Skip to main content

Variational Gradient Plasticity: Local-Global Updates, Regularization and Laminate Microstructures in Single Crystals

  • Chapter
Analysis and Computation of Microstructure in Finite Plasticity

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 78))

Abstract

This work summarizes recent results on the formulation and numerical implementation of gradient plasticity based on incremental variational potentials as outlined in a recent sequence of work [Mie14, MMH14, MWA14, MAM13]. We focus on variational gradient crystal plasticity and outline a formulation and finite element implementation of micromechanically-motivated multiplicative gradient plasticity for single crystals. In order to partially overcome the complexity of full multislip scenarios, we suggest a new viscous regularized formulation of rate-independent crystal plasticity, that exploits in a systematic manner the longand short-range nature of the involved variables. To this end, we outline a multifield scenario, where the macro-deformation and the plastic slips on crystallographic systems are the primary fields. We then define a long-range state related to the primary fields and in addition a short-range plastic state for further variables describing the plastic state. The evolution of the short-range state is fully determined by the evolution of the long-range state, which is systematically exploited in the algorithmic treatment. The model problem under consideration accounts in a canonical format for basic effects related to statistically stored and geometrically necessary dislocation flow, yielding micro-force balances including non-convex cross-hardening, kinematic hardening and size effects. Further key ingredients of the proposed algorithmic formulation are geometrically exact updates of the short-range state and a distinct regularization of the rate-independent dissipation function that preserves the range of the elastic domain. The model capability and algorithmic performance is shown in a first multislip scenario in an fcc crystal. A second example presents the prediction of formation and evolution of laminate microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anguige, K., Dondl, P.: Relaxation of the single-slip condition in strain-gradient plasticity. Proceedings of the Royal Society A 470(2169), 1–15 (2014)

    Article  Google Scholar 

  2. Anand, L., Kothari, M.: A computational procedure for rate-independent crystal plasticity. Journal of the Mechanics and Physics of Solids 44, 525–558 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arsenlis, A., Parks, D.M.: Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density. Acta Materialia 47, 1597–1611 (1999)

    Article  Google Scholar 

  4. Arsenlis, A., Parks, D.M., Becker, R., Bulatov, V.V.: On the evolution of crystallographic dislocation density in non-homogeneously deforming crystals. Journal of the Mechanics and Physics of Solids 52, 1213–1246 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Arzt, E.: Size effects in materials due to microstructural and dimensional constraints: a comparative review. Acta Materialia 46, 5611–5626 (1998)

    Article  Google Scholar 

  6. Asaro, R.: Crystal plasticity. Journal of Applied Mechanics 50, 921–934 (1983)

    Article  MATH  Google Scholar 

  7. Asaro, R.: Micromechanics of crystals and polycrystals. Advances in Applied Mechanics 23, 1–115 (1983)

    Article  Google Scholar 

  8. Ashby, M.F.: The deformation of plastically non-homogeneous materials. The Philosophical Magazine A 21, 399–424 (1970)

    Article  Google Scholar 

  9. Bassani, J.L.: Plastic flow of crystals. Advances in Applied Mechanics 30, 191–258 (1993)

    Article  Google Scholar 

  10. Bilby, B.A., Bullough, R., Smith, E.: Continuous distributions of dislocations: a new application of the methods of non-riemannian geometry. Proceedings of the Royal Society London A 231, 263–273 (1955)

    Article  MathSciNet  Google Scholar 

  11. Bargmann, S., Ekh, M., Runesson, K., Svendsen, B.: Modeling of polycrystals with gradient crystal plasticity - a comparison of strategies. Philosophical Magazine 90, 1263–1288 (2010)

    Article  Google Scholar 

  12. Conti, S., Dolzmann, G., Klust, C.: Relaxation of a class of variational models in crystal plasticity. Proceedings of the Royal Society A 465, 1735–1742 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Conti, S., Dolzmann, G., Kreisbeck, C.: Relaxation of a model in finite plasticity with two slip systems. Mathematical Models and Methods in Applied Sciences 23(11), 2111–2128 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cermelli, P., Gurtin, M.E.: On the characterization of geometrically necessary dislocations in finite plasticity. Journal of the Mechanics and Physics of Solids 49, 1539–1568 (2001)

    Article  MATH  Google Scholar 

  15. Cermelli, P., Gurtin, M.E.: Geometrically necessary dislocations in viscoplastic single crystalls and bicrystals undergoing small deformations. International Journal of Solids and Structures 39, 6281–6309 (2002)

    Article  MATH  Google Scholar 

  16. Carstensen, C., Hackl, K., Mielke, A.: Nonconvex potentials and microstructures in finite-strain plasticity. Proceedings of the the Royal Society of London, Series A 458, 299–317 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Cuitiño, A.M., Ortiz, M.: Computational modelling of single crystals. Modelling and Simulation in Materials Science and Engineering 1, 225–263 (1992)

    Article  Google Scholar 

  18. Cottrell, A.H.: Dislocations and plastic flow of crystals. Oxford University Press, London (1953)

    Google Scholar 

  19. Dmitrieva, O., Dondl, P., Müller, S., Raabe, D.: Lamination microstructure in shear deformed copper single crystals. Acta Materialia 57, 3439–3449 (2009)

    Article  Google Scholar 

  20. Evers, L.P., Brekelmans, W.A.M., Geers, M.G.D.: Non-local crystal plasticity model with intrinsic ssd and gnd effects. Journal of the Mechanics and Physics of Solids 52, 2379–2401 (2004)

    Article  MATH  Google Scholar 

  21. Evers, L.P., Brekelmans, W.A.M., Geers, M.G.D.: Scale dependent crystal plasticity framework with dislocation density and grain boundary effects. International Journal of Solids and Structures 41, 5209–5230 (2004)

    Article  MATH  Google Scholar 

  22. Ekh, M., Grymer, M., Runesson, K., Svedberg, T.: Gradient crystal plasticity as part of the computational modelling of polycrystals. International Journal for Numerical Methods in Engineering 72, 197–220 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ertürk, I., van Dommelen, J.A.W., Geers, M.G.D.: Energetic dislocation interactions and thermodynamical aspects of strain gradient crystal plasticity theories. Journal of the Mechanics and Physics of Solids 57, 1801–1814 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Franciosi, P., Berveiller, M., Zaoui, A.: Latent hardening in copper and aluminium single crystals. Acta Metallurgica 28, 273–283 (1980)

    Article  Google Scholar 

  25. Fleck, N.A., Hutchinson, J.W.: Strain gradient plasticity. Advances in Applied Mechanics 33, 295–362 (1997)

    Article  Google Scholar 

  26. Fleck, N.A., Müller, G.M., Ashby, M.F., Hutchinson, J.: Strain gradient plasticity: theory and experiment. Acta Materialia 42, 475–487 (1994)

    Article  Google Scholar 

  27. Gurtin, M.E.: On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. Journal of the Mechanics and Physics of Solids 48, 989–1036 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  28. Gurtin, M.E.: A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. Journal of the Mechanics and Physics of Solids 50, 5–32 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Gurtin, M.E.: A finite-deformation, gradient theory of single-crystal plasticity with free energy dependent on densities of geometrically necessary dislocations. International Journal of Plasticity 24, 702–725 (2008)

    Article  MATH  Google Scholar 

  30. Hall, E.: The deformation and ageing of mild steel: III discussion of results. Proceedings of the Physical Society. Section B 64, 747–753 (1951)

    Article  Google Scholar 

  31. Havner, K.S.: Finite plastic deformation of crystalline solids. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  32. Hull, D., Bacon, D.J.: Introduction to dislocations. Pergamon Press, Oxford (1984)

    Google Scholar 

  33. Hill, R.: Generalized constitutive relations for incremental deformation of metal crystals by multislip. Journal of the Mechanics and Physics of Solids 14, 95–102 (1966)

    Article  Google Scholar 

  34. Hirth, J.P., Lothe, J.: Theory of dislocations. McGraw-Hill, London (1968)

    Google Scholar 

  35. Hildebrand, F., Miehe, C.: A phase field model for the formation and evolution of martensitic laminate microstructure at finite strains. Philosophical Magazine 92, 4250–4290 (2012)

    Article  Google Scholar 

  36. Hill, R., Rice, J.: Constitutive analysis of elastic-plastic crystals at arbitrary strain. Journal of the Mechanics and Physics of Solids 20, 401–413 (1972)

    Article  MATH  Google Scholar 

  37. Hutchinson, J.W.: Bounds and self-consistent estimates for creep of polycrystalline materials. Proceedings of the the Royal Society of London, Series A 348, 101–127 (1976)

    Article  MATH  Google Scholar 

  38. Kothari, M., Anand, L.: Elasto-viscoplastic constitutive equations for polycrystalline metals: application to tantalum. Journal of the Mechanics and Physics of Solids 46, 51–83 (1998)

    Article  MATH  Google Scholar 

  39. Kocks, U.F., Argon, A.S., Ashby, M.F.: Thermodynamics and kinetics of slip. Progress in Materials Science 19, 141–145 (1975)

    Google Scholar 

  40. Klusemann, B., Bargmann, S., Svendsen, B.: Two models for gradient inelasticity based on non-convex energy. Computational Materials Science 64, 96–100 (2012)

    Article  Google Scholar 

  41. Kochmann, D.M., Hackl, K.: The evolution of laminates in finite crystal plasticity: a variational approach. Continuum Mechanics and Thermodynamics 23, 63–85 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  42. Kocks, U.F.: Latent hardening and secondary slip in aluminium and silver. Transactions of the Metallurgical Society of AIME 230, 1160–1167 (1964)

    Google Scholar 

  43. Kocks, U.F.: A statistical theory of flow stress and work-hardening. The Philosophical Magazine 13, 541–566 (1966)

    Article  Google Scholar 

  44. Kochmann, D.: Mechanical Modeling of Microstructures in Elasto-Plastically Deformed Crystalline Solids. PhD thesis, Ruhr-Universität Bochum (2009)

    Google Scholar 

  45. Kondo, K.: On the geometrical and physical foundations of the theory of yielding. Proceedings Japan National Congress of Applied Mechanics 2, 41–47 (1952)

    Google Scholar 

  46. Kroener, E.: Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Archive for Rational Mechanics and Analysis 4, 273–334 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  47. Kröner, E., Seeger, A.: Nicht-lineare Elastizitätstheorie der Versetzungen und Eigenspannungen. Archive for Rational Mechanics and Analysis 3, 97–119 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  48. Kröner, E., Teodosiu, C.: Lattice defect approach to plasticity and viscoplasticity. In: Sawzuk, A. (ed.) Problems in Plasticity. Nordhoff International Publishing (1972)

    Google Scholar 

  49. Kuroda, M., Tvergaard, V.: A finite deformation theory of higher-order gradient-crystal plasticity. Journal of the Mechanics and Physics of Solids 56, 2573–2584 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  50. Lin, T.H.: Physical theory of plasticity. Advances in Applied Mechanics 11, 255–311 (1971)

    Article  Google Scholar 

  51. Miehe, C., Aldakheel, F., Mauthe, S.: Mixed variational principles and robust finite element implementations of gradient plasticity at small strains. International Journal for Numerical Methods in Engineering 94, 1037–1074 (2013)

    Article  MathSciNet  Google Scholar 

  52. Mandel, J.: Plasticité clasique et viscoplasticité. CISM Courses and Lectures No.97. Springer (1972)

    Google Scholar 

  53. Miehe, C.: Exponential map algorithm for stress updates in anisotropic elastoplasticity at large strains for single crystals. International Journal Numerical Methods in Engineering 39, 3367–3390 (1996)

    Article  MATH  Google Scholar 

  54. Miehe, C.: A multi-field incremental variational framework for gradient-extended standard dissipative solids. Journal of the Mechanics and Physics of Solids 59, 898–923 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  55. Miehe, C.: Variational gradient plasticity at finite strains. Part I: Mixed potentials for the evolution and update problems of gradient-extended dissipative solids. Computer Methods in Applied Mechanics and Engineering 268, 677–703 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  56. Miehe, C., Lambrecht, M., Gürses, E.: Analysis of material instabilities in inelastic solids by incremental energy minimization and relaxation methods: Evolving deformation microstructures in finite plasticity. Journal of the Mechanics and Physics of Solids 52, 2725–2769 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  57. Mielke, A., Müller, S.: Lower semicontinuity and existence of minimizers in incremental finite-strain plasticity. Zeitschrift für angewandte Mathematik und Mechanik 86, 233–250 (2006)

    Article  MATH  Google Scholar 

  58. Miehe, C., Mauthe, S., Hildebrand, F.: Variational gradient plasticity at finite strains. Part III: Local-global updates and regularization techniques in multiplicative plasticity for single crystals. Computer Methods in Applied Mechanics and Engineering 268, 735–762 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  59. Menzel, A., Steinmann, P.: On the continuum formulation of higher gradient plasticity for single and polycrystals. Journal of the Mechanics and Physics of Solids 48, 1777–1796 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  60. Miehe, C., Schotte, J.: Anisotropic finite elastoplastic analysis of shells: Simulation of earing in deep-drawing of single- and polycrystalline sheets by taylor-type micro-to-macro transitions. Computer Methods in Applied Mechanics and Engineering 193, 25–57 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  61. Miehe, C., Schotte, J., Lambrecht, M.: Homogenization of inelastic solid materials at finite strains based on incremental minimization principles. Journal of the Mechanics and Physics of Solids 50, 2123–2167 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  62. Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity. simulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171, 387–418 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  63. Mura, T.: Micromechanics of defects in solids. Martinus Nijhoff Publishers, Dordrecht (1987)

    Book  Google Scholar 

  64. Miehe, C., Welschinger, F., Aldakheel, F.: Variational gradient plasticity at finite strains. Part II: Local-global updates and mixed finite elements for additive plasticity in the logarithmic strain space. Computer Methods in Applied Mechanics and Engineering 268, 704–734 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  65. Nabarro, F.R.N.: Theory of crystal dislocations. Oxford University Press, London (1967)

    Google Scholar 

  66. Needleman, A., Asaro, R.J., Lemonds, J., Peirce, D.: Finite element analysis of crystalline solids. Computer Methods in Applied Mechanics and Engineering 52, 689–708 (1985)

    Article  MATH  Google Scholar 

  67. Nix, W.D., Gao, H.: Indentation size effects in crystalline materials: a law for strain gradient plasticity. Journal of the Mechanics and Physics of Solids 46, 411–425 (1998)

    Article  MATH  Google Scholar 

  68. Nye, J.F.: Some geometrical relations in dislocated crystals. Acta Metallurgica 1, 153–162 (1953)

    Article  Google Scholar 

  69. Ortiz, M., Repetto, E.A.: Nonconvex energy minimization and dislocation structures in ductile single crystals. Journal of the Mechanics and Physics of Solids 47, 397–462 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  70. Ortiz, M., Stainier, L.: The variational formulation of viscoplastic constitutive updates. Computer Methods in Applied Mechanics and Engineering 171, 419–444 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  71. Peirce, D., Asaro, R., Needleman, A.: An analysis of nonuniform and localized deformation in ductile single crystals. Acta Metallurgica 30, 1087–1119 (1982)

    Article  Google Scholar 

  72. Perzyna, P.: Temperature and rate dependent theory of plasticity of crystalline solids. Revue de Physique Appliquée 23, 445–459 (1988)

    Article  Google Scholar 

  73. Petch, N.J.: The cleavage strength of polycrystals. Journal of the Iron and Steel Institute 174, 25–28 (1953)

    Google Scholar 

  74. Phillips, R.: Crystals, defects and microstructures. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  75. Rice, J.R.: Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity. Journal of the Mechanics and Physics of Solids 19, 433–455 (1971)

    Article  MATH  Google Scholar 

  76. Schmid, E., Boas, W.: Kristallplastizität. Springer (1935)

    Google Scholar 

  77. Svendsen, B., Bargmann, S.: On the continuum thermodynamic rate variational formulation of models for extended crystal plasticity at large deformation. Journal of the Mechanics and Physics of Solids 58, 1253–1271 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  78. Svendsen, B., Bargmann, S., Ekh, M., Runesson, K.: Modeling of polycrystals with gradient crystal plasticity: A comparison of strategies. Philosophical Magazine 90, 1263–1288 (2010)

    Article  Google Scholar 

  79. Stölken, J., Evans, A.: A microbend test method for measuring the plasticity length scale. Acta Materialia 46, 5109–5115 (1998)

    Article  Google Scholar 

  80. Seeger, A.: Theorie der Gitterfehlstellen. In: Fluegge, S. (ed.) Handbuch der Physik, vol. VII/1. Springer (1958)

    Google Scholar 

  81. Steinmann, P.: Views on multiplicative elastoplasticity and the continuum theory of dislocations. International Journal of Engineering Science 34, 1717–1735 (1996)

    Article  MATH  Google Scholar 

  82. Svendsen, B.: Continuum thermodynamic models for crystal plasticity including the effects of geometrically-necessary dislocations. Journal of the Mechanics and Physics of Solids 50, 1297–1329 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  83. Taylor, G.I.: The mechanism of plastic deformation of crystals. Proceedings of the Royal Society London A 145, 362–387 (1934)

    Article  MATH  Google Scholar 

  84. Taylor, G.I.: Plastic strain in metals. Journal of the Institute of Metals 62, 307–324 (1938)

    Google Scholar 

  85. Teodosiu, C.: A dynamic theory of dislocations and its applications to the theory of the elastic-plastic continuum, Fundamental Aspects of Dislocation Theory. National Bureau of. Standards (U.S.) Special Publication, vol. II, pp. 837–876 (1970)

    Google Scholar 

  86. Wulfinghoff, S., Böhlke, T.: Equivalent plastic strain gradient enhancement of single crystal plasticity: theory and numerics. Proceedings of the Royal Society London A 468, 2682–2703 (2012)

    Article  Google Scholar 

  87. Yalcinkaya, T., Brekelmans, W.A.M., Geers, M.G.D.: Deformation patterning driven by rate dependent non-convex strain gradient plasticity. Journal of the Mechanics and Physics of Solids 59, 1–17 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  88. Yalçinkaya, T., Brekelmans, W., Geers, M.: Non-convex rate dependent strain gradient crystal plasticity and deformation patterning. International Journal of Solids and Structures 49, 2625–2636 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Mauthe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mauthe, S., Miehe, C. (2015). Variational Gradient Plasticity: Local-Global Updates, Regularization and Laminate Microstructures in Single Crystals. In: Conti, S., Hackl, K. (eds) Analysis and Computation of Microstructure in Finite Plasticity. Lecture Notes in Applied and Computational Mechanics, vol 78. Springer, Cham. https://doi.org/10.1007/978-3-319-18242-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18242-1_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18241-4

  • Online ISBN: 978-3-319-18242-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics