Skip to main content

Thinking Outside the Box: Alternative Binding Sites in the Ligand Binding Domain of Nuclear Receptors

  • Chapter
  • First Online:
Nuclear Receptors: From Structure to the Clinic

Abstract

Throughout the past years nuclear receptors (NRs) have been pharmaceutical targets for many diseases, such as cancers and metabolic diseases, due to the physiological spectrum of different cell regulation mechanisms that involve their actions e.g. cell proliferation, metabolism and homeostasis. The initial scientific focus for drug discovery in NRs has resulted in many important anticancer drugs currently available in the clinic. Yet, despite these successes the therapeutic strategy undertaken has almost exclusively focused in targeting their ligand binding pocket (LBP). However, the versatile nature of these proteins has shown the development of drug resistance to these drugs through mechanisms such as mutations in the LBP, which render antagonistic inhibitors as agonists and exacerbate disease progression. The need for new clinical antagonists with alternative mechanisms of actions has led the scientific community to explore other alternative sites such as druggable non-ligand binding pockets (non-LBPs). Here we will cover the available non-LBPs of different NRs and the current results that identify these sites as valuable druggable targeting pockets that may lead to alternative therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnold SF, Notides AC (1995) An antiestrogen: a phosphotyrosyl peptide that blocks dimerization of the human estrogen receptor. Proc Natl Acad Sci U S A 92(16):7475–7479

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arnold LA et al (2006) A high-throughput screening method to identify small molecule inhibitors of thyroid hormone receptor coactivator binding. Sci STKE 2006(341):pl3

    PubMed  Google Scholar 

  • Arnold LA et al (2007) Inhibitors of the interaction of a thyroid hormone receptor and coactivators: preliminary structure-activity relationships. J Med Chem 50(22):5269–5280

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Askew EB, Minges JT, Hnat AT, Wilson EM (2011) Structural features discriminate androgen receptor N/C terminal and coactivator interactions. Mol Cell Endocrinol 348(2):403–410

    Article  PubMed Central  PubMed  Google Scholar 

  • Axerio-Cilies, P et al (2011) Inhibitors of androgen receptor activation function-2 (AF2) site identified through virtual screening. J Med Chem 54(18):6197–6205

    Article  CAS  PubMed  Google Scholar 

  • Becerril J, Hamilton AD (2007) Helix mimetics as inhibitors of the interaction of the estrogen receptor with coactivator peptides. Angew Chem Int Ed Engl 46(24):4471–4473

    Article  CAS  PubMed  Google Scholar 

  • Biswas A, Mani S, Redinbo MR, Krasowski MD, Li H, Ekins S (2009) Elucidating the ‘Jekyll and Hyde’ nature of PXR: the case for discovering antagonists or allosteric antagonists. Pharm Res 26(8):1807–1815

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bohl CE et al (2005) Structural basis for accommodation of nonsteroidal ligands in the androgen receptor. J Biol Chem 280(45):37747–37754

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Borngraeber S, Budny MJ, Chiellini G, Cunha-Lima ST, Togashi M, Webb P, Baxter JD, Scanlan TS, Fletterick RJ (2003) Ligand selectivity by seeking hydrophobicity in thyroid hormone receptor. Proc Natl Acad Sci U S A 100(26):15358–15363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brodie J, McEwan IJ (2005) Intra-domain communication between the N-terminal and DNA-binding domains of the androgen receptor: modulation of androgen response element DNA binding. J Mol Endocrinol 34(3):603–615

    Article  CAS  PubMed  Google Scholar 

  • Buzón V et al (2012) A conserved surface on the ligand binding domain of nuclear receptors for allosteric control. Mol Cell Endocrinol 348(2):394–402

    Article  PubMed  Google Scholar 

  • Caboni L et al (2012) “True” antiandrogens-selective non-ligand-binding pocket disruptors of androgen receptor-coactivator interactions: novel tools for prostate cancer. J Med Chem 55(4):1635–1644

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chakraborty S et al (2012) In silico design of peptidic inhibitors targeting estrogen receptor alpha dimer interface. Mol Divers 16(3):441–451

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty S, Levenson AS, Biswas PK (2013) Structural insights into Resveratrol's antagonist and partial agonist actions on estrogen receptor alpha. BMC Struct Biol 13:27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chang C et al (1999) Dissection of the LXXLL nuclear receptor-coactivator interaction motif using combinatorial peptide libraries: discovery of peptide antagonists of estrogen receptors alpha and beta. Mol Cell Biol 19(12):8226–8239

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng Y Redinbo MR (2011) Activation of the human nuclear xenobiotic receptor PXR by the reverse transcriptase-targeted anti-HIV drug PNU-142721. Protein Sci 20(10):1713–1719

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chrencik JE et al (2005) Structural disorder in the complex of human pregnane X receptor and the macrolide antibiotic rifampicin. Mol Endocrinol 19(5):1125–1134

    Article  CAS  PubMed  Google Scholar 

  • De Leon JT et al (2011) Targeting the regulation of androgen receptor signaling by the heat shock protein 90 cochaperone FKBP52 in prostate cancer cells. Proc Natl Acad Sci U S A 108(29):11878–11883

    Google Scholar 

  • Ekins S et al (2007) Human pregnane X receptor antagonists and agonists define molecular requirements for different binding sites. Mol Pharmacol 72(3):592–603

    Article  CAS  PubMed  Google Scholar 

  • Ekins S et al (2008) Computational discovery of novel low micromolar human pregnane X receptor antagonists. Mol Pharmacol 74(3):662–672

    Article  CAS  PubMed  Google Scholar 

  • Estébanez-Perpiñá E et al (2005) The molecular mechanisms of coactivator utilization in ligand-dependent transactivation by the androgen receptor. J Biol Chem 280(9):8060–8068

    Article  PubMed  Google Scholar 

  • Estébanez-Perpiñá E et al (2007a) A surface on the androgen receptor that allosterically regulates coactivator binding. Proc Natl Acad Sci U S A 104(41):16074–16079

    Article  PubMed Central  PubMed  Google Scholar 

  • Estébanez-Perpiñá E, Jouravel N, Fletterick RJ (2007b) Perspectives on designs of antiandrogens for prostate cancer. Expert Opin on Drug Discov 2(10):1341–1355

    Article  Google Scholar 

  • Estébanez-Perpiñá E et al (2007c) Structural insight into the mode of action of a direct inhibitor of coregulator binding to the thyroid hormone receptor. Mol Endocrinol 21(12):2919–2928

    Article  PubMed  Google Scholar 

  • Estébanez-Perpiñá E et al (2007d) A surface on the androgen receptor that allosterically regulates coactivator binding. Proc Natl Acad Sci U S A 104(41):16074–16079

    Article  PubMed Central  PubMed  Google Scholar 

  • Fuchs S et al (2013) Proline primed helix length as a modulator of the nuclear receptor-coactivator interaction. J Am Chem Soc 135(11):4364–4371

    Article  CAS  PubMed  Google Scholar 

  • Gearhart MD et al (2003) Monomeric complex of human orphan estrogen related receptor-2 with DNA: a pseudo-dimer interface mediates extended half-site recognition. J Mol Biol 327(4):819–832

    Article  CAS  PubMed  Google Scholar 

  • Geistlinger TR, Guy RK (2003) Novel selective inhibitors of the interaction of individual nuclear hormone receptors with a mutually shared steroid receptor coactivator 2. J Am Chem Soc 125(23):6852–6853

    Article  CAS  PubMed  Google Scholar 

  • Gerhard DS et al (2004) The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res 14(10B):2121–2127

    Article  PubMed  Google Scholar 

  • Grosdidier S et al (2012) Allosteric conversation in the androgen receptor ligand-binding domain surfaces. Mol Endocrinol 26(7):1078–1090

    Article  CAS  PubMed  Google Scholar 

  • Gunther JR et al (2009a) A set of time-resolved fluorescence resonance energy transfer assays for the discovery of inhibitors of estrogen receptor-coactivator binding. J Biomol Screen 14(2):181–193

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gunther JR, Parent AA, Katzenellenbogen JA (2009b) Alternative inhibition of androgen receptor signaling: peptidomimetic pyrimidines as direct androgen receptor/coactivator disruptors. ACS Chem Biol 4(6):435–440

    Article  PubMed Central  PubMed  Google Scholar 

  • Haendler B, Cleve A (2012) Recent developments in antiandrogens and selective androgen receptor modulators. Mol Cell Endocrinol 352(1–2):79–91

    Article  CAS  PubMed  Google Scholar 

  • Harzstark AL, Small EJ (2010) Castrate-resistant prostate cancer: therapeutic strategies. Expert Opin Pharmacother 11(6):937–945

    Article  CAS  PubMed  Google Scholar 

  • He B, Kemppainen JA, Wilson EM (2000) FXXLF and WXXLF sequences mediate the NH2-terminal interaction with the ligand binding domain of the androgen receptor. J Biol Chem 275(30):22986–22994

    Article  CAS  PubMed  Google Scholar 

  • He B et al The FXXLF motif mediates androgen receptor-specific interactions with coregulators. J Biol Chem 277(12):10226–10235

    Google Scholar 

  • Heinlein CA, Chang C (2004) Androgen receptor in prostate cancer. Endocr Rev 25(2):276–308

    Article  CAS  PubMed  Google Scholar 

  • Huang H et al (2007) Inhibition of drug metabolism by blocking the activation of nuclear receptors by ketoconazole. Oncogene 26(2):258–268

    Article  PubMed  Google Scholar 

  • Huggins C (1967) Endocrine-induced regression of cancers. Science 156(3778):1050–1054

    Article  CAS  PubMed  Google Scholar 

  • Hur E et al (2004) Recognition and accommodation at the androgen receptor coactivator binding interface. PLoS One 2(11):363

    Google Scholar 

  • Hwang JY et al (2011) Methylsulfonylnitrobenzoates, a new class of irreversible inhibitors of the interaction of the thyroid hormone receptor and its obligate coactivators that functionally antagonizes thyroid hormone. J Biol Chem 286(14):11895–11908

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hwang JY et al (2012) Synthesis and evaluation of sulfonylnitrophenylthiazoles (SNPTs) as thyroid hormone receptor-coactivator interaction inhibitors. J Med Chem 55(5):2301–2310

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Irwin JJ, Shoichet BK (2005) ZINC–a free database of commercially available compounds for virtual screening. J Chem Inf Model 45(1):177–182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Irwin JJ et al (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52(7):1757–1768

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jensen EV, Khan SA (2004) A two-site model for antiestrogen action. Mech Ageing Dev 125(10–11):679–682

    Article  CAS  PubMed  Google Scholar 

  • Joseph JD et al (2013) A clinically relevant androgen receptor mutation confers resistance to second-generation antiandrogens enzalutamide and ARN-509. Cancer Discov 3(9):1020–1029

    Article  CAS  PubMed  Google Scholar 

  • Knudsen KE, Penning TM (2010) Partners in crime: deregulation of AR activity and androgen synthesis in prostate cancer. Trends Endocrinol Metab 21(5):315–324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kojetin DJ et al (2008) Implications of the binding of tamoxifen to the coactivator recognition site of the estrogen receptor. Endocr Relat Cancer 15(4):851–870

    Article  CAS  PubMed  Google Scholar 

  • Korpal M et al (2013) An F876 L mutation in androgen receptor confers genetic and phenotypic resistance to MDV3100 (enzalutamide). Cancer Discov 3(9):1030–1043

    Article  CAS  PubMed  Google Scholar 

  • Lack NA et al (2011) Targeting the binding function 3 (BF3) site of the human androgen receptor through virtual screening. J Med Chem 54(24):8563–8573

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • LaFrate AL et al (2008) Synthesis and biological evaluation of guanylhydrazone coactivator binding inhibitors for the estrogen receptor. Bioorg Med Chem 16(23):10075–10084

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • LaFrate AL, Carlson KE, Katzenellenbogen JA. (2009) Steroidal bivalent ligands for the estrogen receptor: design, synthesis, characterization and binding affinities. Bioorg Med Chem 17(10):3528–3535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Langley E, Zhou ZX, Wilson EM (1995) Evidence for an anti-parallel orientation of the ligand-activated human androgen receptor dimer. J Biol Chem 270(50):29983–29990

    Article  CAS  PubMed  Google Scholar 

  • Masiello D et al (2002) Bicalutamide functions as an androgen receptor antagonist by assembly of a transcriptionally inactive receptor. J Biol Chem 277(29):26321–26326

    Article  CAS  PubMed  Google Scholar 

  • Mettu NB et al (2007) The nuclear receptor-coactivator interaction surface as a target for peptide antagonists of the peroxisome proliferator-activated receptors. Mol Endocrinol 21(10):2361–2377

    Article  CAS  PubMed  Google Scholar 

  • Mita Y et al (2010) LXXLL peptide mimetics as inhibitors of the interaction of vitamin D receptor with coactivators. Bioorg Med Chem Lett 20(5):1712–1717

    Article  CAS  PubMed  Google Scholar 

  • Mohler ML et al (2012) Androgen receptor antagonists: a patent review (2008–2011). Expert Opin Ther Pat 22(5):541–565

    Article  CAS  PubMed  Google Scholar 

  • Munuganti RS et al (2013) Targeting the binding function 3 (BF3) site of the androgen receptor through virtual screening. 2. development of 2-((2-phenoxyethyl) thio)-1H-benzimidazole derivatives. J Med Chem 56(3):1136–1148.

    Article  CAS  PubMed  Google Scholar 

  • Nagy L, Schwabe JW (2004) Mechanism of the nuclear receptor molecular switch. Trends Biochem Sci 29(6):317–324

    Article  CAS  PubMed  Google Scholar 

  • Nandhikonda P et al (2012) Discovery of the first irreversible small molecule inhibitors of the interaction between the vitamin D receptor and coactivators. J Med Chem 55(10):4640–4651

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Northrop JP et al (2000) Selection of estrogen receptor beta- and thyroid hormone receptor beta-specific coactivator-mimetic peptides using recombinant peptide libraries. Mol Endocrinol 14(5):605–622

    CAS  PubMed  Google Scholar 

  • Peer A et al (2014) Comparison of abiraterone acetate versus ketoconazole in patients with metastatic castration resistant prostate cancer refractory to docetaxel. Prostate 74(4):433–440

    Article  CAS  PubMed  Google Scholar 

  • Phillips C et al (2011) Design and structure of stapled peptides binding to estrogen receptors. J Am Chem Soc 133(25):9696–9699

    Article  CAS  PubMed  Google Scholar 

  • Ravindranathan P et al (2013) Peptidomimetic targeting of critical androgen receptor-coregulator interactions in prostate cancer. Nat Commun 4:1923

    Article  PubMed  Google Scholar 

  • Rodriguez AL, Tamrazi A, Collins ML, Katzenellenbogen JA (2004) Design, synthesis, and in vitro biological evaluation of small molecule inhibitors of estrogen receptor alpha coactivator binding. J Med Chem 47(3):600–611

    Article  CAS  PubMed  Google Scholar 

  • Shiau AK, Barstad D, Loria PM, Cheng L, Kushner PJ, Agard DA, Greene GL (1998) The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95(7):927–937

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Uzgare A, Litvinov I, Denmeade SR, Isaacs JT (2006) Combinatorial androgen receptor targeted therapy for prostate cancer. Endocr Relat Cancer 13(3):653–666

    Article  CAS  PubMed  Google Scholar 

  • Souza PC et al (2014) Identification of a new hormone-binding site on the surface of thyroid hormone receptor. Mol Endocrinol 28(4):534–545

    Article  CAS  PubMed  Google Scholar 

  • Teichert A et al (2009) Quantification of the vitamin D receptor-coregulator interaction. Biochemistry 48(7):1454–1461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Togashi M, Nguyen P, Fletterick R, Baxter JD, Webb P (2005) Rearrangements in Thyroid Hormone Receptor Charge Clusters That Stabilize Bound 3,5’,5-Triiodo-L-thyronine and Inhibit Homodimer Formation. J Biol Chem 280(27):25665–25673

    Article  CAS  PubMed  Google Scholar 

  • Vaz B et al (2009) Computational design, synthesis, and evaluation of miniproteins as androgen receptor coactivator mimics. Chem Commun (Camb), 2009(36):5377–5379

    Article  Google Scholar 

  • Volakakis N, Malewicz M, Kadkhodai B, Perlmann T, Benoit G (2006) Characterization of the Nurr1 ligand-binding domain co-activator interaction surface. J Mol Endocrinol 37(2):317–326

    Article  CAS  PubMed  Google Scholar 

  • Wang Y et al (2006a) A second binding site for hydroxytamoxifen within the coactivator-binding groove of estrogen receptor beta. Proc Natl Acad Sci U S A 103(26):9908–9911

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang L et al (2006b) X-ray crystal structures of the estrogen-related receptor-gamma ligand binding domain in three functional states reveal the molecular basis of small molecule regulation. J Biol Chem 281(49):37773–37781

    Article  CAS  PubMed  Google Scholar 

  • Wang H et al (2007) Activated pregnenolone X-receptor is a target for ketoconazole and its analogs. Clin Cancer Res 13(8):2488–2495

    Article  CAS  PubMed  Google Scholar 

  • Wang H et al (2008) The phytoestrogen coumestrol is a naturally occurring antagonist of the human pregnane X receptor. Mol Endocrinol 22(4):838–857

    Article  CAS  PubMed  Google Scholar 

  • Wang WJ et al (2014) Orphan nuclear receptor TR3 acts in autophagic cell death via mitochondrial signaling pathway. Nat Chem Biol 10(2):133–140

    Article  CAS  PubMed  Google Scholar 

  • Watkins RE et al (2001) The human nuclear xenobiotic receptor PXR: structural determinants of directed promiscuity. Science 292(5525):2329–33

    Article  CAS  PubMed  Google Scholar 

  • Willson TM, Kliewer SA (2002) PXR, CAR and drug metabolism. Nat Rev Drug Discov 1(4):259–266

    Article  CAS  PubMed  Google Scholar 

  • Wilson E (2011) Analysis of interdomain interactions of the androgen receptor. Methods Mol Biol 776:113–29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xue Y et al (2007) Crystal structure of the PXR-T1317 complex provides a scaffold to examine the potential for receptor antagonism. Bioorg Med Chem 15(5):2156–2166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yuan X et al (2013) Androgen receptor functions in castration-resistant prostate cancer and mechanisms of resistance to new agents targeting the androgen axis. Oncogene 33(22):2815–2825

    Article  PubMed  Google Scholar 

  • Zhan YY et al (2012) The orphan nuclear receptor Nur77 regulates LKB1 localization and activates AMPK. Nat Chem Biol 8(11):897–904

    CAS  PubMed  Google Scholar 

  • Zhou HB et al (2007) Bicyclo[2.2.2]octanes: close structural mimics of the nuclear receptor-binding motif of steroid receptor coactivators. Bioorg Med Chem Lett 17(15):4118–4122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are very grateful to Medivation for a research sponsorphip and the Bayer Pharma AG initiative “From Targets to Novel Drugs” Grants4Targets support (2012-05-0708), for the Plan Nacional I + D+i: SAF-2011-29681 Fellowship (MINECO, Gobierno de España).

Table 1 List of inhibitors that have been proven to bind to NRs alternative sites. The list includes the chemical structure of each inhibitor, in which pocket they bind to the NR, if there is a crystal structure and if so the Protein Data Bank (PDB) number as well as the activity these inhibitors have shown and where they have been published

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Estébanez-Perpiñá .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gallastegui, N., Estébanez-Perpiñá, E. (2015). Thinking Outside the Box: Alternative Binding Sites in the Ligand Binding Domain of Nuclear Receptors. In: McEwan, I., Kumar, R. (eds) Nuclear Receptors: From Structure to the Clinic. Springer, Cham. https://doi.org/10.1007/978-3-319-18729-7_10

Download citation

Publish with us

Policies and ethics