Skip to main content

Integrating Computational Thinking in Humanistic Subjects in Higher Education

Learning, Design, and Technology
  • 19 Accesses

Abstract

This chapter describes and discusses a study that has as its focus the theory-driven and collaborative design of interventions in higher education using a design-based research approach. The study investigates how to integrate computational thinking (CT) with computational things in the context of two case studies involving teachers and students from Media Studies and Philosophy. The theoretical framework consists of CT, computational things, situated and embodied cognition and learning, and design for learning. This framework has informed the preliminary general-substantive and general-procedural design principles that have guided the design of interventions. The interventions designed consist of computational things in the form of idea generation tools that support students in decomposing core models and provide students with tangible representations of abstract subject concepts. Furthermore, the tools require students to engage with algorithmic processes and compute with concepts. Results from the first iteration show there is potential in the tangible representations of abstractions and in the decomposition of core models. However, some students are unfamiliar with working at this level of decomposition and abandon algorithmic processing to engage in abstract discussion. Thus, the most promising potential is the computational thing as conversation tool and object to think with and secondarily the computational thing as idea generation tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abrahamson, D., & Bakker, A. (2016). Making sense of movement in embodied design for mathematics learning. Cognitive Research: Principles and Implications, 1(1), 33.

    Google Scholar 

  • Arthur, W. B. (2009). The nature of technology: What it is and how it evolves. New York, NY: Simon and Schuster.

    Google Scholar 

  • Barab, S., & Squire, K. (2004). Design-based research: Putting a stake in the ground. The Journal of the Learning Sciences, 13(1), 1–14.

    Article  Google Scholar 

  • Bonet, E. (2011). Comments on the logic and rhetoric of Ramon Llull. In A. Fidora & C. Sierra (Eds.), Ramon Llull, from the Ars Magna to artificial intelligence. Barcelona, Spain: Artificial Intelligence Research Institute.

    Google Scholar 

  • Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101.

    Article  Google Scholar 

  • Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18(1), 32–42. https://doi.org/10.3102/0013189X018001032

    Article  Google Scholar 

  • Caeli, E. N., & Yadav, A. (2020). Unplugged approaches to computational thinking: A historical perspective. TechTrends, 64(1), 29–36.

    Article  Google Scholar 

  • Caspersen, M. E., Iversen, O. S., Nielsen, M., Hjorth, H. A., & Musaeus, L. H. (2018). Computational thinking–hvorfor, hvad og hvordan?: Efter opdrag fra Villum Fondens bestyrelse.

    Google Scholar 

  • Clarke, D., & Chan, M. C. E. (2018). The use of video in classroom research: Window, lens, or mirror. In G. A. Lihua Xu, W. Widjaja, & D. Clarke (Eds.), Video-based research in education (pp. 5–18). London, UK: Routledge.

    Chapter  Google Scholar 

  • Cobb, P., Confrey, J., DiSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32(1), 9–13.

    Article  Google Scholar 

  • Creswell, J. W., Hanson, W. E., Clark Plano, V. L., & Morales, A. (2007). Qualitative research designs: Selection and implementation. The Counseling Psychologist, 35(2), 236–264.

    Article  Google Scholar 

  • Curran, J. R., Schulz, K. A., & Hogan, A. (2019). Coding and computational thinking – What is the evidence? Retrieved from https://education.nsw.gov.au/content/dam/main-education/teaching-and-learning/education-for-a-changing-world/media/documents/Coding-and-Computational-Report_A.pdf

  • de Jong, I., & Jeuring, J. (2020). Computational thinking interventions in higher education: A scoping literature review of interventions used to teach computational thinking. Koli Calling’20: Proceedings of the 20th Koli Calling International Conference on Computing Education Research.

    Google Scholar 

  • Dede, C. (2004). If design-based research is the answer, what is the question? A commentary on Collins, Joseph, and Bielaczyc; diSessa and Cobb; and Fishman, Marx, Blumenthal, Krajcik, and Soloway in the JLS special issue on design-based research. The Journal of the Learning Sciences, 13(1), 105–114.

    Article  Google Scholar 

  • Denning, P. J., & Tedre, M. (2021). Computational thinking: A disciplinary perspective. Informatics in Education, 20(3), 361–390. https://doi.org/10.15388/infedu.2021.21

    Article  Google Scholar 

  • Dohn, N. B. (2021). Kapitel 1. Computational thinking – indplacering i et landskab af it-begreber. In N. B. Dohn, R. Mitchell, & R. Chongtay (Eds.), Computational thinking – teoretiske, empiriske og didaktiske perspektiver. Frederiksberg, DenmarK: Samfundslitteratur.

    Google Scholar 

  • Dohn, N. B., & Hansen, J. J. (2018). Design in educational research – Clarifying conceptions and presuppositions. In N. B. Dohn (Ed.), Designing for learning in a networked world. London, UK: Routledge.

    Chapter  Google Scholar 

  • Dohn, N. B., Hansen, J. J., & Goodyear, P. (2020). Basic design principles for learning designs to support knowledge transformation. In N. B. Dohn, S. B. Hansen & J. J. Hansen (eds), Designing for situated knowledge transformation. London, UK: Routledge.

    Google Scholar 

  • Dohn, N. B., Kafai, Y., Mørch, A., & Ragni, M. (2022). Survey: Artificial intelligence, computational thinking and learning. KI – Künstliche Intelligenz. https://doi.org/10.1007/s13218-021-00751-5

  • Dohn, N. B., Mitchell, R., & Chongtay, R. (2021). Introduction. In N. B. Dohn, R. Mitchell, & R. Chongtay (Eds.), Computational thinking – teoretiske, empiriske og didaktiske perspektiver. Samfundslitteratur.

    Google Scholar 

  • Flyvbjerg, B. (2010). Fem misforstÃ¥elser om casestudiet (Five misunderstandings about case-study research) (pp. 463–487). Kvalitative metoder, København: Hans Reitzels Forlag.

    Google Scholar 

  • Goodyear, P. (2005). Educational design and networked learning: Patterns, pattern languages and design practice. Australasian Journal of Educational Technology, 21(1).

    Google Scholar 

  • Grover, S., & Pea, R. (2018). Computational thinking: A competency whose time has come. In Computer science education: Perspectives on teaching and learning in school (p. 19).

    Google Scholar 

  • Jensen, P. M. (2018). Mediesystemer. In P. S. Lauridsen & E. Svendsen (Eds.), Medieteori (pp. 175–190). Samfundslitteratur.

    Google Scholar 

  • Lave, J. (1988). Cognition in practice: Mind, mathematics and culture in everyday life. Cambridge, MA: Cambridge University Press.

    Book  Google Scholar 

  • Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge, MA: Cambridge University Press.

    Book  Google Scholar 

  • Lippert-Rasmussen, K., Midtgaard, S. F., Nielsen, L., & Olsen, T. V. (2020). Politisk teori og filosofi. Kobenhavn, DenmarK: Djøf Forlag.

    Google Scholar 

  • Lyon, J. A., & Magana, A. J. (2020). Computational thinking in higher education: A review of the literature. In Computer applications in engineering education, 28(5), 1174–1189.

    Google Scholar 

  • Mikkonen, J., & Fyhn, C. (2021). Kapitel 12: Læring af computational thinking ved udvikling af computational things gennem Storycoding. In N. B. Dohn, R. Mitchell, & R. Chongtay (Eds.), Computational thinking – teoretiske, empiriske og didaktiske perspektiver. Samfundslitteratur.

    Google Scholar 

  • Pande, P. (2021). Learning and expertise with scientific external representations: An embodied and extended cognition model. Phenomenology and the Cognitive Sciences, 20(3), 463–482.

    Article  Google Scholar 

  • Papert, S. (1980). Mindstorms – Children, computers and powerful ideas. New York, NY: Basic Books.

    Google Scholar 

  • Polanyi, M. (1957). Problem solving. The British Journal for the Philosophy of Science, 8(30), 89–103.

    Article  Google Scholar 

  • Pollock, L., Mouza, C., Guidry, K. R., & Pusecker, K. (2019). Infusing computational thinking across disciplines: Reflections & lessons learned. Paper presented at the Proceedings of the 50th ACM Technical Symposium on Computer Science Education.

    Google Scholar 

  • Reeves, T. (2006). Design research from a technology perspective. In Educational Design Research (pp. 64–78). London, UK: Routledge.

    Google Scholar 

  • Reimann, P. (2011). Design-based research. In L. Markauskaite, P. Freebody, & J. Irwin (Eds.), Methodological choice and design: Scholarship, policy and practice in social and educational research (pp. 37–50). Dordrecht, Netherlands: Springer.

    Chapter  Google Scholar 

  • Rienecker, L., & Jørgensen, P. S. (2017). Den gode opgave – hÃ¥ndbog i opgaveskrivning pÃ¥ videregÃ¥ende uddannelser: Samfundslitteratur.

    Google Scholar 

  • Sales, T. (1997). Llull as computer scientist or why Llull was one of us. Paper presented at the International AMAST workshop on aspects of real-time systems and concurrent and distributed software.

    Google Scholar 

  • Schoenfeld, A. H. (1987). Pólya, problem solving, and education. Math Mag, 60(5), 283–291. https://doi.org/10.1080/0025570X.1987.11977325

    Article  Google Scholar 

  • Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22, 142–158.

    Article  Google Scholar 

  • Skiena, S. S. (2020). The algorithm design manual. Cham, Switzerland: Springer.

    Book  Google Scholar 

  • Snelson, C., Yang, D., & Temple, T. (2021). Addressing the challenges of online video analysis in qualitative studies: A worked example from computational thinking research. The Qualitative Report, 26(6), 1974–1988. https://doi.org/10.46743/2160-3715/2021.4734

    Article  Google Scholar 

  • Tang, K.-Y., Chou, T.-L., & Tsai, C.-C. (2020). A content analysis of computational thinking research: An international publication trends and research typology. The Asia-Pacific Education Researcher, 29(1), 9–19.

    Article  Google Scholar 

  • Uckelman, S. L. (2010). Computing with concepts, computing with numbers: Llull, Leibniz, and Boole. Berlin/Heidelberg.

    Google Scholar 

  • Valente, A., & Marchetti, E. (2020). Playful learning and shared computational thinking: The PaCoMa case study. Paper presented at the Proceedings of the 28th International Conference on Computers in Education, ICCE 2020.

    Google Scholar 

  • van den Akker, J. (1999). Principles and methods of development research. In Design approaches and tools in education and training (pp. 1–14). Dordrecht, Netherlands: Springer.

    Google Scholar 

  • Vestergaard, J. (2007). Hvad er et mediesystem, og hvordan analyserer man det? In K. Frandsen & H. Bruun (eds), Tv-produktion-nye vilkÃ¥r (pp. 55–82). København, Denmark: Samfundslitteratur.

    Google Scholar 

  • Wang, F., & Hannafin, M. J. (2005). Design-based research and technology-enhanced learning environments. Educational Technology Research and Development, 53(4), 5–23.

    Article  Google Scholar 

  • Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.

    Article  Google Scholar 

  • Wing, J. M. (2010). Computational thinking: What and why? Retrieved from https://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf

  • Xu, W., & Zammit, K. (2020). Applying thematic analysis to education: A hybrid approach to interpreting data in practitioner research. International Journal of Qualitative Methods, 19, 1609406920918810.

    Article  Google Scholar 

  • Yin, R. K. (2003). Case study research: Design and methods (Vol. 5, 3rd ed.). Thousand Oaks, CA: Sage.

    Google Scholar 

Download references

Acknowledgments

This work is part of the overall project Designing for situated computational thinking with computational things which is funded by the Independent Research Fund Denmark. All opinions are the author’s and do not necessarily represent those of the funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inger-Marie F. Christensen .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Christensen, IM.F. (2023). Integrating Computational Thinking in Humanistic Subjects in Higher Education. In: Spector, M.J., Lockee, B.B., Childress, M.D. (eds) Learning, Design, and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-17727-4_180-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17727-4_180-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17727-4

  • Online ISBN: 978-3-319-17727-4

  • eBook Packages: Springer Reference EducationReference Module Humanities and Social SciencesReference Module Education

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Integrating Computational Thinking in Humanistic Subjects in Higher Education
    Published:
    14 May 2023

    DOI: https://doi.org/10.1007/978-3-319-17727-4_180-2

  2. Original

    Integrating Computational Thinking in Humanistic Subjects in Higher Education
    Published:
    20 December 2022

    DOI: https://doi.org/10.1007/978-3-319-17727-4_180-1