Skip to main content

Laser-Assisted Indocyanine Green Fluorescent Dye Angiography in Breast Reconstruction

  • Chapter
Breast Reconstruction

Abstract

ICG imaging provides real-time vascular flap assessment allowing for reliable identification of perforator perfusion zones that help guide intraoperative decision-making. The authors discuss laser-assisted indocyanine green (ICG) fluorescent dye angiography being used for free flap reconstruction and prosthetic breast reconstruction as well as for other indications such as assisting in determining vascular compromise and providing the opportunity for preemptive intervention to minimize postoperative complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U. S. Department of Health and Human Services. National Institutes of Health. National Cancer Institute (2014) Indocyanine green solution. http://www.cancer.gov/drugdictionary?cdrid=540122. Accessed 12/8/14

  2. O’Neil MJ (ed) (2006) The Merck index: an encyclopedia of chemicals, drugs, and biologicals, 14th edn. Royal Society of Chemistry, Merck

    Google Scholar 

  3. Gliem M, Zaeytijd JD, Finger RP, Finger RP, Holz FG, Leroy BP, Charbel Issa P (2013) An update on the ocular phenotype in patients with pseudoxanthoma elasticum. Front Genet 4:14

    Article  PubMed  PubMed Central  Google Scholar 

  4. Merck Index Eleventh edition, Monograph No. 4868 (1989) Merck, Rahway

    Google Scholar 

  5. Fox IJ, Wood EH (1960) Indocyanine green: physical and physiologic properties. Mayo Clin Proc 35:732–741

    CAS  Google Scholar 

  6. Feindel W, Yamamoto YL, Hodge P (1967) The human cerebral microcirculation studied by intra-arterial radio-active tracers, Coomassie Blue and fluorescein dyes. Bibl Anat 9:220–224

    PubMed  CAS  Google Scholar 

  7. Fox JJ, Wood EH (1957) Application of dilution curves recorded from the right side of the heart or venous circulation with the aid of a new indicator dye. Proc Staff Meet Mayo Clin 32(19):54150

    Google Scholar 

  8. Wheeler HO, Cranston WI, Meltzer JI (1958) Hepatic uptake and biliary excretion of indocyanine green in the dog. Proc Soc Exp Biol Med 99(1):11–14

    Article  PubMed  CAS  Google Scholar 

  9. Cherrick GR, Stein SW, Leevy CM, Davidson CS (1960) Indocyanine green: observations on physical properties, plasma decay and hepatic extraction. J Clin Invest 39:592–600

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Villeneuve JP, Huot R, Marleau D, Huet PM (1982) The estimation of hepatic blood flow with indocyanine green: comparison between the continuous infusion and single injection methods. Am J Gastroenterol 77(4):233–237

    PubMed  CAS  Google Scholar 

  11. Leevy CM, Smith F, Longueville J, Paumgartner G, Howard MM (1967) Indocyanine green clearance as a test for hepatic function. Evaluation by dichromatic ear densitometry. JAMA 200(3):236–240

    Article  PubMed  CAS  Google Scholar 

  12. Kogure K, Choromokos E (1969) Infrared absorption angiography. J Appl Physiol 26(1):154–157

    PubMed  CAS  Google Scholar 

  13. Kogure K, David NJ, Yamanouchi U, Choromokos E (1970) Infrared absorption angiography of the fundus circulation. Arch Ophthalmol 83(2):209–214

    Article  PubMed  CAS  Google Scholar 

  14. David NJ (1969) Infrared absorption angiography. In: Proceedings of the International Symposium on Fluorescein Angiography, Karger, Albi, Basel, pp 189–195

    Google Scholar 

  15. Flower RW, Hochheimer BF (1972) Letter to the editor: clinical infrared absorption angiography of the choroid. Am J Ophthalmol 73(3):458–459

    Article  PubMed  CAS  Google Scholar 

  16. Hayashi K, Hasegawa Y, Tokoro T (1986) Indocyanine green angiography of central serous chorioretinopathy. Int Ophthalmol 9(1):37–41

    Article  PubMed  CAS  Google Scholar 

  17. Hayashi K, Hasegawa Y, Tokoro T, DeLaey JJ (1988) Clinical use of indocyanine green angiography in the diagnosis of choroidal neovascular disease. Fortschr Ophthalmol 85:410–412

    PubMed  Google Scholar 

  18. Hayashi K, Hasegawa Y, Tokoro T, DeLaey JJ (1989) Clinical application of indocyanine green angiography to choroidal neovascularization. Jpn J Ophthalmol 33(1):57–65

    PubMed  CAS  Google Scholar 

  19. Scheider A, Schroedel C (1989) High resolution indocyanine green angiography with scanning laser ophthalmolscope. Am J Ophthalmol 108(4):458–459

    Article  PubMed  CAS  Google Scholar 

  20. Yannuzzi LA, Slakter JS, Sorenson JA, Guyer DR, Orlock DA (1992) Digital indocyanine green videoangiography and choroidal neovascularization. Retina 12(3):191–223

    Article  PubMed  CAS  Google Scholar 

  21. Tanaka E, Chen F, Flaumenhaft R, Graham GJ, Laurence RG, Frangioni JV (2009) Real-time assessment of cardiac perfusion, coronary angiography, and acute intravascular thrombi using dual-channel near-infrared fluorescence imaging. J Thorac Cardiovasc Surg 138(1):133–140

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Pineda C, Shelton A, Raju N, Welton M (2011) Use of introperative fluorescence vascular angiography to assess intestinal perfusion in the creation of intestinal anastomoses. Tech Coloproctol 15:215–253

    Article  Google Scholar 

  23. Hori T, Iida T, Yagi S, Taniguchi K, Yamamoto C, Mizuno S, Yamagiwa K, Isaji S, Uemoto S (2006) ICG value, a reliable real-time estimator of graft function, accurately predicts outcomes in adult living-donor liver transplantation. Liver Transpl 12(4):605–613

    Article  PubMed  Google Scholar 

  24. Polom W, Markuszewski M, Rho YS, Matuszewski M (2014) Use of invisible near infrared light fluorescence with indocyanine green and methylene blue in urology. Part 2. Cent European J Urol 67(3):310–313

    PubMed  PubMed Central  Google Scholar 

  25. Ahmed M, Purushotham A, Douek M (2014) Novel techniques for sentinel lymph node biopsy in breast cancer: a systematic review. Lancet Oncol 15(8):e351–e362

    Article  PubMed  Google Scholar 

  26. Levey KA (2014) Use of fluorescence imaging technology to identify peritoneal endometriosis: a case report of new technology. Surg Laparosc Endosc Percutan Tech 24(2):e63–e65

    Article  PubMed  Google Scholar 

  27. Dip F, Roy M, Menzo E, Simpfendorfer C, Szomstein S, Rosenthal RJ (2015) Routine use of fluorescent incisionless cholangiography as a new imaging modality during laparoscopic cholecystectomy. Surg Endosc 29(6):1621–1626

    Article  PubMed  Google Scholar 

  28. Newman MI, Samson MC (2009) The application of laser-assisted indocyanine green fluorescent dye angiography in microsurgical breast reconstruction. J Reconstr Microsurg 25(1):21–26

    Article  PubMed  Google Scholar 

  29. Komorowska-Timek E, Gurtner GC (2010) Intraoperative perfusion mapping with laser-assisted indocyanine green imaging can predict and prevent complications in immediate breast reconstruction. Plast Reconstr Surg 125(4):1065–1073

    Article  PubMed  CAS  Google Scholar 

  30. Phillips BT, Lanier ST, Conkling N, Wang ED, Dagum AB, Ganz JC, Khan SU, Bui DT (2012) Intraoperative perfusion techniques can accurately predict mastectomy skin flap necrosis in breast reconstruction: results of a prospective trial. Plast Reconstr Surg 129(5):778e–788e

    Article  PubMed  Google Scholar 

  31. Murray JD, Jones GE, Elwood ET, Whitty LA, Garcia C (2010) Fluorescent intraoperative tissue angiography with indocyanine green: evaluation of nipple-areola vascularity during breast reduction surgery. Plast Reconstr Surg 126(1):33e–34e

    Article  PubMed  Google Scholar 

  32. Francisco BS, Kerr-Valentic MA, Agarwal JP (2010) Laser-assisted indocyanine green angiography and DIEP breast reconstruction. Plast Reconstr Surg 125(3):116e–118e

    Article  PubMed  Google Scholar 

  33. Roostaeian J, Harris R, Farkas J, Barton FE, Kenkel JM (2014) Comparison of limited-undermining lipoabdominoplasty and traditional abdominoplasty using laser fluorescence imaging. Aesthet Surg J 34(5):741–747

    Article  PubMed  Google Scholar 

  34. Holm C, Dornseifer U, Sturtz G, Ninkovic M (2010) Sensitivity and specificity of ICG angiography in free flap reexploration. J Reconstr Microsurg 26(5):311–316

    Article  PubMed  Google Scholar 

  35. Quilchini J, Le Masurier P, Guihard T (2010) Increasing the reliability of SIEA flap using preoperative fluorescent angiography with indocyanine green in breast reconstruction. Ann Chir Plast Esthet 55(6):531–538

    Article  Google Scholar 

  36. Sood M, Glat P (2013) Potential of the SPY intraoperative perfusion device assessment system to reduce ischemic complications in immediate postmastectomy breast reconstruction. Ann Surg Innov Res 7(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  37. Newman M, Jack M, Samson M (2013) SPY-Q analysis toolkit values potentially predict mastectomy flap necrosis. Ann Plast Surg 70(5):595–598

    Article  PubMed  CAS  Google Scholar 

  38. Munabi NC, Olorunnipa OB, Rohde CH, Ascherman JA (2014) The ability of intra-operative perfusion mapping with laser-assisted indocyanine green angiography to predict mastectomy flap necrosis in breast reconstruction: a prospective trial. J Plast Reconstr Aesthet Surg 67(4):449–455

    Article  PubMed  Google Scholar 

  39. Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin 64(1):9–29

    Article  PubMed  Google Scholar 

  40. Kusano M, Tajima Y, Yamazaki K, Kato M, Watanabe M, Miwa M (2008) Sentinel node mapping guided by indocyanine green fluorescence imaging: a new method for sentinel node navigation surgery in gastrointestinal cancer. Dig Surg 25(2):103–108

    Article  PubMed  Google Scholar 

  41. van Dam GM, Themelis G, Crane LMA, Harlaar NJ, Pleijhuis RG, Kelder W, Sarantopoulos A, de Jong JS, Arts HJ, van der Zee AG, Bart J, Low PS, Ntziachristos V (2011) Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat Med 17(10):1315–1319

    Article  PubMed  Google Scholar 

  42. Bredell MG (2010) Sentinel lymph node mapping by indocyanin green fluorescence imaging in oropharyngeal cancer – preliminary experience. Head Neck Oncol 2:31

    Google Scholar 

  43. Yamashita S, Tokuishi K, Anami K, Miyawaki M, Moroga T, Kamei M, Suehiro S, Ono K, Takeno S, Chujo M, Yamamoto S, Kawahara K (2010) Video-assisted thoracoscopic indocyanine green fluorescence imaging system shows sentinel lymph nodes in non-small-cell lung cancer. J Thorac Cardiovasc Surg 141(1):141–144

    Article  PubMed  Google Scholar 

  44. Fujiwara M, Mizukami T, Suzuki A, Fukamizu H (2009) Sentinel lymph node detection in skin cancer patients using real-time fluorescence navigation with indocyanine green: preliminary experience. J Plast Reconstr Aesthet Surg 62(10):e373–e378

    Article  PubMed  Google Scholar 

  45. van der Vorst JR, Schaafsma BE, Hutteman M, Verbeek FP, Liefers GJ, Hartgrink HH, Smit VT, Löwik CW, van de Velde CJ, Frangioni JV, Vahrmeijer AL (2013) Near-infrared fluorescence-guided resection of colorectal liver metastases. Cancer 119(18):3411–3418

    Article  PubMed  PubMed Central  Google Scholar 

  46. Troyan SL, Kianzad V, Gibbs-Strauss SL, Gioux S, Matsui A, Oketokoun R, Ngo L, Khamene A, Azar F, Frangioni JV (2009) The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping. Ann Surg Oncol 16(10):2943–2952

    Article  PubMed  PubMed Central  Google Scholar 

  47. Benya R, Quintana J, Brundage B (1989) Adverse reactions to indocyanine green: a case report and a review of the literature. Cathet Cardiovasc Diagn 17(4):231–233

    Article  PubMed  CAS  Google Scholar 

  48. Bezu C, Coutant C, Salengro A, Darai E, Rouzier R, Uzan S (2011) Anaphylactic response to blue dye during sentinel lymph node biopsy. Surg Oncol 20(1):e55–e59

    Article  PubMed  Google Scholar 

  49. Alford R, Simpson HM, Duberman J, Hill GC, Ogawa M, Regino C, Kobayashi H, Choyke PL (2009) Toxicity of organic fluorophores used in molecular imaging: literature review. Mol Imaging 8(6):341–354

    PubMed  CAS  Google Scholar 

  50. Tripathy S, Nair PV (2012) Adverse drug reaction, patent blue V dye and anaesthesia. Indian J Anaesth 56(6):563–566

    Article  PubMed  PubMed Central  Google Scholar 

  51. Reyes FJ, Noelck MB, Valentino C, Grasso-Lebeau L, Lang J (2011) Complications of methylene blue dye in breast surgery: case reports and review of the literature. J Cancer Educ 2:20–25

    Article  Google Scholar 

  52. Mariani G, Moresco L, Viale G, Villa G, Bagnasco M, Canavese G, Buscombe J, Strauss HW, Paganelli G (2001) Radioguided sentinel lymph node biopsy in breast cancer surgery. J Nucl Med 42(8):1198–1215

    PubMed  CAS  Google Scholar 

  53. Verbeek FP, Troyan SL, Mieog JSD, Liefers GJ, Moffitt LA, Rosenberg M, Hirshfield-Bartek J, Gioux S, van de Velde CJ, Vahrmeijer AL, Frangioni JV (2014) Near-infrared fluorescence sentinel lymph node mapping in breast cancer: a multicenter experience. Breast Cancer Res Treat 143(2):333–342

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hojo T, Nagao T, Kikuyama M, Akashi S, Kinoshita T (2010) Evaluation of sentinel node biopsy by combined fluorescent and dye method and lymph flow for breast cancer. Breast 19(3):210–213

    Article  PubMed  Google Scholar 

  55. Kitai T, Inomoto T, Miwa M, Shikayama T (2005) Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer. Breast Cancer 12(3):211–215

    Article  PubMed  Google Scholar 

  56. Ogasawara Y, Ikeda H, Takahashi M, Kawasaki K, Doihara H (2008) Evaluation of breast lymphatic pathways with indocyanine green fluorescence imaging in patients with breast cancer. World J Surg 32(9):1924–1929

    Article  PubMed  Google Scholar 

  57. Murawa D, Hirche C, Dresel S, Hünerbein M (2010) Authors’ reply: Sentinel lymph node biopsy in breast cancer guided by indocyanine green fluorescence. Br J Surg 97(3):455–456

    Article  Google Scholar 

  58. Gioux S, Mazhar A, Cuccia DJ, Durkin AJ, Tromberg BJ, Frangioni JV (2009) Three-dimensional surface profile intensity correction for spatially modulated imaging. J Biomed Opt 14(3):034045

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kumar AT, Raymond SB, Bacskai BJ, Boas DA (2008) Comparison of frequency-domain and time-domain fluorescence lifetime tomography. Opt Lett 33(5):470–472

    Article  PubMed  PubMed Central  Google Scholar 

  60. Themelis G, Yoo JS, Soh KS, Schulz R, Ntziachristos V (2009) Real-time intraoperative fluorescence imaging system using light-absorption correction. J Biomed Opt 14:064012

    Article  PubMed  Google Scholar 

  61. Gioux S, Choi HS, Frangioni JV (2010) Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation. Mol Imaging 9(5):237–255

    PubMed  CAS  PubMed Central  Google Scholar 

  62. Tagaya N, Aoyagi H, Nakagawa A, Abe A, Iwasaki Y, Tachibana M, Kubota K (2011) A novel approach for sentinel lymph node identification using fluorescence imaging and image overlay navigation surgery in patients with breast cancer. World J Surg 35(1):154–158

    Article  PubMed  Google Scholar 

  63. Sugie T, Sawada T, Tagaya N, Kinoshita T, Yamagami K, Suwa H, Ikeda T, Yoshimura K, Niimi M, Shimizu A, Toi M (2013) Comparison of the indocyanine green fluorescence and blue dye methods in detection of sentinel lymph nodes in early-stage breast cancer. Ann Surg Oncol 20(7):2213–2218

    Article  PubMed  Google Scholar 

  64. Takeuchi M, Sugie T, Abdelazeem K, Kato H, Shinkura N, Takada M, Yamashiro H, Ueno T, Toi M (2012) Lymphatic mapping with fluorescence navigation using indocyanine green and axillary surgery in patients with primary breast cancer. Breast J 18(6):535–541

    Article  PubMed  Google Scholar 

  65. Hirano A, Kamimura M, Ogura K, Kim N, Hattori A, Setoguchi Y, Okubo F, Inoue H, Miyamoto R, Kinoshita J, Fujibayashi M, Shimizu T (2012) A comparison of indocyanine green fluorescence imaging plus blue dye and blue dye alone for sentinel node navigation surgery in breast cancer patients. Ann Surg Oncol 19(13):4112–4116

    Article  PubMed  Google Scholar 

  66. Wishart GC, Loh SW, Jones L, Benson JR (2012) A feasibility study (ICG-10) of indocyanine green (ICG) fluorescence mapping for sentinel lymph node detection in early breast cancer. Eur J Surg Oncol 38(8):651–656

    Article  PubMed  CAS  Google Scholar 

  67. Abe H, Mori T, Umeda T, Tanaka M, Kawai Y, Shimizu T, Cho H, Kubota Y, Kurumi Y, Tani T (2011) Indocyanine green fluorescence imaging system for sentinel lymph node biopsies in early breast cancer patients. Surg Today 41(2):197–202

    Article  PubMed  CAS  Google Scholar 

  68. Kitai T, Kawashima M (2011) Transcutaneous detection and direct approach to the sentinel node using axillary compression technique in ICG fluorescence-navigated sentinel node biopsy for breast cancer. Breast Cancer 19(4):343–348

    Article  PubMed  Google Scholar 

  69. Tagaya N, Nakagawa A, Abe A, Iwasaki Y, Kubota K (2010) Non-invasive identification of sentinel lymph nodes using indocyanine green fluorescence imaging in patients with breast cancer. Open Surg Oncol J 2:71–74

    Article  Google Scholar 

  70. Mieog JS, Hutteman M, van der Vorst JR, Drijfhout van Hooff M, Dijkstra J, Kuppen PJ, Keijzer R, Kaijzel EL, Que I, van de Velde CJ, Löwik CW (2010) Image-guided tumor resection using real-time near-infrared fluorescence in a syngeneic rat model of primary breast cancer. Breast Cancer Res Treat 128(3):679–689

    Article  PubMed  Google Scholar 

  71. Mieog JS, Vahrmeijer AL, Hutteman M, van der Vorst JR, Drijfhout van Hooff M, Dijkstra J, Kuppen PJ, Keijzer R, Kaijzel EL, Que I, van de Velde CJ, Löwik CW (2010) Novel intraoperative near-infrared fluorescence camera system for optical image-guided cancer surgery. Mol Imaging 9(4):223–231

    PubMed  Google Scholar 

  72. Hutteman M, Mieog JS, van der Vorst JR, Dijkstra J, Kuppen PJK, van der Laan AM, Tanke HJ, Kaijzel EL, Que I, van de Velde CJH, Lowik CWGM, Vahrmeijer AL (2011) Intraoperative near-infrared fluorescence imaging of colorectal metastases targeting integrin avb3 expression in a syngeneic rat model. Eur J Surg Oncol 37(3):252–257

    Article  PubMed  CAS  Google Scholar 

  73. Adams KE, Ke S, Kwon S, Liang F, Fan Z, Lu Y, Hirschi K, Mawad ME, Barry MA, Sevick-Muraca EM (2007) Comparison of visible and near-infrared wavelength-excitable fluorescent dyes for molecular imaging of cancer. J Biomed Opt 12(2):024017

    Article  PubMed  Google Scholar 

  74. Weissleder R, Tung CH, Mahmood U, Bogdanov A Jr (1999) In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 17(4):375–378

    Article  PubMed  CAS  Google Scholar 

  75. Kuil J, Velders AH, van Leeuwen FW (2010) Multimodal tumor-targeting peptides functionalized with both a radio- and a fluorescent label. Bioconjug Chem 21(10):1709–1719

    Article  PubMed  CAS  Google Scholar 

  76. Marshall MV, Draney D, Sevick-Muraca EM, Olive DM (2010) Single-dose intravenous toxicity study of IRDye 800CW in Sprague-Dawley rats. Mol Imaging Biol 12(6):583–594

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin I. Newman M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bauermeister, A., Zuriarrain, A., Newman, M.I. (2016). Laser-Assisted Indocyanine Green Fluorescent Dye Angiography in Breast Reconstruction. In: Shiffman, M. (eds) Breast Reconstruction. Springer, Cham. https://doi.org/10.1007/978-3-319-18726-6_117

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18726-6_117

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18725-9

  • Online ISBN: 978-3-319-18726-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics