Domain Decomposition Methods in Science and Engineering XXII

  • Thomas Dickopf
  • Martin J. Gander
  • Laurence Halpern
  • Rolf Krause
  • Luca F. Pavarino

Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 104)

Table of contents

  1. Front Matter
    Pages i-xx
  2. Plenary Talks (PT)

    1. Front Matter
      Pages 1-1
    2. Paola F. Antonietti, Marco Sarti, Marco Verani
      Pages 3-13
    3. L. Beirão da Veiga, L. F. Pavarino, S. Scacchi, O. B. Widlund, S. Zampini
      Pages 15-28
    4. Axel Klawonn, Martin Lanser, Oliver Rheinbach
      Pages 41-52
    5. Miguel A. Fernández, Mikel Landajuela, Jimmy Mullaert, Marina Vidrascu
      Pages 65-76
    6. Jinchao Xu, Shuo Zhang
      Pages 77-91
    7. Olof B. Widlund, Clark R. Dohrmann
      Pages 93-103
  3. Talks in Minisymposia (MT)

    1. Front Matter
      Pages 105-105
    2. Alexander Bihlo, Ronald D. Haynes
      Pages 107-115
    3. D. S. Butyugin, Y. L. Gurieva, V. P. Ilin, D. V. Perevozkin
      Pages 117-125
    4. Pierre-Henri Cocquet, Martin J. Gander
      Pages 137-145
    5. Victorita Dolean, Martin J. Gander
      Pages 147-155
    6. Maksymilian Dryja, Juan Galvis, Marcus Sarkis
      Pages 157-165
    7. Christian Engwer, Klaus Johannsen, Andreas Nüßing
      Pages 177-185
    8. Christian Engwer, Steffen Müthing
      Pages 187-195

About these proceedings

Introduction

These are the proceedings of the 22nd International Conference on Domain Decomposition Methods, which was held in Lugano, Switzerland. With 172 participants from over 24 countries, this conference continued a long-standing tradition of internationally oriented meetings on Domain Decomposition Methods. The book features a well-balanced mix of established and new topics, such as the manifold theory of Schwarz Methods, Isogeometric Analysis, Discontinuous Galerkin Methods, exploitation of modern HPC architectures, and industrial applications. As the conference program reflects, the growing capabilities in terms of theory and available hardware allow increasingly complex non-linear and multi-physics simulations, confirming the tremendous potential and flexibility of the domain decomposition concept.

Keywords

applied mathematics computational science and engineering domain decomposition numerical simulation numerical software

Editors and affiliations

  • Thomas Dickopf
    • 1
  • Martin J. Gander
    • 2
  • Laurence Halpern
    • 3
  • Rolf Krause
    • 4
  • Luca F. Pavarino
    • 5
  1. 1.Fakultät für MathematikTechnische Universität MünchenGarchingGermany
  2. 2.Section de MathématiquesUniversité de GenèveGenèveSwitzerland
  3. 3.Laboratoire Analyse, Geométrie & ApplicationsUniversité Paris XIIIVilletaneuseFrance
  4. 4.Institute of Computational ScienceUniversity of LuganoLuganoSwitzerland
  5. 5.Dipartimento di MatematicaUniversità degli Studi di MilanoMilanoItaly

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-319-18827-0
  • Copyright Information Springer International Publishing Switzerland 2016
  • Publisher Name Springer, Cham
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-319-18826-3
  • Online ISBN 978-3-319-18827-0
  • Series Print ISSN 1439-7358
  • Series Online ISSN 2197-7100
  • About this book