Skip to main content

Translating the Glutamatergic Hypothesis of Schizophrenia Through Homeostatic Regulation of Brain Glycine

  • Chapter
Psychiatry and Neuroscience Update

Abstract

No effective treatment exists for the negative symptoms and cognitive impairments of schizophrenia. The loss of normal affective and cognitive function severely undermines a patients’ ability to regain independence and social reintegration even when the positive psychotic symptoms have been stabilized by medications that are currently available. The US Food and Drug Administration fully recognizes the need and legitimacy to target negative and cognitive symptoms in drug development. The theoretical consensus that the pathogenesis of these symptoms involves glutamatergic N-methyl-d-aspartate (NMDA) receptor hypofunction has been driving for over three decades the impetus behind the search for feasible pharmacological strategies to improve NMDA receptor function. One promising approach that emerged in recent years is up-regulating brain glycine levels through the blockade of glycine transporter 1 (GlyT1). It is hypothesized that increasing the availability of glycine, the obligatory NMDA receptor co-agonist, near glutamatergic synapses can boost NMDA receptor excitability without the risk of excitotoxicity following direct stimulation of NMDA receptor. This chapter traces the translation of glycine reuptake inhibition therapy through the latest Phase III clinical trials of the potent selective GlyT1 inhibitor, bitopertin, developed by F. Hoffman-La Roche. We will explore the relevant neural mechanisms underlying this new pharmacotherapy, which appears to possess board spectrum efficacy against both positive and negative schizophrenia symptoms. Preclinical evidence suggests that GlyT1 inhibition may modulate multiple neurotransmitter pathways, including mesolimbic dopamine and brain glycinergic inhibition, which may provide new leads for further target refinement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coyle JT, Balu D, Benneyworth M, Basu A, Roseman A. Beyond the dopamine receptor: novel therapeutic targets for treating schizophrenia. Dialogues Clin Neurosci. 2010;12(3):359–82.

    PubMed Central  PubMed  Google Scholar 

  2. Laughren T, Levin R. Food and drug administration commentary on methodological issues in negative symptom trials. Schizophr Bull. 2011;37(2):255–6.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Baumeister AA, Francis JL. Historical development of the dopamine hypothesis of schizophrenia. J Hist Neurosci. 2002;11(3):265–77.

    Article  PubMed  Google Scholar 

  4. Tamminga C. Glutamatergic aspects of schizophrenia. Br J Psychiatry Suppl. 1999;37:12–5.

    PubMed  Google Scholar 

  5. Kapur S, Remington G. Atypical antipsychotics: new directions and new challenges in the treatment of schizophrenia. Annu Rev Med. 2001;52:503–17.

    Article  CAS  PubMed  Google Scholar 

  6. Kim JS, Kornhuber HH, Schmid-Burgk W, Holzmuller B. Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci Lett. 1980;20(3):379–82.

    Article  CAS  PubMed  Google Scholar 

  7. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry. 1994;51(3):199–214.

    Article  CAS  PubMed  Google Scholar 

  8. Lahti AC, Holcomb HH, Medoff DR, Tamminga CA. Ketamine activates psychosis and alters limbic blood flow in schizophrenia. Neuroreport. 1995;6(6):869–72.

    Article  CAS  PubMed  Google Scholar 

  9. Lahti AC, Koffel B, LaPorte D, Tamminga CA. Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology. 1995;13(1):9–19.

    Article  CAS  PubMed  Google Scholar 

  10. Adler CM, Goldberg TE, Malhotra AK, Pickar D, Breier A. Effects of ketamine on thought disorder, working memory, and semantic memory in healthy volunteers. Biol Psychiatry. 1998;43(11):811–6.

    Article  CAS  PubMed  Google Scholar 

  11. Adler CM, Malhotra AK, Elman I, Goldberg T, Egan M, Pickar D, et al. Comparison of ketamine-induced thought disorder in healthy volunteers and thought disorder in schizophrenia. Am J Psychiatry. 1999;156(10):1646–9.

    Article  CAS  PubMed  Google Scholar 

  12. Jentsch JD, Roth RH. The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology. 1999;20(3):201–25.

    Article  CAS  PubMed  Google Scholar 

  13. Olney JW, Farber NB. Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry. 1995;52(12):998–1007.

    Article  CAS  PubMed  Google Scholar 

  14. Olney JW, Newcomer JW, Farber NB. NMDA receptor hypofunction model of schizophrenia. J Psychiatr Res. 1999;33(6):523–33.

    Article  CAS  PubMed  Google Scholar 

  15. Carlsson M, Carlsson A. Interaction between glutamatergic and monoaminergic systems within the basal ganglia: implications for schizophrenia and Parkinson’s disease. Trends Neurosci. 1990;13:272–6.

    Article  CAS  PubMed  Google Scholar 

  16. Javitt DC. Glutamatergic theories of schizophrenia. Isr J Psychiatry Relat Sci. 2010;47(1):4–16.

    PubMed  Google Scholar 

  17. Sams-Dodd F. Phencyclidine-induced stereotyped behaviour and social isolation in rats: a possible animal model of schizophrenia. Behav Pharmacol. 1996;7(1):3–23.

    Article  CAS  PubMed  Google Scholar 

  18. Pittenger C, Sanacora G, Krystal JH. The NMDA receptor as a therapeutic target in major depressive disorder. CNS Neurol Disord Drug Targets. 2007;6(2):101–15.

    Article  CAS  PubMed  Google Scholar 

  19. Rothman SM, Olney JW. Excitotoxicity and the NMDA receptor–still lethal after eight years. Trends Neurosci. 1995;18(2):57–8.

    CAS  PubMed  Google Scholar 

  20. Bristow DR, Bowery NG, Woodruff GN. Light microscopic autoradiographic localisation of [3H]glycine and [3H]strychnine binding sites in rat brain. Eur J Pharmacol. 1986;126(3):303–7.

    Article  CAS  PubMed  Google Scholar 

  21. Bowery NG. Glycine-binding sites and NMDA receptors in brain. Nature. 1987;326(6111):338.

    Article  CAS  PubMed  Google Scholar 

  22. Johnson JW, Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature. 1987;325(6104):529–31.

    Article  CAS  PubMed  Google Scholar 

  23. Kleckner NW, Dingledine R. Requirement for glycine in activation of NMDA receptors expresses in Xenopus oocytes. Science. 1988;214:835–7.

    Article  Google Scholar 

  24. Danysz W, Fadda E, Wroblewski JT, Costa E. [3H]D-serine labels strychnine-insensitive glycine recognition sites of rat central nervous system. Life Sci. 1990;46(3):155–64.

    Article  CAS  PubMed  Google Scholar 

  25. Fadda E, Danysz W, Wroblewski JT, Costa E. Glycine and D-serine increase the affinity of N-methyl-D-aspartate sensitive glutamate binding sites in rat brain synaptic membranes. Neuropharmacology. 1988;27(11):1183–5.

    Article  CAS  PubMed  Google Scholar 

  26. Wroblewski JT, Fadda E, Mazzetta J, Lazarewicz JW, Costa E. Glycine and D-serine act as positive modulators of signal transduction at N-methyl-D-aspartate sensitive glutamate receptors in cultured cerebellar granule cells. Neuropharmacology. 1989;28(5):447–52.

    Article  CAS  PubMed  Google Scholar 

  27. Nong Y, Huang YQ, Ju W, Kalia LV, Ahmadian G, Wang YT, et al. Glycine binding primes NMDA receptor internalization. Nature. 2003;422(6929):302–7.

    Article  CAS  PubMed  Google Scholar 

  28. Martina M, Gorfinkel Y, Halman S, Lowe JA, Periyalwar P, Schmidt CJ, et al. Glycine transporter type 1 blockade changes NMDA receptor-mediated responses and LTP in hippocampal CA1 pyramidal cells by altering extracellular glycine levels. J Physiol. 2004;557(Pt 2):489–500.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Danysz W, Parsons CG. Glycine and N-methyl-D-aspartate receptors: physiological significance and possible therapeutic applications. Pharmacol Rev. 1998;50(4):597–664.

    CAS  PubMed  Google Scholar 

  30. Matsui T, Sekiguchi M, Hashimoto A, Tomita U, Nishikawa T, Wada K. Functional comparison of D-serine and glycine in rodents: the effect on cloned NMDA receptors and the extracellular concentration. J Neurochem. 1995;65(1):454–8.

    Article  CAS  PubMed  Google Scholar 

  31. Fletcher EJ, Lodge D. Glycine reverses antagonism of N-methyl-D-aspartate (NMDA) by 1-hydroxy-3-aminopyrrolidone-2 (HA-966) but not by D-2-amino-5-phosphonovalerate (D-AP5) on rat cortical slices. Eur J Pharmacol. 1988;151(1):161–2.

    Article  CAS  PubMed  Google Scholar 

  32. Fedele E, Foster AC. [3H]glycine uptake in rat hippocampus: kinetic analysis and autoradiographic localization. Brain Res. 1992;572(1–2):154–63.

    Article  CAS  PubMed  Google Scholar 

  33. Berger AJ, Dieudonne S, Ascher P. Glycine uptake governs glycine site occupancy at NMDA receptors of excitatory synapses. J Neurophysiol. 1998;80(6):3336–40.

    CAS  PubMed  Google Scholar 

  34. Bergeron R, Meyer TM, Coyle JT, Greene RW. Modulation of N-methyl-D-aspartate receptor function by glycine transport. Proc Natl Acad Sci USA. 1998;95(26):15730–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Smith KE, Borden LA, Hartig PR, Branchek T, Weinshank RL. Cloning and expression of a glycine transporter reveal colocalization with NMDA receptors. Neuron. 1992;8(5):927–35.

    Article  CAS  PubMed  Google Scholar 

  36. Guastella J, Brecha N, Weigmann C, Lester HA, Davidson N. Cloning, expression, and localization of a rat brain high-affinity glycine transporter. PNAS. 1992;89(15):7189–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Liu QR, Nelson H, Mandiyan S, López-Corcuera B, Nelson N. Cloning and expression of a glycine transporter from mouse brain. FEBS Lett. 1992;305(2):110–4.

    Article  CAS  PubMed  Google Scholar 

  38. Lopez-Corcuera B, Martinez-Maza R, Nunez E, Roux M, Supplisson S, Aragon C. Differential properties of two stably expressed brain-specific glycine transporters. J Neurochem. 1998;71(5):2211–9.

    Article  CAS  PubMed  Google Scholar 

  39. Roux MJ, Supplisson S. Neuronal and glial glycine transporters have different stoichiometries. Neuron. 2000;25(2):373–83.

    Article  CAS  PubMed  Google Scholar 

  40. Supplisson S, Roux MJ. Why glycine transporters have different stoichiometries. FEBS Lett. 2002;529(1):93–101.

    Article  CAS  PubMed  Google Scholar 

  41. Aubrey KR, Vandenberg RJ, Clements JD. Dynamics of forward and reverse transport by the glial glycine transporter, glyt1b. Biophys J. 2005;89(3):1657–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Aubrey KR, Rossi FM, Ruivo R, Alboni S, Bellenchi GC, Le Goff A, et al. The transporters GlyT2 and VIAAT cooperate to determine the vesicular glycinergic phenotype. J Neurosci. 2007;27(23):6273–81.

    Article  CAS  PubMed  Google Scholar 

  43. Betz H, Laube B. Glycine receptors: recent insights into their structural organization and functional diversity. J Neurochem. 2006;97(6):1600–10.

    Article  CAS  PubMed  Google Scholar 

  44. Eulenburg V, Armsen W, Betz H, Gomeza J. Glycine transporters: essential regulators of neurotransmission. Trends Biochem Sci. 2005;30(6):325–33.

    Article  CAS  PubMed  Google Scholar 

  45. Gomeza J, Armsen W, Betz H, Eulenburg V. Lessons from the knocked-out glycine transporters. Handb Exp Pharmacol. 2006;175:457–83.

    Article  CAS  PubMed  Google Scholar 

  46. Gomeza J, Ohno K, Hulsmann S, Armsen W, Eulenburg V, Richter DW, et al. Deletion of the mouse glycine transporter 2 results in a hyperekplexia phenotype and postnatal lethality. Neuron. 2003;40(4):797–806.

    Article  CAS  PubMed  Google Scholar 

  47. Rousseau F, Aubrey KR, Supplisson S. The glycine transporter GlyT2 controls the dynamics of synaptic vesicle refilling in inhibitory spinal cord neurons. J Neurosci. 2008;28(39):9755–68.

    Article  CAS  PubMed  Google Scholar 

  48. Gomeza J, Hulsmann S, Ohno K, Eulenburg V, Szoke K, Richter D, et al. Inactivation of the glycine transporter 1 gene discloses vital role of glial glycine uptake in glycinergic inhibition. Neuron. 2003;40(4):785–96.

    Article  CAS  PubMed  Google Scholar 

  49. Cubelos B, Giménez C, Zafra F. Localization of the GLYT1 glycine transporter at glutamatergic synapses in the rat brain. Cereb Cortex. 2005;15(4):448–59.

    Article  PubMed  Google Scholar 

  50. Cubelos B, Gonzalez-Gonzalez IM, Gimenez C, Zafra F. The scaffolding protein PSD-95 interacts with the glycine transporter GLYT1 and impairs its internalization. J Neurochem. 2005;95(4):1047–58.

    Article  CAS  PubMed  Google Scholar 

  51. Zafra F, Aragón C, Olivares L, Danbolt NC, Giménez C, Storm-Mathisen J. Glycine transporters are differentially expressed among CNS cells. J Neurosci. 1995;15(5 Pt 2):3952–69.

    CAS  PubMed  Google Scholar 

  52. Zafra F, Gomeza J, Olivares L, Aragón C, Giménez C. Regional distribution and developmental variation of the glycine transporters GLYT1 and GLYT2 in the rat CNS. Eur J Neurosci. 1995;7(6):1342–52.

    Article  CAS  PubMed  Google Scholar 

  53. Möhler H, Boison D, Singer P, Feldon J, Pauly-Evers M, Yee BK. Glycine transporter 1 as a potential therapeutic target for schizophrenia-related symptoms: evidence from genetically modified mouse models and pharmacological inhibition. Biochem Pharmacol. 2011;81(9):1065–77.

    Article  PubMed  CAS  Google Scholar 

  54. Yee BK, Balic E, Singer P, Schwerdel C, Grampp T, Gabernet L, et al. Disruption of glycine transporter 1 restricted to forebrain neurons is associated with a procognitive and antipsychotic phenotypic profile. J Neurosci. 2006;26(12):3169–81.

    Article  CAS  PubMed  Google Scholar 

  55. Alberati D, Moreau JL, Lengyel J, Hauser N, Mory R, Borroni E, et al. Glycine reuptake inhibitor RG1678: a pharmacologic characterization of an investigational agent for the treatment of schizophrenia. Neuropharmacology. 2012;62(2):1152–61.

    Article  CAS  PubMed  Google Scholar 

  56. Pinard E, Alanine A, Alberati D, Bender M, Borroni E, Bourdeaux P, et al. Selective GlyT1 inhibitors: discovery of [4-(3-fluoro-5-trifluoromethylpyridin-2-yl)piperazin-1-yl][5-methanesulfonyl-2-((S)-2,2,2-trifluoro-1-methylethoxy)phenyl]methanone (RG1678), a promising novel medicine to treat schizophrenia. J Med Chem. 2010;53(12):4603–14.

    Article  CAS  PubMed  Google Scholar 

  57. Umbricht D, Yoo K, Youssef E, Dorflinger E, Martin-Facklam M, Bausch A, Arrowsmith R, Alberati D, Marder SR, Santarelli L, editors. Glycine transporter type 1 (GLYT1) inhibitor RG1678: positive results of the proof-of-concept study for the treatment of negative symptoms in schizophrenia. 49th Annual Meeting. Miami Beach, FL: Neuropsychopharmacology; 2010.

    Google Scholar 

  58. Umbricht D, Martin-Facklam M, Pizzagalli E, Youssef E, Yoo K, Doerflinger E, Bausch A, Arrowsmith R, Alberati D, Santarelli L. Glycine transporter type 1 (GLYT1) inhibition RG1678: results of the proof-of-concept study for the treatment of negative symptoms in schizophrenia. Schizophr Bull. 2011;37 Suppl 1:324.

    Google Scholar 

  59. Kornhuber HH, Kornhuber J, Kim JS, Kornhuber ME. A biochemical theory of schizophrenia. Nervenarzt. 1984;55(11):602–6.

    CAS  PubMed  Google Scholar 

  60. Bugarski-Kirola D, Iwata N, Sameljak S, Reid C, Blaettler T, Zhu JL, Millar L, Wang G, Guo A, Kapur S. Efficacy and Safety of Adjunctive Bitopertin Versus Placebo in Patients with Suboptimally Controlled Symptoms of Schizophrenia Treated with Antipsychotics – Results: from the Searchlyte Clinical Trial. Neuropsychopharmacology, 2014; 39: S291–S472, T121.

    Google Scholar 

  61. Bugarski-Kirola D, Arango C, Fleischhacker WW, Bressan R, Nasrallah H, Lawrie S, Blaettler T, Garibaldi G, Reid C, Marder S. Efficacy and Safety of Adjunctive Bitopertin versus Placebo in Subjects with Persistent Predominant Negative Symptoms of Schizophrenia Treated with Antipsychotics – Update from the SearchLyte Programme. Schizophr Res, 2014;153(Suppl 1):29.

    Google Scholar 

  62. Bugarski-Kirola D, Fleischhacker WW, Blaettler T, Edgar CJ, Milosavljevic-Ristic S, Lamour F, Sun S, Kapur S Efficacy and safety of adjunctive bitopertin (10 and 20 mg) versus placebo in subjects with sub-optimally controlled symptoms of schizophrenia treated with antipsychotics - Results from the Phase III TwiLyte study. Int J Neuropsychopharmacol, 2014;17 (Suppl 1):65.

    Google Scholar 

  63. Atkinson BN, Bell SC, De Vivo M, Kowalski LR, Lechner SM, Ognyanov VI, et al. ALX 5407: a potent, selective inhibitor of the hGlyT1 glycine transporter. Mol Pharmacol. 2001;60(6):1414–20.

    CAS  PubMed  Google Scholar 

  64. Brown A, Carlyle I, Clark J, Hamilton W, Gibson S, McGarry G, et al. Discovery and SAR of org 24598-a selective glycine uptake inhibitor. Bioorg Med Chem Lett. 2001;11(15):2007–9.

    Article  CAS  PubMed  Google Scholar 

  65. Harvey RJ, Yee BK. Glycine transporters as novel therapeutic targets in schizophrenia, alcohol dependence and pain. Nat Rev Drug Discov. 2013;12(11):866–85.

    Article  CAS  PubMed  Google Scholar 

  66. Toth E, Lajtha A. Antagonism of phencyclidine-induced hyperactivity by glycine in mice. Neurochem Res. 1986;11(3):393–400.

    Article  CAS  PubMed  Google Scholar 

  67. Javitt DC, Sershen H, Hashim A, Lajtha A. Reversal of phencyclidine-induced hyperactivity by glycine and the glycine uptake inhibitor glycyldodecylamide. Neuropsychopharmacology. 1997;17(3):202–4.

    Article  CAS  PubMed  Google Scholar 

  68. Javitt DC, Frusciante M. Glycyldodecylamide, a phencyclidine behavioral antagonist, blocks cortical glycine uptake: implications for schizophrenia and substance abuse. Psychopharmacology (Berl). 1997;129(1):96–8.

    Article  CAS  Google Scholar 

  69. Alberati D, Moreau JL, Mory R, Pinard E, Wettstein JG. Pharmacological evaluation of a novel assay for detecting glycine transporter 1 inhibitors and their antipsychotic potential. Pharmacol Biochem Behav. 2010;97(2):185–91.

    Article  CAS  PubMed  Google Scholar 

  70. Geyer MA, Moghaddam B. Animal models relevant to schizophrenia disorders. In: Davis KL CD, Coyle JT, editors. Neuropsychopharmacology: the fifth generation of progress. Philadelphia: Lippincott, Williams and Wilkins; 2002. p. 690–701.

    Google Scholar 

  71. Arguello PA, Gogos JA. Modeling madness in mice: one piece at a time. Neuron. 2006;52(1):179–96.

    Article  CAS  PubMed  Google Scholar 

  72. Singer P, Feldon J, Yee BK. Interactions between the glycine transporter 1(GlyT1) inhibitor SSR504734 and psychoactive drugs in mouse motor behaviour. Eur Neuropsychopharmacol. 2009;19(8):571–80.

    Article  CAS  PubMed  Google Scholar 

  73. Singer P, Zhang W, Yee BK. SSR504734 enhances basal expression of prepulse inhibition but exacerbates the disruption of prepulse inhibition by apomorphine. Psychopharmacology (Berl). 2013;230(2):309–17.

    Article  CAS  Google Scholar 

  74. Leonetti M, Desvignes C, Bougault I, Souilhac J, Oury-Donat F, Steinberg R. 2-Chloro-N-[(S)-phenyl [(2S)-piperidin-2-yl] methyl]-3-trifluoromethyl benzamide, monohydrochloride, an inhibitor of the glycine transporter type 1, increases evoked-dopamine release in the rat nucleus accumbens in vivo via an enhanced glutamatergic neurotransmission. Neuroscience. 2006;137(2):555–64.

    Article  CAS  PubMed  Google Scholar 

  75. Depoortere R, Dargazanli G, Estenne-Bouhtou G, Coste A, Lanneau C, Desvignes C, et al. Neurochemical, electrophysiological and pharmacological profiles of the selective inhibitor of the glycine transporter-1 SSR504734, a potential new type of antipsychotic. Neuropsychopharmacology. 2005;30(11):1963–85.

    Article  CAS  PubMed  Google Scholar 

  76. Seeman P, Corbett R, Van Tol HH. Atypical neuroleptics have low affinity for dopamine D2 receptors or are selective for D4 receptors. Neuropsychopharmacology. 1997;16(2):93–110. discussion 1–35.

    Article  CAS  PubMed  Google Scholar 

  77. Seeman P, Kapur S. Clozapine occupies high levels of dopamine D2 receptors. Life Sci. 1997;60(12):PL 207–16.

    Article  CAS  Google Scholar 

  78. Seeman P, Tallerico T, Corbett R, Van Tol HH, Kamboj RK. Role of dopamine D2, D4 and serotonin(2A) receptors in antipsychotic and anticataleptic action. J Psychopharmacol. 1997;11(1):15–7.

    Article  CAS  PubMed  Google Scholar 

  79. Singer P, Feldon J, Yee BK. The glycine transporter 1 inhibitor SSR504734 enhances working memory performance in a continuous delayed alternation task in C57BL/6 mice. Psychopharmacology (Berl). 2009;202(1–3):371–84.

    Article  CAS  Google Scholar 

  80. Nikiforuk A, Kos T, Rafa D, Behl B, Bespalov A, Popik P. Blockade of glycine transporter 1 by SSR-504734 promotes cognitive flexibility in glycine/NMDA receptor-dependent manner. Neuropharmacology. 2011;61(1–2):262–7.

    Article  CAS  PubMed  Google Scholar 

  81. Sanfilipo M, Wolkin A, Angrist B, van Kammen DP, Duncan E, Wieland S, et al. Amphetamine and negative symptoms of schizophrenia. Psychopharmacology (Berl). 1996;123(2):211–4.

    Article  CAS  Google Scholar 

  82. Kirrane RM, Mitropoulou V, Nunn M, New AS, Harvey PD, Schopick F, et al. Effects of amphetamine on visuospatial working memory performance in schizophrenia spectrum personality disorder. Neuropsychopharmacology. 2000;22(1):14–8.

    Article  CAS  PubMed  Google Scholar 

  83. Barch DM. Pharmacological manipulation of human working memory. Psychopharmacology (Berl). 2004;174(1):126–35.

    Article  CAS  Google Scholar 

  84. Barch DM, Carter CS. Amphetamine improves cognitive function in medicated individuals with schizophrenia and in healthy volunteers. Schizophr Res. 2005;77(1):43–58.

    Article  PubMed  Google Scholar 

  85. Mehta MA, Riedel WJ. Dopaminergic enhancement of cognitive function. Curr Pharm Des. 2006;12(20):2487–500.

    Article  CAS  PubMed  Google Scholar 

  86. Yee BK, Singer P. A conceptual and practical guide to the behavioural evaluation of animal models of the symptomatology and therapy of schizophrenia. Cell Tissue Res. 2013;354(1):221–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Graham FK. Presidential address, 1974. The more or less startling effects of weak prestimulation. Psychophysiology. 1975;12(3):238–48.

    Article  CAS  PubMed  Google Scholar 

  88. Lubow RE, Moore AU. Latent inhibition: the effect of nonreinforced pre-exposure to the conditional stimulus. J Comp Physiol Psychol. 1959;52:415–9.

    Article  CAS  PubMed  Google Scholar 

  89. Swerdlow NR, Braff DL, Hartston H, Perry W, Geyer MA. Latent inhibition in schizophrenia. Schizophr Res. 1996;20(1–2):91–103.

    Article  CAS  PubMed  Google Scholar 

  90. Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR. Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology (Berl). 2001;156(2–3):117–54.

    Article  CAS  Google Scholar 

  91. Moser PC, Hitchcock JM, Lister S, Moran PM. The pharmacology of latent inhibition as an animal model of schizophrenia. Brain Res Brain Res Rev. 2000;33(2–3):275–307.

    Article  CAS  PubMed  Google Scholar 

  92. Bakshi VP, Swerdlow NR, Geyer MA. Clozapine antagonizes phencyclidine-induced deficits in sensorimotor gating of the startle response. J Pharmacol Exp Ther. 1994;271(2):787–94.

    CAS  PubMed  Google Scholar 

  93. Swerdlow NR, Bakshi V, Waikar M, Taaid N, Geyer MA. Seroquel, clozapine and chlorpromazine restore sensorimotor gating in ketamine-treated rats. Psychopharmacology (Berl). 1998;140(1):75–80.

    Article  CAS  Google Scholar 

  94. Swerdlow NR, Geyer MA. Clozapine and haloperidol in an animal model of sensorimotor gating deficits in schizophrenia. Pharmacol Biochem Behav. 1993;44(3):741–4.

    Article  CAS  PubMed  Google Scholar 

  95. Swerdlow NR, Keith VA, Braff DL, Geyer MA. Effects of spiperone, raclopride, SCH 23390 and clozapine on apomorphine inhibition of sensorimotor gating of the startle response in the rat. J Pharmacol Exp Ther. 1991;256(2):530–6.

    CAS  PubMed  Google Scholar 

  96. Weiner I, Feldon J. Facilitation of latent inhibition by haloperidol in rats. Psychopharmacology (Berl). 1987;91(2):248–53.

    Article  CAS  Google Scholar 

  97. Weiner I, Feldon J, Katz Y. Facilitation of the expression but not the acquisition of latent inhibition by haloperidol in rats. Pharmacol Biochem Behav. 1987;26(2):241–6.

    Article  CAS  PubMed  Google Scholar 

  98. Weiner I, Kidron R, Tarrasch R, Arnt J, Feldon J. The effects of the new antipsychotic, sertindole, on latent inhibition in rats. Behav Pharmacol. 1994;5(2):119–24.

    Article  CAS  PubMed  Google Scholar 

  99. Weiner I, Shadach E, Barkai R, Feldon J. Haloperidol- and clozapine-induced enhancement of latent inhibition with extended conditioning: implications for the mechanism of action of neuroleptic drugs. Neuropsychopharmacology. 1997;16(1):42–50.

    Article  CAS  PubMed  Google Scholar 

  100. Weiner I, Shadach E, Tarrasch R, Kidron R, Feldon J. The latent inhibition model of schizophrenia: further validation using the atypical neuroleptic, clozapine. Biol Psychiatry. 1996;40(9):834–43.

    Article  CAS  PubMed  Google Scholar 

  101. Lipina T, Labrie V, Weiner I, Roder J. Modulators of the glycine site on NMDA receptors, D-serine and ALX 5407, display similar beneficial effects to clozapine in mouse models of schizophrenia. Psychopharmacology (Berl). 2005;179(1):54–67.

    Article  CAS  Google Scholar 

  102. Black MD, Varty GB, Arad M, Barak S, De Levie A, Boulay D, et al. Procognitive and antipsychotic efficacy of glycine transport 1 inhibitors (GlyT1) in acute and neurodevelopmental models of schizophrenia: latent inhibition studies in the rat. Psychopharmacology (Berl). 2009;202(1–3):385–96.

    Article  CAS  Google Scholar 

  103. Weiner I. The “two-headed” latent inhibition model of schizophrenia: modeling positive and negative symptoms and their treatment. Psychopharmacology (Berl). 2003;169(3–4):257–97.

    Article  CAS  Google Scholar 

  104. Shimazaki T, Kaku A, Chaki S. D-Serine and a glycine transporter-1 inhibitor enhance social memory in rats. Psychopharmacology (Berl). 2010;209(3):263–70.

    Article  CAS  Google Scholar 

  105. Boulay D, Pichat P, Dargazanli G, Estenne-Bouhtou G, Terranova JP, Rogacki N, et al. Characterization of SSR103800, a selective inhibitor of the glycine transporter-1 in models predictive of therapeutic activity in schizophrenia. Pharmacol Biochem Behav. 2008;91(1):47–58.

    Article  CAS  PubMed  Google Scholar 

  106. Nishikawa H, Inoue T, Izumi T, Nakagawa S, Koyama T. SSR504734, a glycine transporter-1 inhibitor, attenuates acquisition and expression of contextual conditioned fear in rats. Behav Pharmacol. 2010;21(5–6):576–9.

    Article  CAS  PubMed  Google Scholar 

  107. Rosse RB, Theut SK, Banay-Schwartz M, Leighton M, Scarcella E, Cohen CG, et al. Glycine adjuvant therapy to conventional neuroleptic treatment in schizophrenia: an open-label, pilot study. Clin Neuropharmacol. 1989;12(5):416–24.

    Article  CAS  PubMed  Google Scholar 

  108. Rosse RB, Schwartz BL, Davis RE, Deutsch SI. An NMDA intervention strategy in schizophrenia with “low-dose” milacemide. Clin Neuropharmacol. 1991;14(3):268–72.

    Article  CAS  PubMed  Google Scholar 

  109. Javitt DC. Glycine transport inhibitors for the treatment of schizophrenia: symptom and disease modification. Curr Opin Drug Discov Devel. 2009;12(4):468–78.

    CAS  PubMed  Google Scholar 

  110. Howard A, Tahir I, Javed S, Waring SM, Ford D, Hirst BH. Glycine transporter GLYT1 is essential for glycine-mediated protection of human intestinal epithelial cells against oxidative damage. J Physiol. 2010;588(Pt 6):995–1009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Howard A, Hirst BH. The glycine transporter GLYT1 in human intestine: expression and function. Biol Pharm Bull. 2011;34(6):784–8.

    Article  CAS  PubMed  Google Scholar 

  112. Kantrowitz JT, Malhotra AK, Cornblatt B, Silipo G, Balla A, Suckow RF, et al. High dose D-serine in the treatment of schizophrenia. Schizophr Res. 2010;121(1–3):125–30.

    Article  PubMed Central  PubMed  Google Scholar 

  113. Javitt DC. Glycine transport inhibitors and the treatment of schizophrenia. Biol Psychiatry. 2008;63(1):6–8.

    Article  CAS  PubMed  Google Scholar 

  114. Goff DC, Tsai GC, Monoach DS, Coyle JT. Dose-finding trial of D-cycloserine added to neuroleptics for negative symptoms in schizophrenia. Am J Psychiatry. 1995;152:1213–5.

    Article  CAS  PubMed  Google Scholar 

  115. Evins AE, Amico E, Posever TA, Toker R, Goff DC. D-Cycloserine added to risperidone in patients with primary negative symptoms of schizophrenia. Schizophr Res. 2002;56(1–2):19–23.

    Article  PubMed  Google Scholar 

  116. Goff DC, Herz L, Posever T, Shih V, Tsai G, Henderson DC, et al. A six-month, placebo-controlled trial of D-cycloserine co-administered with conventional antipsychotics in schizophrenia patients. Psychopharmacology (Berl). 2005;179(1):144–50.

    Article  CAS  Google Scholar 

  117. Goff DC, Tsai G, Levitt J, Amico E, Manoach D, Schoenfeld DA, et al. A placebo-controlled trial of D-cycloserine added to conventional neuroleptics in patients with schizophrenia. Arch Gen Psychiatry. 1999;56(1):21–7.

    Article  CAS  PubMed  Google Scholar 

  118. Goff DC, Tsai G, Manoach DS, Flood J, Darby DG, Coyle JT. D-cycloserine added to clozapine for patients with schizophrenia. Am J Psychiatry. 1996;153(12):1628–30.

    Article  CAS  PubMed  Google Scholar 

  119. Yurgelun-Todd DA, Coyle JT, Gruber SA, Renshaw PF, Silveri MM, Amico E, et al. Functional magnetic resonance imaging studies of schizophrenic patients during word production: effects of D-cycloserine. Psychiatry Res. 2005;138(1):23–31.

    Article  CAS  PubMed  Google Scholar 

  120. Bar-joseph I, Pras E, Reznik-Wolf H, Marek-Yagel D, Abu-Horvitz A, Dushnitzky M, et al. Mutations in the sarcosine dehydrogenase gene in patients with sarcosinemia. Hum Genet. 2012;131(11):1805–10.

    Article  CAS  PubMed  Google Scholar 

  121. Tsai G, Lane HY, Yang P, Chong MY, Lange N. Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry. 2004;55(5):452–6.

    Article  CAS  PubMed  Google Scholar 

  122. Lane HY, Chang YC, Liu YC, Chiu CC, Tsai GE. Sarcosine or D-serine add-on treatment for acute exacerbation of schizophrenia: a randomized, double-blind, placebo-controlled study. Arch Gen Psychiatry. 2005;62(11):1196–204.

    Article  CAS  PubMed  Google Scholar 

  123. Lane HY, Lin CH, Huang YJ, Liao CH, Chang YC, Tsai GE. A randomized, double-blind, placebo-controlled comparison study of sarcosine (N-methylglycine) and D-serine add-on treatment for schizophrenia. Int J Neuropsychopharmacol. 2010;13(4):451–60.

    Article  CAS  PubMed  Google Scholar 

  124. Lane HY, Liu YC, Huang CL, Chang YC, Liau CH, Perng CH, et al. Sarcosine (N-methylglycine) treatment for acute schizophrenia: a randomized, double-blind study. Biol Psychiatry. 2008;63(1):9–12.

    Article  CAS  PubMed  Google Scholar 

  125. Lane HY, Huang CL, Wu PL, Liu YC, Chang YC, Lin PY, et al. Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to clozapine for the treatment of schizophrenia. Biol Psychiatry. 2006;60(6):645–9.

    Article  CAS  PubMed  Google Scholar 

  126. Singh SP, Singh V. Meta-analysis of the efficacy of adjunctive NMDA receptor modulators in chronic schizophrenia. CNS Drugs. 2011;25(10):859–85.

    Article  CAS  PubMed  Google Scholar 

  127. Javitt DC, Duncan L, Balla A, Sershen H. Inhibition of system A-mediated glycine transport in cortical synaptosomes by therapeutic concentrations of clozapine: implications for mechanisms of action. Mol Psychiatry. 2005;10(3):275–87.

    Article  CAS  PubMed  Google Scholar 

  128. Mezler M, Hornberger W, Mueller R, Schmidt M, Amberg W, Braje W, et al. Inhibitors of GlyT1 affect glycine transport via discrete binding sites. Mol Pharmacol. 2008;74(6):1705–15.

    Article  CAS  PubMed  Google Scholar 

  129. Perry KW, Falcone JF, Fell MJ, Ryder JW, Yu H, Love PL, et al. Neurochemical and behavioral profiling of the selective GlyT1 inhibitors ALX5407 and LY2365109 indicate a preferential action in caudal vs. cortical brain areas. Neuropharmacology. 2008;55(5):743–54.

    Article  CAS  PubMed  Google Scholar 

  130. Marek GJ, Behl B, Bespalov AY, Gross G, Lee Y, Schoemaker H. Glutamatergic (N-methyl-D-aspartate receptor) hypofrontality in schizophrenia: too little juice or a miswired brain? Mol Pharmacol. 2010;77(3):317–26.

    Article  CAS  PubMed  Google Scholar 

  131. Kopec K, Flood DG, Gasior M, McKenna BA, Zuvich E, Schreiber J, et al. Glycine transporter (GlyT1) inhibitors with reduced residence time increase prepulse inhibition without inducing hyperlocomotion in DBA/2 mice. Biochem Pharmacol. 2010;80(9):1407–17.

    Article  CAS  PubMed  Google Scholar 

  132. Ouellet D, Sutherland S, Wang T, Griffini P, Murthy V. First-time-in-human study with GSK1018921, a selective GlyT1 inhibitor: relationship between exposure and dizziness. Clin Pharmacol Ther. 2011;90(4):597–604.

    Article  CAS  PubMed  Google Scholar 

  133. D’Souza DC, Singh N, Elander J, Carbuto M, Pittman B, Udo de Haes J. Glycine transporter inhibitor attenuates the psychotomimetic effects of ketamine in healthy males: preliminary evidence. Neuropsychopharmacology. 2012;37(4):1036–46.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  134. Liem-Moolenaar M, Zoethout RW, de Boer P, Schmidt M, de Kam ML, Cohen AF, et al. The effects of the glycine reuptake inhibitor R213129 on the central nervous system and on scopolamine-induced impairments in psychomotor and cognitive function in healthy subjects. J Psychopharmacol. 2010;24(11):1671–9.

    Article  CAS  PubMed  Google Scholar 

  135. Liem-Moolenaar M, Zoethout RW, de Boer P, Schmidt M, de Kam ML, Cohen AF, et al. The effects of a glycine reuptake inhibitor R231857 on the central nervous system and on scopolamine-induced impairments in cognitive and psychomotor function in healthy subjects. J Psychopharmacol. 2010;24(11):1681–7.

    Article  CAS  PubMed  Google Scholar 

  136. Umbricht D, Alberati D, Martin-Facklam M, Borroni E, Youssef EA, Ostland M, Wallace TL, Knoflach F, Dorflinger E, Wettstein JG, Bausch A, Garibaldi G, Santarelli L. Effect of bitopertin, a glycine reuptake inhibitor, on negative symptoms of schizophrenia: a randomized, double-blind, proof-of-concept study. JAMA Psychiatry, 2014;71: 637–46.

    Google Scholar 

  137. Lin CH, Lane HY, Tsai GE. Glutamate signaling in the pathophysiology and therapy of schizophrenia. Pharmacol Biochem Behav. 2012;100(4):665–77.

    Article  CAS  PubMed  Google Scholar 

  138. Wong DF, Ostrowitzki S, Zhou Y, Raymont V, Hofmann C, Borroni E, Kumar A, Parkar N, Brašić JR, Hilton J, Dannals RF, Martin-Facklam M. Characterization of [11C]RO5013853, a novel PET tracer for the glycine transporter type 1 (GlyT1) in humans. Neuroimage. 2013;75:282–90.

    Article  CAS  PubMed  Google Scholar 

  139. Bugarski-Kirola D, Wang A, Abi-Saab D, Blättler T. A phase II/III trial of bitopertin monotherapy compared with placebo in patients with an acute exacerbation of schizophrenia - results from the CandleLyte study.Eur Neuropsychopharmacol, 2014;24:1024–36.

    Google Scholar 

  140. Kane J, Honigfeld G, Singer J, Meltzer H. Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Arch Gen Psychiatry. 1988;45(9):789–96.

    Article  CAS  PubMed  Google Scholar 

  141. Idanpaan-Heikkila J, Alhava E, Olkinuora M, Palva IP. Agranulocytosis during treatment with chlozapine. Eur J Clin Pharmacol. 1977;11(3):193–8.

    Article  CAS  PubMed  Google Scholar 

  142. Yee BK, Peleg-Raibstein D, Dubroqua S, Singer P, Paterna J-C, Feldon J, et al., editors. Latent inhibition enhancement by glycine transporter 1 disruption is mediated by anti-dopaminergic mechanism in the nucleus accumbens. In: Society for neuroscience. San Diego, CA; 2010.

    Google Scholar 

  143. Gray JA, Feldon J, Rawlins JNP, Smith AD, Hemsley DR. The neuropsychology of schizophrenia. Behav Brain Sci. 1991;14(1):1–19.

    Article  Google Scholar 

  144. Weiner I. Neural substrates of latent inhibition: the switching model. Psychol Bull. 1990;108(3):442–61.

    Article  CAS  PubMed  Google Scholar 

  145. Soderpalm B, Ericson M. Neurocircuitry involved in the development of alcohol addiction: the dopamine system and its access points. Curr Top Behav Neurosci. 2013;13:127–61.

    Article  PubMed  CAS  Google Scholar 

  146. Lido HH, Stomberg R, Fagerberg A, Ericson M, Soderpalm B. The glycine reuptake inhibitor org 25935 interacts with basal and ethanol-induced dopamine release in rat nucleus accumbens. Alcohol Clin Exp Res. 2009;33(7):1151–7.

    Article  PubMed  CAS  Google Scholar 

  147. Singer P, Boison D, Mohler H, Feldon J, Yee BK. Deletion of glycine transporter 1 (GlyT1) in forebrain neurons facilitates reversal learning: enhanced cognitive adaptability? Behav Neurosci. 2009;123(5):1012–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  148. Dubroqua S, Serrano L, Boison D, Feldon J, Gargiulo PA, Yee BK. Intact working memory in the absence of forebrain neuronal glycine transporter 1. Behav Brain Res. 2012;230(1):208–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  149. Chen L, Muhlhauser M, Yang CR. Glycine tranporter-1 blockade potentiates NMDA-mediated responses in rat prefrontal cortical neurons in vitro and in vivo. J Neurophysiol. 2003;89(2):691–703.

    Article  CAS  PubMed  Google Scholar 

  150. Zhang LH, Gong N, Fei D, Xu L, Xu TL. Glycine uptake regulates hippocampal network activity via glycine receptor-mediated tonic inhibition. Neuropsychopharmacology. 2008;33(3):701–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge the support from the ETH Zurich and the Swiss National Science Foundation for support of our research on glycine transporter 1. Legacy Research Institute, Portland, Oregon, had provided additional support for the authors during the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin K. Yee D.Phil. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dubroqua, S., Singer, P., Yee, B.K. (2015). Translating the Glutamatergic Hypothesis of Schizophrenia Through Homeostatic Regulation of Brain Glycine. In: Gargiulo, P., Arroyo, H. (eds) Psychiatry and Neuroscience Update. Springer, Cham. https://doi.org/10.1007/978-3-319-17103-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17103-6_25

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17102-9

  • Online ISBN: 978-3-319-17103-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics