K, Xu W (2014) Combination of metagenomics and culture-based methods to study the interaction between ochratoxin A and gut microbiota. Toxicol Sci 141:314–323. doi:10.1093/toxsci/kfu128

    Article  CAS  Google Scholar 

  310. Zaehle C, Gressler M, Shelest E, Geib E, Hertweck C, Brock M (2014) Terrein biosynthesis in Aspergillus terreus and its impact on phytotoxicity. Chem Biol 21:719–731. doi:10.1016/j.chembiol.2014.03.010

    Article  CAS  Google Scholar 

  311. Hu J, Chen C, Peever T, Dang H, Lawrence C, Mitchell T (2012) Genomic characterization of the conditionally dispensable chromosome in Alternaria arborescens provides evidence for horizontal gene transfer. BMC Genomics 13:171. doi:10.1186/1471-2164-13-171

    Article  CAS  Google Scholar 

  312. Chooi Y-H, Solomon PS (2014) A chemical ecogenomics approach to understand the roles of secondary metabolites in fungal cereal pathogens. Front Microbiol 5:640. doi:10.3389/fmicb.2014.00640

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Hungarian Scientific Research Fund (OTKA K100464 and OTKA K108333).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tünde Pusztahelyi .

Editor information

Editors and Affiliations

Additional information

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Pusztahelyi, T., Holb, I.J., Pócsi, I. (2016). Plant-Fungal Interactions: Special Secondary Metabolites of the Biotrophic, Necrotrophic, and Other Specific Interactions. In: Mérillon, JM., Ramawat, K. (eds) Fungal Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-19456-1_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19456-1_39-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19456-1

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Plant-Fungal Interactions: Special Secondary Metabolites of the Biotrophic, Necrotrophic, and Other Specific Interactions
    Published:
    27 January 2017

    DOI: https://doi.org/10.1007/978-3-319-19456-1_39-2

  2. Original

    Plant-Fungal Interactions: Special Secondary Metabolites of the Biotrophic, Necrotrophic, and Other Specific Interactions
    Published:
    30 June 2016

    DOI: https://doi.org/10.1007/978-3-319-19456-1_39-1