Skip to main content

Opioid Receptor Antagonists

  • Reference work entry
  • First Online:
Critical Care Toxicology
  • 264 Accesses

Abstract

Despite the long history of opioid use, opioid receptor antagonists were not developed until the twentieth century. The impetus for their development was, at least in part, the increasing incidence of abuse and overdose, coinciding with the understanding that minor structural alterations to certain opioid receptor agonists impart receptor antagonist activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 338.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hart ER, McCauley EL. The pharmacology of n-allylnormorphine as compared with morphine. J Pharmacol Exp Ther. 1944;82:339–48.

    CAS  Google Scholar 

  2. Goodman AJ, Le Bourdonnec B, Dolle RE. Mu opioid receptor antagonists: recent developments. ChemMedChem. 2007;2(11):1552–70.

    Article  CAS  PubMed  Google Scholar 

  3. Levy JH, Brister NW, Shearin A, Ziegler J, et al. Wheal and flare responses to opioids in humans. Anesthesiology. 1989;70(5):756–60.

    Article  CAS  PubMed  Google Scholar 

  4. Ballantyne JC, Loach AB, Carr DB. Itching after epidural and spinal opiates. Pain. 1988;33(2):149–60.

    Article  CAS  PubMed  Google Scholar 

  5. Mills CA, Flacke JW, Miller JD, Davis LJ, et al. Cardiovascular effects of fentanyl reversal by naloxone at varying arterial carbon dioxide tensions in dogs. Anesth Analg. 1988;67(8):730–6.

    Article  CAS  PubMed  Google Scholar 

  6. Kienbaum P, Thurauf N, Michel MC, Scherbaum N, et al. Profound increase in epinephrine concentration in plasma and cardiovascular stimulation after mu-opioid receptor blockade in opioid-addicted patients during barbiturate-induced anesthesia for acute detoxification. Anesthesiology. 1998;88(5):1154–61.

    Article  CAS  PubMed  Google Scholar 

  7. Boyer EW. Management of opioid analgesic overdose. N Engl J Med. 2012;367(2):146–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tenenbein M. Continuous naloxone infusion for opiate poisoning in infancy. J Pediatr. 1984;105(4):645–8.

    Article  CAS  PubMed  Google Scholar 

  9. Buchanan JF, Brown CR. ‘Designer drugs’. A problem in clinical toxicology. Med Toxicol Adverse Drug Exp. 1988;3(1):1–17.

    CAS  PubMed  Google Scholar 

  10. Schumann H, Erickson T, Thompson TM, Zautcke JL, et al. Fentanyl epidemic in Chicago, Illinois and surrounding Cook County. Clin Toxicol (Phila). 2008;46(6):501–6.

    Article  CAS  Google Scholar 

  11. van Dorp E, Yassen A, Sarton E, Romberg R, et al. Naloxone reversal of buprenorphine-induced respiratory depression. Anesthesiology. 2006;105(1):51–7.

    Article  PubMed  Google Scholar 

  12. Gal TJ. Naloxone reversal of buprenorphine-induced respiratory depression. Clin Pharmacol Ther. 1989;45(1):66–71.

    Article  CAS  PubMed  Google Scholar 

  13. Burton JH, Harrah JD, Germann CA, Dillon DC. Does end-tidal carbon dioxide monitoring detect respiratory events prior to current sedation monitoring practices? Acad Emerg Med. 2006;13(5):500–4.

    Article  PubMed  Google Scholar 

  14. Goldfrank L, Weisman RS, Errick JK, Lo MW. A dosing nomogram for continuous infusion intravenous naloxone. Ann Emerg Med. 1986;15(5):566–70.

    Article  CAS  PubMed  Google Scholar 

  15. Merigian KS. Cocaine-induced ventricular arrhythmias and rapid atrial fibrillation temporally related to naloxone administration. Am J Emerg Med. 1993;11(1):96–7.

    Article  CAS  PubMed  Google Scholar 

  16. Kienbaum P, Heuter T, Michel MC, Scherbaum N, et al. Sympathetic neural activation evoked by mu-receptor blockade in patients addicted to opioids is abolished by intravenous clonidine. Anesthesiology. 2002;96(2):346–51.

    Article  CAS  PubMed  Google Scholar 

  17. Doyon S, Aks SE, Schaeffer S. Expanding access to naloxone in the United States. Clin Toxicol (Phila). 2014;52(10):989–92.

    Article  Google Scholar 

  18. Clark AK, Wilder CM, Winstanley EL. A systematic review of community opioid overdose prevention and naloxone distribution programs. J Addict Med. 2014;8(3):153–63.

    Article  CAS  PubMed  Google Scholar 

  19. Siemens W, Gaertner J, Becker G. Advances in pharmacotherapy for opioid-induced constipation – a systematic review. Expert Opin Pharmacother. 2015;16(4):515–32.

    Google Scholar 

  20. Arpino PA, Thompson BT. Safety of enteral naloxone for the reversal of opiate-induced constipation in the intensive care unit. J Clin Pharm Ther. 2009;34(2):171–5.

    Article  CAS  PubMed  Google Scholar 

  21. Seger DL. Clonidine toxicity revisited. J Toxicol Clin Toxicol. 2002;40(2):145–55.

    Article  CAS  PubMed  Google Scholar 

  22. Varon J, Duncan SR. Naloxone reversal of hypotension due to captopril overdose. Ann Emerg Med. 1991;20(10):1125–7.

    Article  CAS  PubMed  Google Scholar 

  23. Pettinati HM, O’Brien CP, Rabinowitz AR, Wortman SP, et al. The status of naltrexone in the treatment of alcohol dependence: specific effects on heavy drinking. J Clin Psychopharmacol. 2006;26(6):610–25.

    Article  CAS  PubMed  Google Scholar 

  24. Yaksh TL, Wallace MS. Opioids, analgesia, and pain management. In: Brunton LL, Chabner BA, Knollmann BC, editors. Goodman and Gilman’s the pharmacological basis of therapeutics. 12th ed. New York: McGraw-Hill; 2011. p. 481–525.

    Google Scholar 

  25. Nelson LS, Howland MA. Opioid antagonists. In: Hoffman RS, Howland MA, Lewin NA, Nelson LS, Goldfrank LR, editors. Goldfrank’s toxicological emergencies. 10th ed. New York: McGraw-Hill; 2015. p. 510–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Lucyk .

Editor information

Editors and Affiliations

Grading System for Levels of Evidence Supporting Recommendations in Critical Care Toxicology, 2nd Edition

  1. I

    Evidence obtained from at least one properly randomized controlled trial.

  2. II-1

    Evidence obtained from well-designed controlled trials without randomization.

  3. II-2

    Evidence obtained from well-designed cohort or case–control analytic studies, preferably from more than one center or research group.

  4. II-3

    Evidence obtained from multiple time series with or without the intervention. Dramatic results in uncontrolled experiments (such as the results of the introduction of penicillin treatment in the 1940s) could also be regarded as this type of evidence.

  5. III

    Opinions of respected authorities, based on clinical experience, descriptive studies and case reports, or reports of expert committees.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Lucyk, S., Nelson, L.S. (2017). Opioid Receptor Antagonists. In: Brent, J., et al. Critical Care Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-17900-1_62

Download citation

Publish with us

Policies and ethics