Skip to main content

Genetics of Dominant Ataxias

  • Chapter
Movement Disorder Genetics

Abstract

Dominant ataxias represent a clinically and genetically heterogeneous group of hereditary disorders comprising autosomal dominant spinocerebellar ataxias (ADCAs, SCAs) and episodic ataxias (EAs). From the clinical point of view, patients with ADCA exhibit a progressive cerebellar syndrome, either isolated or in combination with extra-cerebellar deficits. EAs are characterized by recurrent episodes of dizziness and ataxia, occurring either in a context of interictal neurological deficits or not. Current genetic classification includes 32 SCA loci (numbered from SCA1 to SCA36, plus dentatorubropallidoluysian atrophy DRPLA) and 7 EA loci (numbered from EA1 to EA7). A group of 12 ADCAs are related to an expansion of CAG repeats (polyglutaminopathies) or to repeats outside the coding region. Disease progression and severity are correlated with the repeat size. Anticipation is due to an instability of the expanded allele during transmission. The other ADCAs are due to conventional gene mutations. Overall, the causative gene is identified in about 60 % of dominant ataxias. There is still no cure for this group of disabling degenerative diseases. Current management is symptomatic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manto MU. Cerebellar disorders. A practical approach to diagnosis and management. Cambridge: Cambridge University Press; 2010.

    Book  Google Scholar 

  2. Manto M, Marmolino D. Cerebellar ataxias. Curr Opin Neurol. 2009;22:419–29.

    Article  PubMed  Google Scholar 

  3. Schöls L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol. 2004;3:291–304.

    Article  PubMed  Google Scholar 

  4. Marie P. Sur l’hérédoataxie cérébelleuse. Sem Med Paris. 1893;13:444–7.

    Google Scholar 

  5. Menzel P. Beitrag zur kenntniss der hereditären ataxie und kleinhirnatrophie. Arch Psychiatr Nervenkr. 1891;22:160–90.

    Article  Google Scholar 

  6. Déjerine JJ, Thomas A. L’atrophie olivo-ponto-cérébelleuse. Nouv Iconogr Salpétr. 1900;13:330–70.

    Google Scholar 

  7. Holmes G. An attempt to classify cerebellar disease, with a note on Marie’s hereditary cerebellar ataxia. Brain. 1907;30:545–67.

    Article  Google Scholar 

  8. Marie P, Foix C, Alajouanine T. De l’atrophie cérébelleuse tardive à prédominance corticale. Rev Neurol. 1922;38:1082–111.

    Google Scholar 

  9. Greenfield JG. The spino-cerebellar degenerations. Oxford: Blackwell; 1954.

    Google Scholar 

  10. Harding AE. Classification of the hereditary ataxias and paraplegias. Lancet. 1983;1:1151–5.

    Article  CAS  PubMed  Google Scholar 

  11. Harding AE. The clinical features and classification of the late onset autosomal dominant cerebellar ataxias. A study of 11 families, including descendants of the ‘the Drew family of Walworth’. Brain. 1982;105:1–28.

    Article  CAS  PubMed  Google Scholar 

  12. Harding AE. The hereditary ataxias and related disorders. Edinburgh: Churchill Livingstone; 1984.

    Google Scholar 

  13. Gasser T, Finsterer J, Baets J, et al. EFNS guidelines on the molecular diagnosis of ataxias and spastic paraplegias. Eur J Neurol. 2010;17:179–88.

    Article  CAS  PubMed  Google Scholar 

  14. Montenegro G, Powell E, Huang J, et al. Exome sequencing allows for rapid gene identification in a Charcot-Marie-Tooth family. Ann Neurol. 2011;69:464–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Bettencourt C, Ryten M, Forabosco P, Schorge S, Hersheson J, Hardy J, Houlden H, United Kingdom Brain Expression Consortium. Insights from cerebellar transcriptomic analysis into the pathogenesis of ataxia. JAMA Neurol. 2014;71:831–9.

    Article  PubMed  Google Scholar 

  16. Orr HT, Chung M, Banfi S, et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet. 1993;4:221–6.

    Article  CAS  PubMed  Google Scholar 

  17. Taroni F, Chiapparani L, Mariotti C. Autosomal dominant spinocerebellar ataxias and episodic ataxias. In: Manto M, Gruol D, Schmahmann J, Koibuchi N, Rossi F, editors. Handbook of the cerebellum and cerebellar disorders. Dordrecht: Springer; 2013. p. 2193–267.

    Chapter  Google Scholar 

  18. Duenas AM, Goold R, Giunti P. Molecular pathogenesis of spinocerebellar ataxias. Brain. 2006;129:1357–70.

    Article  PubMed  Google Scholar 

  19. Worth PF, Houlden H, Giunti P, Davis MB, Wood NW. Large, expanded repeats in SCA8 are not confined to patients with cerebellar ataxia. Nat Genet. 2000;24:214–5.

    Article  CAS  PubMed  Google Scholar 

  20. Kobayashi H, Abe K, Matsuura T, Ikeda Y, Hitomi T, Akechi Y, Habu T, Liu W, Okuda H, Koizumi A. Expansion of intronic GGCCTG hexanucleotide repeat in NOP56 causes SCA36, a type of spinocerebellar ataxia accompanied by motor neuron involvement. Am J Hum Genet. 2011;89:121–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Durr A, Forlani S, Cazeneuve C, et al. Conventional mutations are associated with a different phenotype than polyglutamine expansions in spinocerebellar ataxias. Eur J Hum Genet. 2009;17:335.

    Google Scholar 

  22. Ikeda Y, Dick KA, Weatherspoon MR, Gincel D, Armbrust KR, Dalton JC, Stevanin G, Dürr A, Zühlke C, Bürk K, Clark HB, Brice A, et al. Spectrin mutations cause spinocerebellar ataxia type 5. Nat Genet. 2006;38:184–90.

    Article  CAS  PubMed  Google Scholar 

  23. Zühlke C, Bernard V, Dalski A, Lorenz P, Mitulla B, Gillessen-kaesbach G, Burk K. Screening of the SPTBN2 (SCA5) gene in German SCA patients. J Neurol. 2007;254:1649–52.

    Article  PubMed  Google Scholar 

  24. Houlden H, Johnson J, Gardner-Thorpe C, Lashley T, Hernandez D, Worth P, Singleton AB, Hilton DA, Holton J, Revesz T, Davis MB, Giunti P, Wood NW. Mutations in TTBK2, encoding a kinase implicated in tau phosphorylation, segregate with spinocerebellar ataxia type 11. Nat Genet. 2007;39:1434–6.

    Article  CAS  PubMed  Google Scholar 

  25. Bauer P, Stevanin G, Beetz C, Synofzik M, Schmitz-Hübsch T, Wüllner U, Berthier E, Ollagnon-Roman E, Riess O, Forlani S, Mundwiller E, Durr A, Schols L, Brice A. Spinocerebellar ataxia type 11 (SCA11) is an uncommon cause of dominant ataxia among French and German kindreds. J Neurol Neurosurg Psychiatry. 2010;81:1229–32.

    Article  PubMed  Google Scholar 

  26. Figueroa KP, Minassian NA, Stevanin G, Waters M, Garibyan V, Forlani S, Strzelczyk A, Bürk K, Brice A, Dürr A, Papazian DM, Pulst SM. KCNC3: phenotype, mutations, channel biophysics-a study of 260 familial ataxia patients. Hum Mutat. 2010;31:191–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Figueroa KP, Waters MF, Garibyan V, Bird TD, Gomez CM, Ranum LP, Minassian NA, Papazian DM, Pulst SM. Frequency of KCNC3 DNA variants as causes of spinocerebellar ataxia 13 (SCA13). PloS One. 2011;6:17811.

    Article  Google Scholar 

  28. Yabe I, Sasaki H, Chen DH, Raskind WH, Bird TD, Yamashita I, Tsuji S, Kikuchi S, Tashiro K. Spinocerebellar ataxia type 14 caused by a mutation in protein kinase C gamma. Arch Neurol. 2003;60:1749–51.

    Article  PubMed  Google Scholar 

  29. Klebe S, Durr A, Rentschler A, Hahn-Barma V, Abele M, Bouslam N, Schöls L, Jedynak P, Forlani S, Denis E, Dussert C, et al. New mutations in protein kinase C gamma associated with spinocerebellar ataxia type 14. Ann Neurol. 2005;58:720–9.

    Article  CAS  PubMed  Google Scholar 

  30. van de Leemput J, Chandran J, Knight MA, Holtzclaw LA, Scholz S, Cookson MR, Houlden H, Gwinn-Hardy K, Fung HC, Lin X, Hernandez D, Simon-Sanchez J, et al. Deletion at ITPR1 underlies ataxia in mice and spinocerebellar ataxia 15 in humans. PLoS Genet. 2007;3:108.

    Article  Google Scholar 

  31. Marelli C, van deLeemput J, Johnson J, Tison F, Thauvin-Robinet C, Picard F, Tranchant C, Hernandez D, Huttin B, Boulliat MD, Iban Sangla MD. SCA15 due to large ITPR1 deletions in a cohort of 333 white families with dominant ataxia. Arch Neurol. 2011;68:637–43.

    PubMed Central  PubMed  Google Scholar 

  32. Knight MA, Gardner RJ, Bahlo M, Matsuura T, Dixon JA, Forrest SM, Storey E. Dominantly inherited ataxia and dysphonia with dentate calcification: spinocerebellar ataxia type 20. Brain. 2004;127:1172–81.

    Article  PubMed  Google Scholar 

  33. Devos D, Schraen-Maschke S, Vuillaume I, Dujardin K, Nazé P, Willoteaux C, Destée A, Sablonnière B. Clinical features and genetic analysis of a new form of spinocerebellar ataxia. Neurology. 2001;56:234–8.

    Article  CAS  PubMed  Google Scholar 

  34. Bakalkin G, Watanabe H, Jezierska J, Depoorter C, Verschuuren-Bemelmans C, Bazov I, Artemenko K, Yakovleva T, Dooijes D, Van de Warrenburg B, Zubarev R, Kremer B, et al. Prodynorphin mutations cause the neurodegenerative disorder spinocerebellar ataxia type 23. Am J Hum Genet. 2010;87:593–603.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Schicks J, Synofzik M, Beetz C, Schiele F, Schöls L. Mutations in the PDYN gene (SCA23) are not a frequent cause of dominant ataxia in Central Europe. Clin Genet. 2011;80:503–4.

    Article  CAS  PubMed  Google Scholar 

  36. Brusse E, de Koning I, Maat-Kievit A, Oostra B, Heutink P, van Swieten J. Spinocerebellar ataxia associated with a mutation in the fibroblast growth factor 14 gene (SCA27): a new phenotype. Mov Disord. 2006;21:396–401.

    Article  PubMed  Google Scholar 

  37. Di Bella D, Lazzaro F, Brusco A, Plumari M, Battaglia G, Pastore A, Finardi A, Cagnoli C, Tempia F, Frontali M, Veneziano L, Sacco T, et al. Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28. Nat Genet. 2010;42:313–21.

    Article  PubMed  Google Scholar 

  38. Cagnoli C, Stevanin G, Brussino A, Barberis M, Mancini C, Margolis R, Holmes S, Nobili M, Forlani S, Padovan S, Pappi P, Zaros C, et al. Missense mutations in the AFG3L2 proteolytic domain account for ∼ 1.5 % of European autosomal dominant cerebellar ataxias. Hum Mutat. 2010;31:1117–24.

    Article  CAS  PubMed  Google Scholar 

  39. Wang JL, Yang X, Xia K, Hu ZM, Weng L, Jin X, Jiang H, Zhang P, Shen L, Guo JF, Li N, Li YR, et al. TGM6 identified as a novel causative gene of spinocerebellar ataxias using exome sequencing. Brain. 2010;133:3510–8.

    Article  PubMed  Google Scholar 

  40. Rüb U, Schöls L, Paulson H, Auburger G, Kermer P, Jen JC, Seidel K, Korf HW, Deller T. Clinical features, neurogenetics and neuropathology of the polyglutamine spinocerebellar ataxias type 1, 2, 3, 6 and 7. Prog Neurobiol. 2013;104:38–66.

    Article  PubMed  Google Scholar 

  41. van de Warrenburg BP, Sinke RJ, Verschuuren-Bemelmans CC, et al. Spinocerebellar ataxias in the Netherlands: prevalence and age at onset variance analysis. Neurology. 2002;58:702–8.

    Article  PubMed  Google Scholar 

  42. Silveira I, Miranda C, Guimarães L, et al. Trinucleotide repeats in 202 families with ataxia: a small expanded (CAG)n allele at the SCA17 locus. Arch Neurol. 2002;59:623–9.

    Article  CAS  PubMed  Google Scholar 

  43. Watanabe H, Tanaka F, Matsumoto M, et al. Frequency analysis of autosomal dominant cerebellar ataxias in Japanese patients and clinical characterization of spinocerebellar ataxia type 6. Clin Genet. 1998;53:13–9.

    Article  CAS  PubMed  Google Scholar 

  44. Kim JY, Park SS, Joo SI, Kim JM, Jeon BS. Molecular analysis of Spinocerebellar ataxias in Koreans: frequencies and reference ranges of SCA1, SCA2, SCA3, SCA6, and SCA7. Mol Cells. 2001;12:336–41.

    CAS  PubMed  Google Scholar 

  45. Matsumura R, Futamura N, Ando N, Ueno S. Frequency of spinocerebellar ataxia mutations in the Kinki district of Japan. Acta Neurol Scand. 2003;107:38–41.

    Article  CAS  PubMed  Google Scholar 

  46. Zoghbi HY, Orr HT. Pathogenic mechanisms of a polyglutamine-mediated neurodegenerative disease, spinocerebellar ataxia type 1. J Biol Chem. 2009;284:7425–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Dickey CA, Patterson C, Dickson D, Petrucelli L. Brain CHIP: removing the culprits in neurodegenerative disease. Trends Mol Med. 2007;13:32–8.

    Article  CAS  PubMed  Google Scholar 

  48. Schmitz-Hübsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, Giunti P, Globas C, Infante J, Kang JS, Kremer B, Mariotti C, Melegh B, Pandolfo M, Rakowicz M, Ribai P, Rola R, Schöls L, Szymanski S, van de Warrenburg BP, Dürr A, Klockgether T, Fancellu R. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006;66:1717–20.

    Article  PubMed  Google Scholar 

  49. Schmitz-Hübsch T, Fimmers R, Rakowicz M, Rola R, Zdzienicka E, Fancellu R, Mariotti C, Linnemann C, Schöls L, Timmann D, Filla A, Salvatore E, Infante J, Giunti P, Labrum R, Kremer B, van de Warrenburg BP, Baliko L, Melegh B, Depondt C, Schulz J, du Montcel ST, Klockgether T. Responsiveness of different rating instruments in spinocerebellar ataxia patients. Neurology. 2010;74:678–84.

    Article  PubMed  Google Scholar 

  50. Jen JC, Yue Q, Karrim J, Nelson SF, Baloh RW. Spinocerebellar ataxia type 6 with positional vertigo and acetazolamide responsive episodic ataxia. J Neurol Neurosurg Psychiatry. 1998;65:565–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Strupp M, Teufel J, Habs M, Feuerecker R, Muth C, van de Warrenburg BP, Klopstock T, Feil K. Effects of acetyl-DL-leucine in patients with cerebellar ataxia: a case series. J Neurol. 2013;260:2556–61.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Underwood BR, Rubinsztein DC. Spinocerebellar ataxias caused by polyglutamine expansions: a review of therapeutic strategies. Cerebellum. 2008;7:215–21.

    Article  CAS  PubMed  Google Scholar 

  53. Ilg W, Synofzik M, Brötz D, Burkard S, Giese MA, Schöls L. Intensive coordinative training improves motor performance in degenerative cerebellar disease. Neurology. 2009;73:1823–30.

    Article  CAS  PubMed  Google Scholar 

  54. Browne D, Gancher S, Nutt J, Brunt ERP, Smith E, Kramer P, Litt M. Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1. Nat Genet. 1994;8:136–40.

    Article  CAS  PubMed  Google Scholar 

  55. Ophoff RA, Terwindt GM, Vergouwe MN, van Eijk R, Oefner PJ, Hoffman SM, Lamerdin JE, Mohrenweiser HW, Bulman DE, Ferrari M, Haan J, Lindhout D, van Ommen GJ, Hofker MH, Ferrari MD, Frants RR. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell. 1996;87:543–52.

    Article  CAS  PubMed  Google Scholar 

  56. Ducros A, Denier C, Joutel A, Cecillon M, Lescoat C, Vahedi K, Darcel F, Vicaut E, Bousser MG, Tournier-Lasserve E. The clinical spectrum of familial hemiplegic migraine associated with mutations in a neuronal calcium channel. N Engl J Med. 2001;345:17–24.

    Article  CAS  PubMed  Google Scholar 

  57. Ilg W, Bastian AJ, Boesch S, Burciu RG, Celnik P, Claaßen J, Feil K, Kalla R, Miyai I, Nachbauer W, Schöls L, Strupp M, Synofzik M, Teufel J, Timmann D. Consensus paper: management of degenerative cerebellar disorders. Cerebellum. 2014;13:248–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Steckley JL, Ebers GC, Cader MZ, McLachlan RS. An autosomal dominant disorder with episodic ataxia, vertigo, and tinnitus. Neurology. 2001;57:1499–502.

    Article  CAS  PubMed  Google Scholar 

  59. Escayg A, De Waard M, Lee DD, Bichet D, Wolf P, Mayer T, Johnston J, Baloh R, Sander T, Meisler MH. Coding and noncoding variation of the human calcium-channel beta4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. Am J Hum Genet. 2000;66:1531–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Jen JC, Wan J, Palos TP, Howard BD, Baloh RW. Mutation in the glutamate transporter EAAT1 causes episodic ataxia, hemiplegia, and seizures. Neurology. 2005;65:529–34.

    Article  CAS  PubMed  Google Scholar 

  61. de Vries B, Mamsa H, Stam AH, Wan J, Bakker SL, Vanmolkot KR, Haan J, Terwindt GM, Boon EM, Howard BD, Frants RR, Baloh RW, Ferrari MD, Jen JC, van den Maagdenberg AM. Episodic ataxia associated with EAAT1 mutation C186S affecting glutamate reuptake. Arch Neurol. 2009;66:97–101.

    PubMed  Google Scholar 

  62. Kerber KA, Jen JC, Lee H, Nelson SF, Baloh RW. A new episodic ataxia syndrome with linkage to chromosome 19q13. Arch Neurol. 2007;64:749–52.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Manto MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Manto, M., Marmolino, D. (2015). Genetics of Dominant Ataxias. In: Schneider, S., Brás, J. (eds) Movement Disorder Genetics. Springer, Cham. https://doi.org/10.1007/978-3-319-17223-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17223-1_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17222-4

  • Online ISBN: 978-3-319-17223-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics