Skip to main content

On the Relation Between Optimized Schwarz Methods and Source Transfer

  • Conference paper
Domain Decomposition Methods in Science and Engineering XXII

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 104))

Abstract

Optimized Schwarz methods (OS) use Robin or higher order transmission conditions instead of the classical Dirichlet ones. An optimal Schwarz method for a general second-order elliptic problem and a decomposition into strips was presented in [13]. Here optimality means that the method converges in a finite number of steps, and this was achieved by replacing in the transmission conditions the higher order operator by the subdomain exterior Dirichlet-to-Neumann (DtN) maps. It is even possible to design an optimal Schwarz method that converges in two steps for an arbitrary decomposition and an arbitrary partial differential equation (PDE), see [6], but such algorithms are not practical, because the operators involved are highly non-local. Substantial research was therefore devoted to approximate these optimal transmission conditions, see for example the early reference [11], or the overview [5] which coined the term “optimized Schwarz method”, and references therein. In particular for the Helmholtz equation, Gander et al. [9] presents optimized second-order approximations of the DtN, Toselli [17] (improperly) and Schädle and Zschiedrich [14] (properly) tried for the first time using perfectly matched layers (PML, see [1]) to approximate the DtN in OS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J.-P. Berenger, A perfectly matched layer for absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Z. Chen, X. Xiang, A source transfer domain decomposition method for Helmholtz equations in unbounded domain. SIAM J. Numer. Anal. 51(4), 2331–2356 (2013a)

    Google Scholar 

  3. Z. Chen, X. Xiang, A source transfer domain decomposition method for Helmholtz equations in unbounded domain part II: extensions. Numer. Math. Theory Methods Appl. 6(3), 538–555 (2013b)

    Google Scholar 

  4. B. Engquist, L. Ying, Sweeping preconditioner for the Helmholtz equation: moving perfectly matched layers. Multiscale Model. Simul. 9(2), 686–710 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. M.J. Gander, Optimized Schwarz methods. SIAM J. Numer. Anal. 44, 699–731 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. M.J. Gander, F. Kwok, Optimal interface conditions for an arbitrary decomposition into subdomains, in Domain Decomposition Methods in Science and Engineering XIX, ed. by Y. Huang, R. Kornhuber, O.B. Widlund, J. Xu (Springer, Heidelberg, 2011), pp. 101–108

    Chapter  Google Scholar 

  7. M.J. Gander, F. Nataf, AILU: a preconditioner based on the analytic factorization of the elliptic operator. Numer. Linear Algebra Appl. 7, 505–526 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. M.J. Gander, F. Nataf, An incomplete preconditioner for problems in acoustics. J. Comput. Acoust. 13, 455–476 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. M.J. Gander, F. Magoulès, F. Nataf, Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput. 24, 38–60 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. C. Geuzaine, A. Vion, Double sweep preconditioner for Schwarz methods applied to the Helmholtz equation, in Domain Decomposition Methods in Science and Engineering XXII (Springer, Heidelberg, 2015)

    MATH  Google Scholar 

  11. C. Japhet, Optimized Krylov-Ventcell method. Application to convection-diffusion problems, in Ninth International Conference on Domain Decomposition Methods, ed. by P.E. Bjorstad, M.S. Espedal, D.E. Keyes (ddm.org, Bergen, 1998)

    Google Scholar 

  12. F. Nataf, F. Nier, Convergence rate of some domain decomposition methods for overlapping and nonoverlapping subdomains. Numer. Math. 75, 357–377 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. F. Nataf, F. Rogier, E. de Sturler, Optimal interface conditions for domain decomposition methods. Technical report, Polytechnique (1994)

    MATH  Google Scholar 

  14. A. Schädle, L. Zschiedrich, Additive Schwarz method for scattering problems using the PML method at interfaces, in Domain Decomposition Methods in Science and Engineering XVI, ed. by O.B. Widlund, D.E. Keyes (Springer, Heidelberg, 2007), pp. 205–212

    Chapter  Google Scholar 

  15. A. St-Cyr, M.J. Gander, S.J. Thomas, Optimized multiplicative, additive, and restricted additive Schwarz preconditioning. SIAM J. Sci. Comput. 29, 2402–2425 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. C. Stolk, A rapidly converging domain decomposition method for the Helmholtz equation. J. Comput. Phys. 241, 240–252 (2013)

    Article  Google Scholar 

  17. A. Toselli, Overlapping methods with perfectly matched layers for the solution of the Helmholtz equation, in Eleventh International Conference on Domain Decomposition Methods, ed. by C.-H. Lai, P. Bjorstad, M. Cross, O.B. Widlund (1999), pp. 551–558

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Université de Genève. HZ thanks the International Science and Technology Cooperation Program of China (2010DFA14700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Chen, Z., Gander, M.J., Zhang, H. (2016). On the Relation Between Optimized Schwarz Methods and Source Transfer. In: Dickopf, T., Gander, M., Halpern, L., Krause, R., Pavarino, L. (eds) Domain Decomposition Methods in Science and Engineering XXII. Lecture Notes in Computational Science and Engineering, vol 104. Springer, Cham. https://doi.org/10.1007/978-3-319-18827-0_20

Download citation

Publish with us

Policies and ethics