Skip to main content

Biological Markers in Psychiatry and Its Relation with Translational Approaches: Brief Historical Review

  • Chapter
Psychiatry and Neuroscience Update

Abstract

In recent years, psychiatry has attempted to find biological markers of mental illness in the strict sense or psychiatric disorders with a corporal or biological base. The purpose of this chapter is to schematically describe from the beginning the set of efforts made by biological psychiatry with the goal to find markers for mental illness, explaining the pathogenesis of these illnesses, and possibly providing new therapeutic approaches. This chapter attempts to synthetically and schematically review only a few lines of investigation in current psychiatry. It begins with a discussion about the first biochemical peripheral amines dosed, as primarily tracers or trace amines, which generated the first experiences in Argentina in the late 1960s by Fischer and colleagues. It continues with the development of the concept of “windows” in neuroendocrine function tests and its relevance. They were used primarily in the 1980s and we display this topic mentioning our studies on the extra hypothalamic action of hypophysotropic peptides, and the relationship of conventional transmitters with these releasing factors. Finally, we include our initial studies from the 1990s, referring to perceptual disturbances in schizophrenia, starting this new phase of exploration. It was cognitive or neuropsychological at first, with translational approaches to human psychoses. Finally, we describe electrophysiological exploration, including more sophisticated methods. We review briefly a field that currently has virtually unlimited proportions, hardly reducible to a single line of thought. This is a brief story of a group that had the opportunity to attend, since its inception, as a spectator of a revolution, and at times participating in direct human research approaches, and in some cases, in translational research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gargiulo PA. Extrahypothalmic actions of hypophysotropic peptides. Ph.D. thesis. Mendoza, Argentina: National University of Cuyo; 1992.

    Google Scholar 

  2. Gargiulo PA. Psychoneuroendocrinology. In: Vidal G, Alarcón RD, Lolas Stepke F, editors. Enciclopedia Iberoamericana de Psiquiatría, vol. III. Buenos Aires: Editorial Médica Panamericana; 1995. p. 1376–86.

    Google Scholar 

  3. Smith DF. Quest for biomarkers of treatment-resistant depression: shifting the paradigm toward risk. Front Psychiatry. 2013;4:57.

    PubMed Central  PubMed  Google Scholar 

  4. Berry MD. Mammalian central nervous system trace amines. Pharmacologic amphetamines, physiologic neuromodulators. J Neurochem. 2004;90(2):257–71.

    Article  CAS  PubMed  Google Scholar 

  5. Annsseau MLJ. Neuroendocrine tests in psychiatry (Tests Neuroendocrinos en Psiquiatría). In: Mendlewicz J, editor. Avances en Psiquiatría Biológica. Primera ed. Barcelona: Editorial Masson, S.A; 1992.

    Google Scholar 

  6. Chen Y, Bidwell LC, Norton D. Trait vs. state markers for schizophrenia: identification and characterization through visual processes. Curr Psychiatry Rev. 2006;2(4):431–8.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Lovestone S. Trait, state, and mechanism: looking back, looking forward, and understanding why. J Alzheimers Dis. 2013;33 Suppl 1:S23–33.

    PubMed  Google Scholar 

  8. Cesková E, Drybcák P, Lorenc M. Biological markers and possibilities for predicting therapeutic results in schizophrenia: a methodological contribution. Prog Neuropsychopharmacol Biol Psychiatry. 2002;26(4):683–91.

    Article  PubMed  Google Scholar 

  9. Baumeister A. The search for an endogenous schizogen: the strange case of taraxein. J Hist Neurosci. 2011;20(2):106–22.

    Article  PubMed  Google Scholar 

  10. Fischer E, Spatz H. Determination of bufotenin in the urine of schizophrenics. Int J Neuropsychiatry. 1967;3(3):226–8.

    CAS  PubMed  Google Scholar 

  11. Fischer E, Spatz H. Quantitative determination of an increased excretion of bufotenin in urine of schizophrenics. Arch Psychiatr Nervenkr. 1968;211(3):241–9.

    Article  CAS  PubMed  Google Scholar 

  12. Fischer E, Spatz H. Studies on urinary elimination of bufotenine-like substances in schizophrenia. Biol Psychiatry. 1970;2(3):235–40.

    CAS  PubMed  Google Scholar 

  13. Fischer E, Spatz H, Fledel T. Bufotenin like substances in form of glucuronide in schizophrenic and normal urines. Psychosomatics. 1971;12(4):278–80.

    Article  CAS  PubMed  Google Scholar 

  14. Poch GF, Spatz H, Fischer E. Values of bufoteninuria in non-hospitalized schizophrenics and epileptics. Prensa Med Argent. 1967;54(9):409–10.

    CAS  PubMed  Google Scholar 

  15. Spatz H, Sireix DW, Marini FA, Fischer E, Bonhour A. Acebal EM Laboratory and animal studies on the chemistry of bufotenin. Quantitative determination on bufotenin in human urine. Behav Neuropsychiatry. 1969;1(5):25–7.

    CAS  PubMed  Google Scholar 

  16. Marsh A. Visual hallucinations during hallucinogenic experience and schizophrenia. Schizophr Bull. 1979;5(4):627–30.

    Article  CAS  PubMed  Google Scholar 

  17. Marona-Lewicka D, Nichols CD, Nichols DE. An animal model of schizophrenia based on chronic LSD administration: old idea, new results. Neuropharmacology. 2011;61(3):503–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Gouzoulis-Mayfrank E, Heekeren K, Neukirch A, Stoll M, Stock C, Obradovic M, Kovar KA. Psychological effects of (S)-ketamine and N, N-dimethyltryptamine (DMT): a double-blind, cross-over study in healthy volunteers. Pharmacopsychiatry. 2005;38(6):301–11.

    Article  CAS  PubMed  Google Scholar 

  19. González-Maeso J, Ang RL, Yuen T, Chan P, Weisstaub NV, López-Giménez JF, Zhou M, Okawa Y, Callado LF, Milligan G, Gingrich JA, Filizola M, Meana JJ, Sealfon SC. Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature. 2008;452(7183):93–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Fischer E, Spatz H, Heller B, Reggiani H. Phenethylamine content of human urine and rat brain, its alterations in pathological conditions and after drug administration. Experientia. 1972;28(3):307–8.

    Article  CAS  PubMed  Google Scholar 

  21. Fischer E, Spatz H, Saavedra JM, Reggiani H, Miró AH, Heller B. Urinary elimination of phenethylamine. Biol Psychiatry. 1972;5(2):139–47.

    CAS  PubMed  Google Scholar 

  22. Fischer E, Spatz H, Fernández Labriola RS, Rodriguez Casanova EM, Spatz N. Quantitative gas-chromatographic determination and infrared spectrographic identification of urinary phenethylamine. Biol Psychiatry. 1973;7(2):161–5.

    CAS  PubMed  Google Scholar 

  23. Fischer E, Heller B, Spatz H, Reggiani H. Thin-layer chromatographic assay of phenethylamine content of the rat brain and its changes after reserpine and imipramine administration. Arzneimittelforschung. 1972;22(9):1560.

    CAS  PubMed  Google Scholar 

  24. Fischer E, Heller B, Nachon M, Spatz H. Therapy of depression by phenylalanine. Preliminary note. Arzneimittelforschung. 1975;25(1):132.

    CAS  PubMed  Google Scholar 

  25. Mesones HL, Cia FM. Correlation between clinical and laboratory data in depression. Therapeutic orientation by means of vitamins and amino acids. Acta Psiquiatr Psicol Am Lat. 1985;31(1):25–36.

    CAS  PubMed  Google Scholar 

  26. Beckmann H, Strauss MA, Beckmann H, Strauss MA, Ludolph E. Dl-phenylalanine in depressed patients: an open study. J Neural Transm. 1977;41(2–3):123–34.

    Article  CAS  PubMed  Google Scholar 

  27. Moreno Adaro OF, Sabina L, Berríos C, García Menéndez S, Landa AI, Lafuente Sánchez JV, Mesones Arroyo HL, Gargiulo PA. Effects of D-phenylalanine and classic antidepressants in an animal model of depressive disorder. In: XXVI annual meeting of the society of biology of Cuyo. Mendoza, 5–7 Dec 2008. Biocell. 2009;33(1): A-83, 105.

    Google Scholar 

  28. Stahl SM, Zhang L, Damatarca C, Grady M. Brain circuits determine destiny in depression: a novel approach to the psychopharmacology of wakefulness, fatigue, and executive dysfunction in major depressive disorder. J Clin Psychiatry. 2003;64(14):6–17.

    Google Scholar 

  29. Kurian BT, Greer TL, Trivedi MH. Strategies to enhance the therapeutic efficacy of antidepressants: targeting residual symptoms. Expert Rev Neurother. 2009;9(7):975–84.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Davis BA, Boulton AA. The trace amines and their acidic metabolites in depression–an overview. Prog Neuropsychopharmacol Biol Psychiatry. 1994;18(1):17–45.

    Article  CAS  PubMed  Google Scholar 

  31. Gargiulo PA, Donoso AO. Interaction between glutamate and luteinizing hormone releasing hormone (LHRH) in lordosis behavior and luteinizing hormone release (LH): further studies on NMDA receptor mediation. Physiol Behav. 1995;58:169–73.

    Article  CAS  PubMed  Google Scholar 

  32. Gargiulo PA, Donoso AO. Luteinizing hormone releasing hormone (LHRH) in the periaqueductal gray substance increases some subcategories of grooming behavior in males rats. 856. Biochem Behav. 1989;32:853–6.

    Article  CAS  Google Scholar 

  33. Gargiulo PA. Thyrotropin releasing hormone injected into the nucleus accumbens septi selectively increases face grooming in rats. Braz J Med Biol Res. 1996;29:805–10.

    CAS  PubMed  Google Scholar 

  34. Díaz-Véliz G, Benavides MS, Butrón S, Dussaubat N, Mora S. Behavioral effects of dopamine agonists and antagonists: influence of estrous cycle, ovariectomy, and estrogen replacement in rats. Pharmacol Biochem Behav. 1999;62(1):21–9.

    Article  PubMed  Google Scholar 

  35. Ulloa JL, Castañeda P, Berríos C, Díaz-Veliz G, Mora S, Bravo JA, Araneda K, Menares C, Morales P, Friedler JL. Comparison of the antidepressant sertraline on differential depression-like behaviors elicited by restraint stress and repeated corticosterone administration. Pharmacol Biochem Behav. 2010;97(2):213–21.

    Article  CAS  PubMed  Google Scholar 

  36. Gargiulo PA, Donoso AO. Distinct grooming patterns induced by intracerebroventricular injection of CRH, TRH and LHRH in male rats. Braz J Med Biol Res. 1996;29:375–9.

    CAS  PubMed  Google Scholar 

  37. Berridge CW, Dunn AJ. Restraint-stress-induced changes in exploratory behavior appear to be mediated by norepinephrine-stimulated release of CRF.J Neurosci. 1989;9(10):3513–21.

    CAS  PubMed  Google Scholar 

  38. Landa AI, Donoso AO. Blockade of pro-oestrus LH surge and ovulation by GABA increase in the rat locus coeruleus. Acta Endocrinol (Copenh). 1987;115(4):490–6.

    CAS  Google Scholar 

  39. Gargiulo PA, Donoso AO. Is inhibition by diazepam and beta carbolines of estrogen induced luteinizing hormone secretion related to sedative effects? Pharmacol Biochem Behav. 1991;40:335–8.

    Article  CAS  PubMed  Google Scholar 

  40. Pich EM, Vargas G, Domenici E. Biomarkers for antipsychotic therapies. Handb Exp Pharmacol. 2012;212:339–60.

    Article  CAS  PubMed  Google Scholar 

  41. Payk TR. Symptomatic depressions in internal diseases. MMW Munch Med Wochenschr. 1982;124(51–52):1153–4.

    CAS  PubMed  Google Scholar 

  42. Weissel M. Possible consequences of subclinical hypothyroidism. Acta Med Austriaca. 2003;30(4):93–7.

    CAS  PubMed  Google Scholar 

  43. Wu EL, Chien IC, Lin CH, Chou YJ, Chou P. Increased risk of hypothyroidism and hyperthyroidism in patients with major depressive disorder: a population-based study. J Psychosom Res. 2013;74(3):233–7.

    Article  PubMed  Google Scholar 

  44. Carroll BJ, Feinberg M, Greden JF, Tarika J, Albala AA, Haskett RF, James NM, Kronfol Z, Lohr N, Steiner M, de Vigne JP, Young E. A specific laboratory test for the diagnosis of melancholia. Standardization, validation and clinical utility. Arch Gen Psychiatry. 1981;38(1):15–22.

    Article  CAS  PubMed  Google Scholar 

  45. Ceroni L, Cota D, Pasquali R. Pseudo-Cushing syndrome. Physiopathologic aspects and differential diagnosis. Minerva Endocrinol. 2000;25(2):47–54.

    CAS  PubMed  Google Scholar 

  46. Wolkowitz OM, Epel ES, Reus VI. Stress hormone-related psychopathology: pathophysiological and treatment implications. World J Biol Psychiatry. 2001;2(3):115–43.

    Article  CAS  PubMed  Google Scholar 

  47. Cervera-Enguix S, Rodríguez-Rosado A. Neuroendocrine and immunological functions in depressed patients: a follow-up study. Eur Psychiatry. 1995;10(1):49–55.

    Article  CAS  PubMed  Google Scholar 

  48. Donoso AO. Neurotransmitters of neuroendócrino sytem (Neurotransmisores del sistema neuroendócrino). In: Schiaffini O, Martini L, Mota M, Oril Bosch A, Tresguerres JAF, editors. Neuroendocrinology: basic and clinical aspects (Neuroendocrinología Aspectos básicos y clínicos). Barcelona: Salvat Editores, S.A; 1985. p. 95–129.

    Google Scholar 

  49. Carroll BJ. The dexamethasone suppression test for melancholia. Br J Psychiatry. 1982;140:292–304.

    Article  CAS  PubMed  Google Scholar 

  50. Meller WH, Zander KM, Crosby RDTG. Luteinizing hormone pulse characteristics in depressed women. Am J Psychiatry. 1997;154(10):1454–5.

    Article  CAS  PubMed  Google Scholar 

  51. Loosen PT, Prange Jr AJ. Serum thyrotropin response to thyrotropin-releasing hormone in psychiatric patients: a review. Am J Psychiatry. 1982;139(4):405–16.

    Article  CAS  PubMed  Google Scholar 

  52. Matussek N, Ackenheil M, Hippius H, Müller F, Schröder HT, Schultes H, Wasilewski B. Effects of clonidine on growth hormone release in psychiatric patients and controls. Psychiatry Res. 1980;2(1):25–36.

    Article  CAS  PubMed  Google Scholar 

  53. Rubin RT. Pharmacoendocrinology of major depression. Eur Arch Psychiatry Neurol Sci. 1989;238(5–6):259–67.

    Article  CAS  PubMed  Google Scholar 

  54. Fountoulakis KN, Gonda X, Rihmer Z, Fokas C, Iacovides A. Revisiting the dexamethasone suppression test in unipolar major depression: an exploratory study. Ann Gen Psychiatry. 2008;7:22.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Liddle GW. Tests of pituitary-adrenal suppressibility in the diagnosis of Cushing’s syndrome. J Clin Endocrinol. 1960;20:1539–60.

    Article  CAS  Google Scholar 

  56. Pavlatos FC, Smilo RP, Forsham PH. A rapid screening test for Cushing’s syndrome. JAMA. 1965;193:720–3.

    Article  CAS  PubMed  Google Scholar 

  57. Arana GW, Baldessarini RJ, Ornsteen M. The dexametasone suppression test for diagnosis and prognosis in psychiatry. Arch Gen Psychiatry. 1985;42(12):1193–204.

    Article  CAS  PubMed  Google Scholar 

  58. Joyce PR, Paykel ES. Predictors of drug response in depression. Arch Gen Psychiatry. 1989;46(1):89–99.

    Article  CAS  PubMed  Google Scholar 

  59. Carroll BJ. Informed use of the dexamethasone suppression test. J Clin Psychiatry. 1986;47(Suppl1):10–2.

    CAS  PubMed  Google Scholar 

  60. Jovanovic T, Phifer JE, Sicking K, Weiss T, Norrholm SD, Bradley B, Resssler KJ. Cortisol suppression by dexamethasone reduces exaggerated fear responses in posttraumatic stress disorder. Psychoneuroendocrinology. 2011;36(10):1540–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Pariante CM, Papadopoulos AS, Poon L, Checkley SA, English J, Kerwin RW, Lightman S. A novel prednisolone suppression test for the hypothalamic-pituitary-adrenal axis. Biol Psychiatry. 2002;51(11):922–30.

    Article  CAS  PubMed  Google Scholar 

  62. Juruena MF, Cleare AJ, Papadopoulos AS, Poon L, Lightman S, Pariante CM. Different responses to dexamethasone and prednisolone in the same depressed patients. Psychopharmacology (Berl). 2006;189(2):225–35.

    Article  CAS  Google Scholar 

  63. Juruena MF, Pariante CM, Papadopoulos AS, Poon L, Lightman S, Cleare AJ. Prednisolone suppression test in depression: prospective study of the role of HPA axis dysfunction in treatment resistance. Br J Psychiatry. 2009;194(4):342–9.

    Article  PubMed  Google Scholar 

  64. Carpenter LL, Ross NS, Tyrka AR, Anderson GM, Kelly M, Price LH. Dex/CRH test cortisol response in outpatients with major depression and matched healthy controls. Psychoneuroendocrinology. 2009;34(8):1208–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Holsboer-Trachsler E, Buol C, Wiedemann K, Holsboer F. Dexamethasone suppression test in severe schizophrenic illness: effects of plasma dexamethasone and caffeine levels. Acta Psychiatr Scand. 1987;75(6):608–13.

    Article  CAS  PubMed  Google Scholar 

  66. Mokhtari M, Arfken C, Boutros N. The DEX/CRH test for major depression: a potentially useful diagnostic test. Psychiatry Res. 2013;208(2):131–9.

    Article  PubMed  Google Scholar 

  67. Bschor T, Ising M, Erbe S, Winkelmann P, Ritter D, Uhr M, Lewitzka U. Impact of citalopram on the HPA system. A study of the combined DEX/CRH test in 30 unipolar depressed patients. J Psychiatr Res. 2012;46(1):111–7.

    Article  PubMed  Google Scholar 

  68. Hori H, Ozeki Y, Teraishi T, Matsuo J, Kawamoto Y, Kinoshita Y, Suto S, Terada S, Higuchi T, Kunugi H. Relationships between psychological distress, coping styles, and HPA axis reactivity in healthy adults. J Psychiatr Res. 2010;44(14):865–73.

    Article  PubMed  Google Scholar 

  69. Hori H, Teraishi T, Sasayama D, Ozeki Y, Matsuo J, Kawamoto Y, Kinoshita Y, Hattori K, Higuchi T, Kunugi H. Poor sleep is associated with exaggerated cortisol response to the combined dexamethasone/CRH test in a non-clinical population. J Psychiatr Res. 2011;45(9):1257–63.

    Article  PubMed  Google Scholar 

  70. Hori H, Teraishi T, Sasayama D, Hattori K, Hashikura M, Higuchi T, Kunugi H. Relationship of temperament and character with cortisol reactivity to the combined dexamethasone/CRH test in depressed outpatients. J Affect Disord. 2013;147(1–3):128–36.

    Article  CAS  PubMed  Google Scholar 

  71. Bowers CY, Friesen HG, Hwang P, Guyda HJ, Folkers K. Prolactin and thyrotropin release in man by synthetic pyroglutamylhistydylprolinamide. Biochem Biophys Res Commun. 1971;45(4):1033–41.

    Article  CAS  PubMed  Google Scholar 

  72. Prange Jr AJ, Lara PP, Wilson IC, Alltop LB, Breese GR. Effects of trhyrotropin releasing hormone in depression. Lancet. 1972;2(7785):999–1002.

    Article  PubMed  Google Scholar 

  73. Extein I, Pottash ALC, Gold MS. The thyrotropin-releasing hormone test in the diagnosis of unipolar depression. Psychiatry Res. 1981;39(3):311–6.

    Article  Google Scholar 

  74. Feighner JP, Robins E, Guze SB, Woodruff Jr RA, Winokur G, Muñoz R. Diagnostic criteria for use in psychiatric research. Arch Gen Psychiatry. 1972;26(1):57–63.

    Article  CAS  PubMed  Google Scholar 

  75. Arana GW, Zarzar MN, Baker E. The effect of diagnostic methodology on the sensitivity of the TRH stimulation test for depression: a literature review. Biol Psychiatry. 1990;28(8):733–7.

    Article  CAS  PubMed  Google Scholar 

  76. Gold MS, Pottash ALC, Ryan N, Sweeney DR, Davies RK, Martin DM. TRH-induced TSH response in unipolar, bipolar, and secondary depressions: possible utility in clinical assessment and differential diagnosis. Psychoneuroendocrinology. 1980;5(2):147–55.

    Article  CAS  PubMed  Google Scholar 

  77. Kraus RP, Phoenix E, Edmonds MW, Nicholson IR, Chandarana PC, Tokmakejian S. Exaggerated TSH responses to TRH in depressed patients with “normal” baseline TSH. J Clin Psychiatry. 1997;58(6):266–70.

    Article  CAS  PubMed  Google Scholar 

  78. Hofmann PJ, Nutzinger DO, Kotter MR, Herzog G. The hypothalamic-pituitary-thyroid axis in agoraphobia, panic disorder, major depression and normal controls. J Affect Disord. 2001;66(1):75–7.

    Article  CAS  PubMed  Google Scholar 

  79. Esel E, Kartalci S, Tutus A, Turan T, Sofuoglu S. Effects of antidepressant treatment on thyrotropin-releasing hormone stimulation, growth hormone response to L-DOPA, and dexamethasone suppression tests in major depressive patients. Prog Neuropsychopharmacol Biol Psychiatry. 2004;28(2):303–9.

    Article  CAS  PubMed  Google Scholar 

  80. Kirkegaard C, Norlem N, Lauridsen UB, Bjorum N. Prognostic value of thyrotropin releasing hormone stimulation test in endogenous depression. Acta Psychiatr Scand. 1975;52(3):170–7.

    Article  CAS  PubMed  Google Scholar 

  81. Linkowski P, Van Wettere JP, Kerkhofs M, Brauman H, Mendlewicz J. Thyrotrophin response to thyreostimulin in affectively ill women relationship to suicidal behaviour. Br J Psychiatry. 1983;143:401–5.

    Article  CAS  PubMed  Google Scholar 

  82. Banki CM, Arató M, Papp Z, Kurcz M. Biochemical markers in suicidal patients. Investigations with cerebrospinal fluid amine metabolites and neuroendocrine tests. J Affect Disord. 1984;6(3–4):341–50.

    Article  CAS  PubMed  Google Scholar 

  83. Kørner A, Kirkegaard C, Larsen JK. The thyrotropin response to thyrotropin-releasing hormone as a biological marker of suicidal risk in depressive patients. Acta Psychiatr Scand. 1987;76(4):355–8.

    Article  PubMed  Google Scholar 

  84. Corrigan MH, Gillette GM, Quade D, Garbutt JC. Panic, suicide, and agitation: independent correlates of the TSH response to TRH in depression. Biol Psychiatry. 1992;31(10):984–92.

    Article  CAS  PubMed  Google Scholar 

  85. Jokinen J, Samuelsson M, Nordström AL, Nordström P. HPT axis, CSF monoamine metabolites, suicide intent and depression severity in male suicide attempters. J Affect Disord. 2008;111(1):119–24.

    Article  CAS  PubMed  Google Scholar 

  86. Duval F, Mokrani MC, Lopera FG, Diep TS, Rabia H, Fattah S. Thyroid axis activity and suicidal behavior in depressed patients. Psychoneuroendocrinology. 2010;35(7):1045–54.

    Article  CAS  PubMed  Google Scholar 

  87. Peteranderl C, Antonijevic IA, Steiger A, Murck H, Held K, Frieboes RM, Uhr M, Schaaf L. Nocturnal secretion of TSH and ACTH in male patients with depression and healthy controls. J Psychiatr Res. 2002;36(3):189–96.

    Article  PubMed  Google Scholar 

  88. Staner L, Duval F, Calvi-Gries F, Mokrani MC, Bailey P, Hode Y, Toussaint M, Luthringer R, Muzet A, Macher JP. Morning and evening TSH response to TRH and sleep EEG disturbances in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2001;25(3):535–47.

    Article  CAS  PubMed  Google Scholar 

  89. Staner L, Duval F, Haba J, Mokrani MC, Macher JP. Disturbances in hypothalamo pituitary adrenal and thyroid axis identify different sleep EEG patterns in major depressed patients. J Psychiatr Res. 2003;37(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  90. Esel E, Kilic C, Kula M, Basturk M, Ozsoy S, Turan T, Keles S, Sofuoglu S. Effects of electroconvulsive therapy on the thyrotropin-releasing hormone test in patients with depression. J ECT. 2004;20(4):248–53.

    Article  PubMed  Google Scholar 

  91. Abraham G, Milev R, Stuart LJ. T3 augmentation of SSRI resistant depression. J Affect Disord. 2006;91(2–3):211–5.

    Article  CAS  PubMed  Google Scholar 

  92. Yazici K, Yazici AE, Taneli B. Different neuroendocrine profiles of remitted and nonremitted schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry. 2002;26(3):579–84.

    Article  CAS  PubMed  Google Scholar 

  93. Warnock JK, Bundren JC. Anxiety and mood disorders associated with gonadotropin-releasing hormone agonist therapy. Psychopharmacol Bull. 1997;33(2):311–6.

    CAS  PubMed  Google Scholar 

  94. Rubin RT, Poland RE, Lesser IM. Neuroendocrine aspects of primary endogenous depression VIII. Pituitary-gonadal axis activity in male patients and matched control subjects. Psychoneuroendocrinology. 1989;14(3):217–29.

    Article  CAS  PubMed  Google Scholar 

  95. Undén F, Ljunggren JG, Beck-Friis J, Kjellman BF, Wetterberg L. Hypothalamic-pituitary-gonadal axis in major depressive disorders. Acta Psychiatr Scand. 1988;78(2):138–46.

    Article  PubMed  Google Scholar 

  96. Checkley SA. Neuroendocrine tests of mono-amine function in man: a review of basic theory and its application to the study of depressive illness. Psychol Med. 1980;10:35–53.

    Article  CAS  PubMed  Google Scholar 

  97. Imura H, Nakai Y, Kato Y, Hoshimoto Y, Moridera K. Effects of adrenergic drugs on growth hormone and ACTH secretion. In: Sco RO, editor. Endocrinology: proceedings of the fourth international congress of endocrinology. New York: Excerpta Medica; 1973. p. 156–62.

    Google Scholar 

  98. Annsseau M, Scheyvaert M, Doumont A, Poirrier R, Legros JJ, Franck G. Concurrent use of REM latency, dexamethasone suppression, clonidine, and apomorphine tests as biological markers of endogenous depression: a pilot study. Psychiatry Res. 1984;12:261–72.

    Article  Google Scholar 

  99. Checkley SA, Slade AP, Shur E. Growth hormone and other responses to clonidine in patients with endogenous depression. Br J Psychiatry. 1981;138:51–5.

    Article  CAS  PubMed  Google Scholar 

  100. Siever LJ, Uhde TW, Silberman EK, Jimerson DC, Aloi JA, Post RM, Murphy DL. Growth hormone response to clonidine as a probe of noradrenergic receptor responsiveness in affective disorder patients and controls. Psychiatry Res. 1982;6(2):171–83.

    Article  CAS  PubMed  Google Scholar 

  101. Charney DS, Heninger GR, Sternberg DE, Hafstad KM, Giddings S, Landis DH. Adrenergic receptor sensitivity in depression. Effects of clonidine in depressed patients and healthy subjects. Arch Gen Psychiatry. 1982;39(3):290–4.

    Article  CAS  PubMed  Google Scholar 

  102. Ansseau M, Von Frenckell R, Cerfontaine JL, Papart P, Franck G, Timsit-Berthier M, Geenen V, Legros JJ. Blunted response to growth hormone to clonidine and apomorphine in endogenous depression. Br J Psychiatry. 1988;153:65–71.

    Article  CAS  PubMed  Google Scholar 

  103. Charney DS, Heninger GR. Abnormal regulation of noradrenergic function in panic disorders. Arch Gen Psychiatry. 1986;43(11):1042–54.

    Article  CAS  PubMed  Google Scholar 

  104. Schittecatte M, Charles G, Depauw Y, Mesters P, Wilmotte J. Growth hormone response to clonidine in panic disorder patients. Psychiatry Res. 1988;23(2):147–51.

    Article  CAS  PubMed  Google Scholar 

  105. Gilles C, Mendlewicz J. Growth hormone stimulation tests in affective disorders and senile dementia of the Alzheimer’s type. In: Shagass C, Josiassen RC, Bridger WH, Weiss KJ, Stoff D, Simpson GM, editors. Biological psychiatry. New York: Elsevier; 1986. p. 773–5.

    Google Scholar 

  106. Matussek N, Ackenheil M, Herz M. The dependence of the clonidine growth hormone test on alcohol drinking habits and the menstrual cycle. Psychoneuroendocrinology. 1984;9(2):173–7.

    Article  CAS  PubMed  Google Scholar 

  107. Schittecatte M, Charles G, Machowski R, Wilmotte J. Tricyclic wash-out and growth hormone response to clonidine. Br J Psychiatry. 1989;154:858–63.

    Article  CAS  PubMed  Google Scholar 

  108. Matussek N. Biological aspects of depression. Psychopathology. 1986;19(2):66–71.

    Article  PubMed  Google Scholar 

  109. Krishnan KR, Manepalli AN, Ritchie JC, Rayasam K, Melville ML, Daughtry G, Thorner MO, Rivier JE, Vale WW, Nemeroff CB, Carroll BJ. Growth hormone-releasing factor stimulation test in depression. Am J Psychiatry. 1988;145(1):90–2.

    Article  CAS  PubMed  Google Scholar 

  110. Mokrani M, Duval F, Diep TS, Bailey PE, Macher JP. Multihormonal responses to clonidine in patients with affective and psychotic symptoms. Psychoneuroendocrinology. 2000;25(7):741–52.

    Article  CAS  PubMed  Google Scholar 

  111. Schittecatte M, Charles G, Machowski R, Wilmotte J. Growth hormone response to clonidine in untreated depressed patients. Psychiatry Res. 1989;29(2):199–206.

    Article  CAS  PubMed  Google Scholar 

  112. Cameron O. Anxious-depressive comorbidity: effects on HPA axis and CNS noradrenergic functions. Essent Psychopharmacol. 2006;7(1):24–34.

    PubMed  Google Scholar 

  113. Ansseau M, Scheyvaerts M, Doumont A, Poirrier R, Demonceau G, Legros JJFG. Value of the sleep EEG as a biological marker of depressive states. Comparison with 3 neuroendocrine tests. Rev Electroencephalogr Neurophysiol Clin. 1985;14(4):343–9.

    Article  CAS  PubMed  Google Scholar 

  114. Pitchot W, Reggers J, Pinto E, Hansenne M, Ansseau M. Catecholamine and HPA axis dysfunction in depression: relationship with suicidal behavior. Neuropsychobiology. 2003;47(3):152–7.

    Article  CAS  PubMed  Google Scholar 

  115. Mokrani MC, Duval F, Crocq MA, Bailey P, Macher JP. HPA axis dysfunction in depression: correlation with monoamine system abnormalities. Psychoneuroendocrinology. 1997;22(1):63–8.

    Article  Google Scholar 

  116. Schittecatte M, Charles G, Machowski R, Dumont F, Garcia-Valentin J, Wilmotte J, Papart P, Pitchot W, Wauthy J, Ansseau M. Effects of gender and diagnosis on growth hormone response to clonidine for major depression: a large-scale multicenter study. Am J Psychiatry. 1994;151(2):216–20.

    Article  CAS  PubMed  Google Scholar 

  117. Mitchell PB, Bearn JA, Corn TH, Checkley SA. Growth hormone response to clonidine after recovery in patients with endogenous depression. Br J Psychiatry. 1988;152:34–8.

    Article  CAS  PubMed  Google Scholar 

  118. Hoehe M, Valido G, Matussek N. Growth hormone response to clonidine in endogenous depressive patients: evidence for a trait marker in depresssion. In: Shagass C, Josiassen RD, Bridger WH, Weiss KS, Stoff D, Simpson GM, editors. Biological psychiatry. New York: Elsevier; 1985. p. 862–4.

    Google Scholar 

  119. Annsseau M, von Frenckell R, Maasen D, Cerfontaine JL, Papart P, Timsit-Berthier M, Legros JJ, Franck G. Prediction of treatment response to selective antidepressants from clonidine and apomorphine neuroendocrine challenges. In: Briley M, Fillion G, editors. New concepts in depression. London: Macmillan; 1988. p. 269–76.

    Google Scholar 

  120. Siever LJ, Uhde TW, Insel TR, Roy BF, Murphy DL. Growth hormone response to clonidine unchanged by chronic clorgyline treatment. Psychiatry Res. 1982;7(2):139–44.

    Article  CAS  PubMed  Google Scholar 

  121. Charney DS, Heninger GR, Sternberg DE. Alpha-2 adrenergic receptor sensitivity and the mechanism of action of antidepressant therapy. The effect of long-term amitriptyline treatment. Br J Psychiatry. 1983;142:265–75.

    Article  CAS  PubMed  Google Scholar 

  122. Llano López LH, Caif F, García S, Fraile M, Landa AI, Baiardi G, Lafuente JV, Braszko JJ, Bregonzio C, Gargiulo PA. Anxiolytic-like effect of losartan injected into amygdala of the acutely stressed rats. Pharmacol Rep [Internet]. 2012;64(1):54–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22580520

    Article  Google Scholar 

  123. Llano López LH, Caif F, Fraile M, Tinnirello B, Landa AI, Lafuente JV, Baiardi GC, Gargiulo PA. Differential behavioral profile induced by the injection of dipotassium chlorazepate within brain areas that project to the nucleus accumbens septi. Pharmacol Rep [Internet]. 2013;65(3):566–78. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23950579.

    Article  Google Scholar 

  124. Martínez G, Ropero C, Funes A, Flores E, Landa AI, Gargiulo PA. AP-7 into the nucleus accumbens disrupts acquisition but does not affect consolidation in a passive avoidance task. Physiol Behav. 2002;76(2):205–12.

    Article  PubMed  Google Scholar 

  125. Martínez G, Ropero C, Funes A, Flores E, Blotta C, Landa AI, Gargiulo PA. Effects of selective NMDA and non-NMDA blockade in the nucleus accumbens on the plus-maze test. Physiol Behav. 2002;76(2):219–24.

    Article  PubMed  Google Scholar 

  126. Del Vecchio S, Gargiulo PA. Visual and motor functions in schizophrenic patients. Acta Psiquiat Psicol Am Lat. 1992;38(4):317–22.

    Google Scholar 

  127. Gargiulo PA, Del Vecchio S. Gestaltic visual motor function in schizophrenic patients. In: Elsner N, Wässle H, editors. Proceedings of the 25th Göttingen neurobiology conference 1997, Comunication 1005, vol. II. Stuttgart: Georg Thieme; 1997.

    Google Scholar 

  128. Gargiulo PA, Siemann M, Delius JD. Visual discrimination in pigeons impaired by glutamatergic blockade of nucleus accumbens. Physiol Behav. 1998;63(4):705–9.

    Article  CAS  PubMed  Google Scholar 

  129. Acerbo MJ, Gargiulo PA, Krug I, Delius JD. Behavioural consequences of nucleus accumbens dopaminergic stimulation and glutamatergic blocking in pigeons. Behav Brain Res. 2002;136(1):171–7.

    Article  CAS  PubMed  Google Scholar 

  130. Gargiulo PA, Martínez G, Ropero C, Funes A, Landa AI. NMDA glutamatergic blockade of nucleus accumbens disrupts acquisition but not consolidation in a passive avoidance task. Ann NY Acad Sci. 1999;877:717–22.

    Article  CAS  PubMed  Google Scholar 

  131. Baiardi G, Ruiz AM, Beling A, Borgonovo J, Martínez G, Landa AI, Sosa MA, Gargiulo PA. Glutamatergic ionotropic blockade within accumbens disrupts working memory and might alter the endocytic machinery in rat accumbens and prefrontal cortex. J Neural Transm. 2007;114(12):1519–28.

    Article  CAS  PubMed  Google Scholar 

  132. Gargiulo AL, Martin G, Bianchi AR, Soler M, Landa AI, Gargiulo PA. Correlations between biochemical and neurophysiologic parametrs in Psychiatry. Comunicaciones. 1996;3(5):70.

    Google Scholar 

  133. Zapulla RA, Le Fever FF, Jaeger J, Bilder R. Windows on the brain: neuropsychology’s technological frontiers. New York neuropsychology group’s eighth annual conference. Ann NY Acad Sci. 1991;620:1–251. New York.

    Article  Google Scholar 

  134. Linden D, Thome J. Modern neuroimaging in psychiatry: towards the integration of functional and molecular information. World J Biol Psychiatry. 2011;12(Suppl1):6–10.

    Article  PubMed  Google Scholar 

  135. Michel CM, Murray MM. Towards the utilization of EEG as a brain imaging tool. Neuroimage. 2012;61(2):371–85.

    Article  PubMed  Google Scholar 

  136. McLoughlin G, Makeig S, Tsuang MT. In search of biomarkers in psychiatry: EEG-based measures of brain function. Am J Med Genet B Neuropsychiatr Genet. 2014;165B(2):111–21.

    Article  PubMed  Google Scholar 

  137. He B, Liu Z. Multimodal functional neuroimaging: integrating functional MRI and EEG/MEG. IEEE Rev Biomed Eng. 2008;1:23–40.

    Article  PubMed Central  PubMed  Google Scholar 

  138. Klöppel S, Abdulkadir A, Jack Jr CR, Koutsouleris N, Mourão-Miranda J, Vemuri P. Diagnostic neuroimaging across diseases. Neuroimage. 2012;61(2):457–63.

    Article  PubMed Central  PubMed  Google Scholar 

  139. Maurer K, Dierks T. Functional imaging of the brain in psychiatry–mapping of EEG and evoked potentials. Neurosurg Rev. 1987;10(4):275–82.

    Article  CAS  PubMed  Google Scholar 

  140. Williamson PC, Kaye H. EEG mapping applications in psychiatric disorders. Can J Psychiatry. 1989;34(7):680–6.

    CAS  PubMed  Google Scholar 

  141. Howland RH, Shutt LS, Berman SR, Spotts CR, Denko T. The emerging use of technology for the treatment of depression and other neuropsychiatric disorders. Ann Clin Psychiatry. 2011;23(1):48–62.

    PubMed  Google Scholar 

  142. Paul DD, Suton S. Evoked potential correlates of response criterion in auditory signal detection. Science. 1972;177(4046):362–4.

    Article  CAS  PubMed  Google Scholar 

  143. Clark CR, Galletly CA, Ash DJ, Moores KA, Penrose RA, McFarlane AC. Evidence-based medicine evaluation of electrophysiological studies of the anxiety disorders. Clin EEG Neurosci. 2009;40(2):84–112.

    Article  PubMed  Google Scholar 

  144. Saletu B, Anderer P, Saletu-Zyhlarz GM, Pascual-Marqui RD. EEG mapping and low-resolution brain electromagnetic tomography (LORETA) in diagnosis and therapy of psychiatric disorders: evidence for a key-lock principle. Clin EEG Neurosci. 2005;36(2):108–15.

    Article  PubMed  Google Scholar 

  145. Iosifescu DV. Prediction of response to antidepressants: is quantitative EEG (QEEG) an alternative? CNS Neurosci Ther. 2008;14(4):263–5.

    Article  PubMed  Google Scholar 

  146. Leuchter AF, Cook IA, Hunter A, Korb A. Use of clinical neurophysiology for the selection of medication in the treatment of major depressive disorder: the state of the evidence. Clin EEG Neurosci. 2009;40(2):78–83.

    Article  PubMed  Google Scholar 

  147. Murck H, Nickel T, Künzel H, Antonijevic IA, Schill J, Zobel A, Steiger A, Sonntag A, Holsboer F. State markers of depression in sleep EEG: dependency on drug and gender in patients treated with tianeptine or paroxetine. Neuropsychopharmacology. 2003;28(2):348–58.

    Article  CAS  PubMed  Google Scholar 

  148. Steiger A, von Bardeleben U, Wiedemann K, Holsboer F. Sleep EEG and nocturnal secretion of testosterone and cortisol in patients with major endogenous depression during acute phase and after remission. J Psychiatr Res. 1991;25(4):169–77.

    Article  CAS  PubMed  Google Scholar 

  149. Rivest S, Plotsky PM, Rivier C. CRF alters the infundibular LHRH secretory system from the medial preoptic area of female rats: possible involvement of opioid receptors. Neuroendocrinology. 1993;57(2):236–46.

    Article  CAS  PubMed  Google Scholar 

  150. Li XF, Knox AM, O’Byrne KT. Corticotrophin-releasing factor and stress-induced inhibition of the gonadotrophin-releasing hormone pulse generator in the female. Brain Res. 2010;1364:153–63.

    Article  CAS  PubMed  Google Scholar 

  151. Hill SK, Harris MS, Herbener ES, Pavuluri M, Sweeney JA. Neurocognitive allied phenotypes for schizophrenia and bipolar disorder. Schizophr Bull. 2008;34(4):743–59.

    Article  PubMed Central  PubMed  Google Scholar 

  152. Zalla T, Joyce C, Szöke A, Schürhoff F, Pillon B, Komano O, Perez-Diaz F, Bellivier F, Alter C, Dubois B, Rouillon F, Houde O, Leboyer M. Executive dysfunctions as potential markers of familial vulnerability to bipolar disorder and schizophrenia. Psychiatry Res. 2004;121(3):207–17.

    Article  PubMed  Google Scholar 

  153. Mannie ZN, Harmer CJ, Cowen PJ, Norbury R. A functional magnetic resonance imaging study of verbal working memory in young people at increased familial risk of depression. Biol Psychiatry. 2010;67(5):471–7.

    Article  PubMed Central  PubMed  Google Scholar 

  154. Mattai A, Hosanagar A, Weisinger B, Greenstein D, Stidd R, Clasen L, Lalonde F, Rapoport J, Gogtay N. Hippocampal volume development in healthy siblings of childhood-onset schizophrenia patients. Am J Psychiatry. 2011;168(4):427–35.

    Article  PubMed Central  PubMed  Google Scholar 

  155. Behere RV. Dorsolateral prefrontal lobe volume and neurological soft signs as predictors of clinical social and functional outcome in schizophrenia: a longitudinal study. Indian J Psychiatry. 2013;55(2):111–6.

    Article  PubMed Central  PubMed  Google Scholar 

  156. Herzog MH, Roinishvili M, Chkonia E, Brand A. Schizophrenia and visual backward masking: a general deficit of target enhancement. Front Psychol. 2013;4:254.

    Article  PubMed Central  PubMed  Google Scholar 

  157. Fujimoto T, Okumura E, Takeuchi K, Kodabashi A, Otsubo T, Nakamura K, Kamiya S, Higashi Y, Yuji T, Honda K, Shimooki S, Tamura T. Dysfunctional cortical connectivity during the auditory oddball task in patients with schizophrenia. Open Neuroimag J. 2013;7:15–26.

    Article  PubMed Central  PubMed  Google Scholar 

  158. Ford JM, Dierks T, Fisher DJ, Herrmann CS, Hubl D, Kindler J, Koenig T, Mathalon DH, Spencer KM, Strik W, van Lutterveld R. Neurophysiological studies of auditory verbal hallucinations. Schizophr Bull. 2012;38(4):715–23.

    Article  PubMed Central  PubMed  Google Scholar 

  159. Beedie SA, Benson PJ, St Clair DM. Atypical scanpaths in schizophrenia: evidence of a trait- or state-dependent phenomenon? J Psychiatry Neurosci. 2011;36(3):150–64.

    Article  PubMed Central  PubMed  Google Scholar 

  160. Brewer WJ, Wood SJ, Phillips LJ, Francey SM, Pantelis C, Yung AR, Cornblatt B, McGorry PD. Generalized and specific cognitive performance in clinical high-risk cohorts: a review highlighting potential vulnerability markers for psychosis. Schizophr Bull. 2006;32(3):538–55.

    Article  PubMed Central  PubMed  Google Scholar 

  161. Keshavan MS, Kulkarni S, Bhojraj T, Francis A, Diwadkar V, Montrose DM, Seidman LJ, Sweeney J. Premorbid cognitive deficits in young relatives of schizophrenia patients. Front Hum Neurosci. 2010;3:62.

    PubMed Central  PubMed  Google Scholar 

  162. Taylor SF, MacDonald 3rd AW. Cognitive neuroscience treatment research to improve cognition in schizophrenia. Brain mapping biomarkers of socio-emotional processing in schizophrenia. Schizophr Bull. 2012;38(1):73–80.

    Article  PubMed Central  PubMed  Google Scholar 

  163. Gallinat J, Rentzsch J, Roser P. Neurophysiological effects of cannabinoids: implications for psychosis research. Curr Pharm Des. 2012;18(32):4938–49.

    Article  CAS  PubMed  Google Scholar 

  164. Gerez M, Tello A. Selected quantitative EEG (QEEG) and event-related potential (ERP) variables as discriminators for positive and negative schizophrenia. Biol Psychiatry. 1995;38(1):34–49.

    Article  CAS  PubMed  Google Scholar 

  165. Miranda EC, Pinheiro MM, Pereira LD, Iorio MC. Correlation of the P300 evoked potential in depressive and cognitive aspects of aging. Braz J Otorhinolaryngol. 2012;8(5):83–9.

    Article  Google Scholar 

  166. Jandl M, Steyer J, Kaschka WP. Suicide risk markers in major depressive disorder: a study of electrodermal activity and event-related potentials. J Affect Disord. 2010;123(1–3):138–49.

    Article  PubMed  Google Scholar 

  167. Kemp AH, Pe Benito L, Quintana DS, Clark CR, McFarlane A, Mayur P, Harris A, Boyce P, Williams LM. Impact of depression heterogeneity on attention: an auditory oddball event related potential study. J Affect Disord. 2010;123(1–3):202–7.

    Article  PubMed  Google Scholar 

  168. Ford JM. Schizophrenia: the broken P300 and beyond. Psychophysiology. 1999;36(6):667–82.

    Article  CAS  PubMed  Google Scholar 

  169. Mulert C, Pogarell O, Hegerl U. Simultaneous EEG-fMRI: perspectives in psychiatry. Clin EEG Neurosci. 2008;39(2):61–4.

    Article  PubMed  Google Scholar 

  170. Groom MJ, Bates AT, Jackson GM, Calton TG, Liddle PF, Hollis C. Event-related potentials in adolescents with schizophrenia and their siblings: a comparison with attention-deficit/hyperactivity disorder. Biol Psychiatry. 2008;63(8):784–92.

    Article  PubMed  Google Scholar 

  171. Winterer G, Egan MF, Raedler T, Sanchez C, Jones DW, Coppola R, Weinberger DR. P300 and genetic risk for schizophrenia. Arch Gen Psychiatry. 2003;60(11):1158–67.

    Article  PubMed  Google Scholar 

  172. Mori K, Morita K, Shoji Y, Matsuoka T, Fujiki R, Uchimura N. State and trait markers of emotionally charged visual event-related potentials (P300) in drug-naïve schizophrenia. Psychiatry Clin Neurosci. 2012;66(4):261–9.

    Article  PubMed  Google Scholar 

  173. Yamamoto M, Morita K, Waseda Y, Ueno T, Maeda H. Changes in auditory P300 with clinical remission in schizophrenia: effects of facial-affect stimuli. Psychiatry Clin Neurosci. 2001;55(4):347–52.

    Article  CAS  PubMed  Google Scholar 

  174. Winterer G, Coppola R, Egan MF, Goldberg TE, Weinberger DR. Functional and effective frontotemporal connectivity and genetic risk for schizophrenia. Biol Psychiatry. 2003;54(11):1181–92.

    Article  PubMed  Google Scholar 

  175. Posada A, Franck N, Augier S, Georgieff N, Jeannerod M. Altered processing of sensorimotor feedback in schizophrenia. C R Biol. 2007;330(5):382–8.

    Article  PubMed  Google Scholar 

  176. Friedman D, Squires-Wheeler E. Event-related potentials (ERPs) as indicators of risk for schizophrenia. Schizophr Bull. 1994;20(1):63–74.

    Article  CAS  PubMed  Google Scholar 

  177. Crossley NA, Constante M, Fusar-Poli P, Bramon E. Neurophysiological alterations in the prepsychotic phases. Curr Pharm Des. 2012;18(4):479–85.

    Article  CAS  PubMed  Google Scholar 

  178. Kocsis B, Brown RE, McCarley RW, Hajos M. Impact of ketamine on neuronal network dynamics: translational modeling of schizophrenia-relevant deficits. CNS Neurosci Ther. 2013;19(6):437–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  179. Stekelenburg JJ, Maes JP, Van Gool AR, Sitskoorn M, Vroomen J. Deficient multisensory integration in schizophrenia: an event-related potential study. Schizophr Res. 2013;147(2–3):253–61.

    Article  PubMed  Google Scholar 

  180. Dunkin JJ, Leuchter AF, Newton TF, Cook IA. Reduced EEG coherence in dementia: state or trait marker? Biol Psychiatry. 1994;35(11):870–9.

    Article  CAS  PubMed  Google Scholar 

  181. Zipursky RB, Meyer JH, Verhoeff NP. PET and SPECT imaging in psychiatric disorders. Can J Psychiatry. 2007;52(3):146–57.

    PubMed  Google Scholar 

  182. Reeve A, Rose DF, Weinberger DR. Magnetoence-phalography. Applications in psychiatry. Arch Gen Psychiatry. 1989;46(6):573–6.

    Article  CAS  PubMed  Google Scholar 

  183. Reite M, Teale P, Rojas DC. Magnetoence-phalography: applications in psychiatry. Biol Psychiatry. 1999;45(12):1553–63.

    Article  CAS  PubMed  Google Scholar 

  184. Siekmeier PJ, Stufflebeam SM. Patterns of spontaneous magnetoencephalographic activity in patients with schizophrenia. J Clin Neurophysiol. 2010;3:179–90.

    Article  Google Scholar 

  185. Dean B. Neurochemistry of schizophrenia: the contribution of neuroimaging postmortem pathology and neurochemistry in schizophrenia. Curr Top Med Chem. 2012;12(21):2375–92.

    Article  CAS  PubMed  Google Scholar 

  186. Erritzoe D, Talbot P, Frankle WG, Abi-Dargham A. Positron emission tomography and single photon emission CT molecular imaging in schizophrenia. Neuroimaging Clin N Am. 2003;13(4):817–32.

    Article  PubMed  Google Scholar 

  187. Elisei S, Lucarini E, Murgia N, Ferranti L, Attademo L. Perinatal depression: a study of prevalence and of risk and protective factors. Psychiatr Danub. 2013;25 Suppl 2:258–62.

    Google Scholar 

  188. Kim JS, Kim OL, Koo BH, Kim MS, Kim SS, Cheon EJ. Neurocognitive function differentiation from the effect of psychopathologic symptoms in the disability evaluation of patients with mild traumatic brain injury. J Korean Neurosurg Soc. 2013;54(5):390–8.

    Article  PubMed Central  PubMed  Google Scholar 

  189. Lee EJ, Kim JB, Shin IH, Lim KH, Lee SH, Cho GA, Sung HM, Jung SW, Zmimmerman M, Lee Y. Current use of depression rating scales in mental health setting. Psychiatry Investig. 2010;7(3):170–6.

    Article  PubMed Central  PubMed  Google Scholar 

  190. Sellbom M, Wygant D, Bagby M. Utility of the MMPI-2-RF in detecting non-credible somatic complaints. Psychiatry Res. 2012;197(3):295–301.

    Article  PubMed  Google Scholar 

  191. Chechko N, Kellermann T, Zvyagintsev M, Augustin M, Schneider F, Habel U. Brain circuitries involved in semantic interference by demands of emotional and non-emotional distractors. PLoS ONE. 2012;7(5):e38155.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  192. Regenbogen C, Schneider DA, Gur RE, Schneider F, Habel U, Habel U, Kellermann T. Multimodal human communication–targeting facial expressions, speech content and prosody. Neuroimage. 2012;60(4):2346–56.

    Article  PubMed  Google Scholar 

  193. Derntl B, Finkelmeyer A, Voss B, Eickhoff SB, Kellermann T, Schneider F, Habel U. Neural correlates of the core facets of empathy in schizophrenia. Schizophr Res. 2012;136(1–3):70–81.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank to Mr. Daniel Dueñas for his invaluable support with the graphics of the present chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángel José Martín Gargiulo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gargiulo, Á.J.M. et al. (2015). Biological Markers in Psychiatry and Its Relation with Translational Approaches: Brief Historical Review. In: Gargiulo, P., Arroyo, H. (eds) Psychiatry and Neuroscience Update. Springer, Cham. https://doi.org/10.1007/978-3-319-17103-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17103-6_23

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17102-9

  • Online ISBN: 978-3-319-17103-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics