Skip to main content

Advertisement

Log in

In silico design of peptidic inhibitors targeting estrogen receptor alpha dimer interface

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Human estrogen receptor alpha (ERα), which acts as a biomarker and as a therapeutic target for breast cancers, is activated by agonist ligands and co-activator proteins. Selective estrogen receptor modulators (SERM) act as antagonists in specific tissues and tamoxifen, a SERM, has served as a drug for decades for ERα-positive breast cancers. However, the ligand-selective and tissue-specific response of ERα biological activity and the resistance to tamoxifen treatment in advanced stages of ERα-positive breast cancers underscores the need to find a ligand-independent inhibitor for ERα. Here we present a ligand-independent approach of inhibiting ERα transactivation targeting its dimerization—a key process of ERα biological activity. Using in silico techniques, we first elucidated the hydrogen bond interactions involved in dimerization and identified three interfacial sequence motifs, where sequence I (DKITD) and sequence II (QQQHQRLAQ) of one monomer form hydrogen bonding with sequence II and sequence I of the second monomer, respectively, and sequence III (LSHIRHMSNK) hydrogen bonds with the same from the second monomer. Studying the structural stability and the binding affinity of the peptides derived from these sequence motifs, we found that an extended and ARG mutated version (LQQQHQQLAQ) of sequence II can act as a suitable template for designing peptidic inhibitors. It provides additional structural stability and interacts more strongly with ERα dimer interface groove formed by helices 9 and 10/11 and prevent ERα dimerization. Our result provides a novel therapeutic designing pipeline for ligand-independent inhibition of ERα.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beato M, Herrlich P, Schutz G (1995) Steroid hormone receptors: many actors in search of a plot. Cell 83: 851–857. doi:10.1016/0092-8674(95)90201-5

    Article  PubMed  CAS  Google Scholar 

  2. Levin ER (2001) Cell localization, physiology, and nongenomic actions of estrogen receptors. J Appl Physiol 91: 1860–1867

    PubMed  CAS  Google Scholar 

  3. Vidal O, Lindberg M, Sävendahl L, Lubahn DB, Ritzen EM, Gustafsson JÅ, Ohlsson C (1999) Disproportional body growth in female estrogen receptor-α-inactivated mice. Biochem Biophys Res Commun 19: 569–571. doi:10.1006/bbrc.1999.1711

    Article  Google Scholar 

  4. Stender JD, Kim K, Charn TH, Komm B, Chang KCN, Kraus WL, Benner C, Glass CK, Katzenellenbogen BS (2010) Genome-wide analysis of estrogen receptor α DNA binding and tethering mechanisms identifies runx1 as a novel tethering factor in receptor-mediated transcriptional activation. Mol Cell Biol 30: 3943–3955. doi:10.1128/MCB.00118-10

    Article  PubMed  CAS  Google Scholar 

  5. Hall JM, Couse JF, Korach KS (2001) The multifaceted mechanisms of estradiol and estrogen receptor signaling. J Biol Chem 276: 36869–36872. doi:10.1074/jbc.R100029200

    Article  PubMed  CAS  Google Scholar 

  6. Nadal A, Diaz M, Valverde MA (2001) The estrogen trinity: membrane, cytosolic, and nuclear effects. News Physiol Sci 16: 251–255

    PubMed  CAS  Google Scholar 

  7. Bjornstrom L, Sjoberg M (2005) Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol Endocrinol 19: 833–842. doi:10.1210/me.2004-0486

    Article  PubMed  Google Scholar 

  8. Horwitz KB (1999) Bringing estrogen receptors under control. Breast Cancer Res 1: 5–7. doi:10.1186/bcr3

    Article  PubMed  CAS  Google Scholar 

  9. Shiau AK, Barstad D, Loria PM, Cheng L, Kushner PJ, Agard DA, Greene GL (1998) The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95: 927–937. doi:10.1016/S0092-8674(00)81717-1

    Article  PubMed  CAS  Google Scholar 

  10. Gottardis MM, Robinson SP, Satyaswaroop PG, Jordan VC (1988) Contrasting actions of tamoxifen on endometrial and breast tumor growth in the athymic mouse. Cancer Res 48: 812–815

    PubMed  CAS  Google Scholar 

  11. Jordan VC (1998) Antiestrogenic action of raloxifene and tamoxifen: today and tomorrow. J Natl Cancer Inst 90: 967–971. doi:10.1093/jnci/90.13.967

    Article  PubMed  CAS  Google Scholar 

  12. Ruff M, Gangloff M, Wurtz JM, Moras D (2000) Estrogen receptor transcription and transactivation Structure–function relationship in DNA- and ligand-binding domains of estrogen receptors. Breast Cancer Res 2: 353–359. doi:10.1186/bcr80

    Article  PubMed  CAS  Google Scholar 

  13. Kumar V, Green S, Stack G, Berry M, Jim JR, Chambon P (1987) Functional domains of the human estrogen receptor. Cell 51: 941–951. doi:10.1016/0092-8674(87)90581-2

    Article  PubMed  CAS  Google Scholar 

  14. Kraus WL, McInerney EM, Katzenellenbogen BS (1995) Ligand dependent transcriptionally productive association of the amino-and carboxyl-terminal regions of a steroid hormone nuclear receptor. Proc Natl Acad Sci USA 92: 12314–12318

    Article  PubMed  CAS  Google Scholar 

  15. Gandini O, Kohno H, Curtis S, Korach KS (1997) Two transcription activation functions in the amino terminus of the mouse estrogen receptor that are affected by the carboxy terminus. Steroids 62: 508–515. doi:10.1016/S0039-128X(97)00001-9

    Article  PubMed  CAS  Google Scholar 

  16. Warnmark A, Treuter E, Wright PHA, Gustafsson J (2003) Activation functions 1 and 2 of nuclear receptors: molecular strategies for transcriptional activation. Mol Endocr 17: 1901–1909. doi:10.1210/me.2002-0384

    Article  Google Scholar 

  17. Wansa KDSA, Harris JM, Muscat GEO (2002) The activation function-1 domain of Nur77/NR4A1 mediates transactivation, cell specificity and coactivator recruitment. J Biol Chem 277: 33001–33011. doi:10.1074/jbc.M203572200

    Article  PubMed  CAS  Google Scholar 

  18. Meegan MJ, Lloyd DG (2003) Advances in the science of estrogen receptor modulation. Curr Med Chem 10: 181–210

    Article  PubMed  CAS  Google Scholar 

  19. Schwabe JWR, Chapman L, Finch JT, Rhodes D (1993) The crystal structure of the estrogen receptor DNA-binding domain bound to DNA: how receptors discriminate between their response elements. Cell 75: 567–578. doi:10.1016/0092-8674(93)90390-C

    Article  PubMed  CAS  Google Scholar 

  20. Bourguet W, Ruff M, Chambon P, Gronemeyer H, Moras D (1995) Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-a. Nature 375: 377–382. doi:10.1038/375377a0

    Article  PubMed  CAS  Google Scholar 

  21. Wurtz JM, Bourguet W, Renaud JP, Vivat V, Chambon P, Moras D, Gronemeyer H (1996) A canonical structure for the ligand-binding domain of nuclear receptors. Nat Struct Biol 3: 87–94. doi:10.1038/nsb0196-87

    Article  PubMed  CAS  Google Scholar 

  22. Shiau AK, Barstad D, Loria PM, Cheng L, Kushner PJ, Agard DA, Greene GL (1998) The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95: 927–937. doi:10.1016/S0092-8674(00)81717-1

    Article  PubMed  CAS  Google Scholar 

  23. Brzozowski AM, Pike AC, Dauter Z, Hubbard RE, Bonn T, Engstrom O, Ohman L, Greene G L, Gustafsson JA, Carlquist M (1997) Molecular basis of agonism and antagonism in the estrogen receptor. Nature 389: 753–758. doi:10.1038/39645

    Article  PubMed  CAS  Google Scholar 

  24. Dutia BM, Frame MC, Subak-Sharpe JH, Clark WN, Marsden HS (1986) Specific inhibition of herpesvirus ribonucleotide reductase by synthetic peptides. Nature 321: 439–441. doi:10.1038/321439a0

    Article  PubMed  CAS  Google Scholar 

  25. Divita G, Restle T, Goody RS, Chermann JC, Baillon JG (1994) Inhibition of HIV1 reverse transcriptase dimerization using synthetic peptides derived from the connection domain. J Biol Chem 269: 13080–13083

    PubMed  CAS  Google Scholar 

  26. Yudt MR, Koide S (2001) Preventing estrogen receptor action with dimer-interface peptides. Steroids 66: 549–558. doi:10.1016/S0039-128X(00)00224-5

    Article  PubMed  CAS  Google Scholar 

  27. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234: 779–815. doi:10.1006/jmbi.1993.1626

    Article  PubMed  CAS  Google Scholar 

  28. Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graphics 14: 33–38. doi:10.1016/0263-7855(96)00018-5

    Article  CAS  Google Scholar 

  29. Berendsen HJC, Spoel DVD, Drunen RV (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91: 45–56. doi:10.1016/0010-4655(95)00042-E

    Article  Google Scholar 

  30. Lindahl E, Hess B, Spoel DVD (2001) GROMACS 3.0 a package for molecular simulation and trajectory analysis. J Mol Model 7: 306–317. doi:10.1007/s008940100045

    CAS  Google Scholar 

  31. Jorgensen WL, Rives T (1988) Development and testing of the OPLS all-atom force field on conformational energetic and properties of organic liquids. J Am Chem Soc 110: 1657–1666. doi:10.1021/ja00214a001

    Article  CAS  Google Scholar 

  32. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: A linear constraint solver for molecular simulations. J Comp Chem 18: 1463–1472. doi:10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H

    Article  CAS  Google Scholar 

  33. DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, Palo Alto

    Google Scholar 

  34. Bryson K, McGuffin LJ, Marsden RL, Ward JJ, Sodhi JS, Jones DT (2005) Protein structure prediction servers at University College London. Nucl Acids Res 33 (Web server issue):W36–W38. doi:10.1093/nar/gki410

  35. Capriotti E, Fariselli P, Casadio R (2005) I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucl Acids Res 33 (Web server issue):W306–W310. doi:10.1093/nar/gki375

  36. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98: 10037–10041. doi:10.1073/pnas.181342398

    Article  PubMed  CAS  Google Scholar 

  37. Tamrazi A, Carlson KE, Daniels JR, Hurth KM, Katzenellenbogen JA (2002) Estrogen receptor dimerization: ligand binding regulates dimer affinity and dimer dissociation rate. Mol Endocrinol 16: 2706–2719. doi:10.1210/me.2002-0250

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Biswas.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (DOC 195kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborty, S., Cole, S., Rader, N. et al. In silico design of peptidic inhibitors targeting estrogen receptor alpha dimer interface. Mol Divers 16, 441–451 (2012). https://doi.org/10.1007/s11030-012-9378-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-012-9378-x

Keywords

Navigation