Skip to main content

Characterization of Antibodies to Identify Cellular Expression of Dopamine Receptor 4

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Abstract

The dopamine receptor D4 (DRD4) plays an important role in vision. In order to study the DRD4 expression in vivo, it is important to have antibodies that are specific for DRD4 for both immunoblot and immunohistochemical (IHC) applications. In this study, six antibodies raised against DRD4 peptides were tested in vitro, using transfected mammalian cells, and in vivo, using mouse retinas. Three Santa Cruz (SC) antibodies, D-16, N-20, and R-20, were successful in IHC of transfected DRD4; however, N-20 was the only one effective on immunoblot analysis in DRD4 transfected cells and IHC of mouse retinal sections, while R-20, 2B9, and Antibody Verify AAS63631C were non-specific or below detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DRD4:

Dopamine receptor D4

DRD1:

Dopamine receptor D1

IHC:

Immunohistochemistry

SC:

Santa cruz biotechnologies

GPCR:

G-protein-coupled receptor

GFP:

Green fluorescent protein

MW:

Molecular weight

CT:

Circadian time

SDS:

Sodium dodecyl sulfate

PAGE:

Polyacrylamide gel electrophoresis

HRP:

Horseradish peroxidase

OCT:

Optimal cutting temperature

PFA:

Paraformaldehyde

PBS:

Phosphate–buffered solution

GCL:

Ganglion cell layer

IS:

Inner segment

OS:

Outer segment

ONL:

Outer nuclear layer

OPL:

Outer plexiform layer

INL:

Inner nuclear layer

IPL:

Inner plexiform layer

EC:

Extracellular

IC:

Intracellular

TM:

Transmembrane

References

  • Bavithra S, Selvakumar K, Pratheepa KR et al (2012) Polychlorinated biphenyl (PCBs)-induced oxidative stress plays a critical role on cerebellar dopaminergic receptor expression: ameliorative role of quercetin. Neurotox Res 21:149–159

    Article  CAS  PubMed  Google Scholar 

  • Bodei S, Arrighi N, Spano P et al (2009) Should we be cautious on the use of commercially available antibodies to dopamine receptors? Naunyn Schmiedebergs Arch Pharmacol 379:413–415

    Article  CAS  PubMed  Google Scholar 

  • Chu E, Chu J, Socci RR et al (2004) 7-OH-DPAT-induced inhibition of norepinephrine release in PC12 cells. Pharmacology 70:130–139

    Article  CAS  PubMed  Google Scholar 

  • Deming JD, Shin J-a, Lim K et al (2015) Dopamine receptor D4 internalization requires a beta- arrestin and a visual arrestin. Cellular Signalling 27:2002–2013

    Google Scholar 

  • Gomez MJ, Rousseau G, Nadeau R et al (2002) Functional and autoradiographic characterization of dopamine D2-like receptors in the guinea pig heart. Can J Physiol Pharmacol 80:578–587

    Article  Google Scholar 

  • Gong S, Zheng C, Doughty ML et al (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425:917–925

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez S, Moreno-Delgado D, Moreno E et al (2012) Circadian-related heteromerization of adrenergic and dopamine D(4) receptors modulates melatonin synthesis and release in the pineal gland. PLoS Biol 10:e1001347

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu EH, Pan F, Volgyi B et al (2010) Light increases the gap junctional coupling of retinal ganglion cells. J Physiol 588:4145–4163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang CK, Chaurasia SS, Jackson CR et al (2013) Circadian rhythm of contrast sensitivity is regulated by a dopamine-neuronal PAS-domain protein 2-adenylyl cyclase 1 signaling pathway in retinal ganglion cells. J Neurosci 33:14989–14997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson CR, Ruan GX, Aseem F et al (2012) Retinal dopamine mediates multiple dimensions of light-adapted vision. J Neurosci 32:9359–9368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JS, Bailey MJ, Weller JL et al (2010) Thyroid hormone and adrenergic signaling interact to control pineal expression of the dopamine receptor D4 gene (Drd4). Mol Cell Endocrinol 314:128–135

    Google Scholar 

  • Klitten LL, Rath MF, Coon SL et al (2008) Localization and regulation of dopamine receptor D4 expression in the adult and developing rat retina. Exp Eye Res 87:471–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Lu G, Antonio GE et al (2007) The usefulness of the spontaneously hypertensive rat to model attention-deficit/hyperactivity disorder (ADHD) may be explained by the differential expression of dopamine-related genes in the brain. Neurochem Int 50:848–857

    Article  CAS  PubMed  Google Scholar 

  • Li H, Zhang Z, Blackburn MR et al (2013) Adenosine and dopamine receptors coregulate photoreceptor coupling via gap junction phosphorylation in mouse retina. J Neurosci 33:3135–3150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Missale C, Nash SR, Robinson SW et al (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225

    CAS  PubMed  Google Scholar 

  • Nir I, Harrison JM, Haque R et al (2002) Dysfunctional light-evoked regulation of cAMP in photoreceptors and abnormal retinal adaptation in mice lacking dopamine D4 receptors. J Neurosci 22:2063–2073

    CAS  PubMed  Google Scholar 

  • Oak JN, Oldenhof J, Van Tol HH (2000) The dopamine D(4) receptor: one decade of research. Eur J Pharmacol 405:303–327

    Article  CAS  PubMed  Google Scholar 

  • Pozdeyev N, Tosini G, Li L et al (2008) Dopamine modulates diurnal and circadian rhythms of protein phosphorylation in photoreceptor cells of mouse retina. Eur J Neurosci 27:2691–2700

    Article  PubMed  PubMed Central  Google Scholar 

  • Strell C, Sievers A, Bastian P et al (2009) Divergent effects of norepinephrine, dopamine and substance P on the activation, differentiation and effector functions of human cytotoxic T lymphocytes. BMC Immunol 10:62

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Craenenbroeck K, Clark SD, Cox MJ et al (2005) Folding efficiency is rate-limiting in dopamine D4 receptor biogenesis. J Biol Chem 280:19350–19357

    Article  PubMed  Google Scholar 

  • Zhu X, Li A, Brown B et al (2002) Mouse cone arrestin expression pattern: light induced translocation in cone photoreceptors. Mol Vis 8:462–471

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Craft is the Mary D. Allen Chair in Vision Research, Doheny Eye Institute. This work was supported, in part, from NEI/NIH EY015851 (CMC), EY03040 (DEI), Mary D. Allen foundation (CMC), Research to Prevent Blindness, Dorie Miller, Tony Gray Found., Retina Research Found./Joseph M. & Eula C. Lawrence Travel Grant (JDD), RD 2014 travel award (JDD), and William Hansen Sandberg Memorial Found. (JDD). The authors thank Kayleen Lim, Isabel Shen, and Joseph Pak for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheryl Mae Craft BS, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Deming, J., Van Craenenbroeck, K., Eom, Y., Lee, EJ., Craft, C. (2016). Characterization of Antibodies to Identify Cellular Expression of Dopamine Receptor 4. In: Bowes Rickman, C., LaVail, M., Anderson, R., Grimm, C., Hollyfield, J., Ash, J. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 854. Springer, Cham. https://doi.org/10.1007/978-3-319-17121-0_88

Download citation

Publish with us

Policies and ethics