Skip to main content

Optimized Schwarz Method for the Fluid-Structure Interaction with Cylindrical Interfaces

  • Conference paper
Domain Decomposition Methods in Science and Engineering XXII

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 104))

Abstract

The Optimized Schwarz Method (OSM) is a domain decomposition method based on the introduction of generalized Robin interface conditions obtained by linearly combining the two physical interface conditions through the introduction of suitable symbols, and then on the optimization of such symbols within a proper subset, see [10, 13]. This method has been considered so far for many problems in the case of flat interfaces, see, e.g., [3, 5–7, 11, 16, 17]. Recently, OSM has been considered and analyzed for the case of cylindrical interfaces in [8, 9], and for the case of circular interfaces in [2]. In particular, in [8] we developed a general convergence analysis of the Schwarz method for elliptic problems and an optimization procedure within the constants, with application to the fluid-structure interaction (FSI) problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Badia, F. Nobile, C. Vergara, Fluid-structure partitioned procedures based on Robin transmission conditions. J. Comput. Phys. 227, 7027–7051 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Barucq, M.J. Gander, Y. Xu, On the Influence of Curvature on Transmission Conditions, in Domain Decomposition Methods in Science and Engineering XXI. Lecture Notes in Computational Science and Engineering (Springer, Berlin, 2013)

    Google Scholar 

  3. V. Dolean, M.J. Gander, L.G. Giorda, Optimized Schwarz Methods for Maxwell’s equations. SIAM J. Sci. Comput. 31(3), 2193–2213 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Donea, An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interaction. Comput. Meth. Appl. Mech. Eng. 33, 689–723 (1982)

    Article  MATH  Google Scholar 

  5. M.J. Gander, Optimized Schwarz Methods. SIAM J. Numer. Anal. 44(2), 699–731 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. M.J. Gander, F. Magoulès, F. Nataf, Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput. 24, 38–60 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Gerardo Giorda, F. Nobile, C. Vergara, Analysis and optimization of Robin-Robin partitioned procedures in fluid-structure interaction problems. SIAM J. Numer. Anal. 48(6), 2091–2116 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Gigante, C. Vergara, Analysis and optimization of the generalized Schwarz method for elliptic problems with application to fluid-structure interaction. Numer. Math., doi:10.1007/s00211-014-0693-2

    Google Scholar 

  9. G. Gigante, M. Pozzoli, C. Vergara, Optimized Schwarz Methods for the diffusion-reaction problem with cylindrical interfaces. SIAM J. Numer. Anal. 51(6), 3402–3420 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. C. Japhet, Optimized Krylov-Ventcell method. Application to convection-diffusion problems, in Proceedings of the Ninth International Conference on Domain Decomposition Methods, ed. by P.E. Bjorstad, M.S. Espedal, D.E. Keyes (1998) pp. 382–389

    Google Scholar 

  11. C. Japhet, N. Nataf, F. Rogier, The optimized order 2 method. Application to convection-diffusion problems. Futur. Gener. Comput. Syst. 18, 17–30 (2001)

    Article  MATH  Google Scholar 

  12. N. Lebedev, Special Functions and Their Applications (Courier Dover Publications, New York, 1972)

    MATH  Google Scholar 

  13. P.L. Lions, On the Schwartz alternating method III, in Proceedings of the Third International Symposium on Domain Decomposition Methods for PDE’s, ed. by T. Chan, R. Glowinki, J. Periaux, O.B. Widlund (SIAM, Philadelphia, 1990), pp. 202–223

    Google Scholar 

  14. F. Nobile, C. Vergara, Partitioned algorithms for fluid-structure interaction problems in haemodynamics. Milan J. Math. 80(2), 443–467 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. F. Nobile, M. Pozzoli, C. Vergara, Time accurate partitioned algorithms for the solution of fluid-structure interaction problems in haemodynamics. Comput. Fluids 86, 470–482 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Qaddouria, L. Laayounib, S. Loiselc, J. Cotea, M.J. Gander, Optimized Schwarz methods with an overset grid for the shallow-water equations: preliminary results. Appl. Numer. Math. 58, 459–471 (2008)

    Article  MathSciNet  Google Scholar 

  17. B. Stupfel, Improved transmission conditions for a one-dimensional domain decomposition method applied to the solution of the Helmhotz equation. J. Comput. Phys. 229, 851–874 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Vergara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Gigante, G., Vergara, C. (2016). Optimized Schwarz Method for the Fluid-Structure Interaction with Cylindrical Interfaces. In: Dickopf, T., Gander, M., Halpern, L., Krause, R., Pavarino, L. (eds) Domain Decomposition Methods in Science and Engineering XXII. Lecture Notes in Computational Science and Engineering, vol 104. Springer, Cham. https://doi.org/10.1007/978-3-319-18827-0_53

Download citation

Publish with us

Policies and ethics